Wnt Signaling in Gynecologic Malignancies
Abstract
:1. Introduction
2. Wnt Signaling
2.1. Non-Canonical Pathways—β-Catenin Independent
2.1.1. Planar Cell Polarity
2.1.2. Calcium-Dependent Wnt Pathway
2.2. Canonical Pathway—β-Catenin Dependent
3. Ovarian Cancer and Wnt Signaling
3.1. Tumorigenesis
3.2. Metastasis
3.3. Therapy Resistance
3.4. Immune Landscape
3.5. Other Ovarian Cancer Histotypes
4. Endometrial Cancer
4.1. CTNNB1 as a Molecular Marker
4.2. Tumorigenesis
5. Cervical Cancer
5.1. Tumorigenesis
5.2. Metastasis
6. Targeting Wnt Signaling
6.1. PORCN Inhibitors
6.2. WNT/FZD Inhibitors
6.3. DVL Inhibitors
6.4. Destruction Complex Inhibitors
6.5. Transcriptional Co-Activators/Target Gene Inhibitors
6.6. Wnt Inhibitor Toxicities
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Anastas, J.N.; Moon, R.T. Wnt signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 2013, 13, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Park, J.I. Wnt signaling in cancer: Therapeutic targeting of wnt signaling beyond beta-catenin and the destruction complex. Exp. Mol. Med. 2020, 52, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiese, K.E.; Nusse, R.; van Amerongen, R. Wnt signalling: Conquering complexity. Development 2018, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, S.; Willert, K. Mechanisms of wnt signaling and control. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, e1422. [Google Scholar] [CrossRef]
- Groden, J.; Thliveris, A.; Samowitz, W.; Carlson, M.; Gelbert, L.; Albertsen, H.; Joslyn, G.; Stevens, J.; Spirio, L.; Robertson, M.; et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991, 66, 589–600. [Google Scholar] [CrossRef]
- van Schie, E.H.; van Amerongen, R. Aberrant wnt/ctnnb1 signaling as a therapeutic target in human breast cancer: Weighing the evidence. Front. Cell Dev. Biol. 2020, 8, 25. [Google Scholar] [CrossRef]
- Moroney, M.R.; Davies, K.D.; Wilberger, A.C.; Sheeder, J.; Post, M.D.; Berning, A.A.; Fisher, C.; Lefkowits, C.; Guntupalli, S.R.; Behbakht, K.; et al. Molecular markers in recurrent stage i, grade 1 endometrioid endometrial cancers. Gynecol. Oncol. 2019, 153, 517–520. [Google Scholar] [CrossRef]
- Deshmukh, A.; Kumar, S.; Arfuso, F.; Newsholme, P.; Dharmarajan, A. Secreted frizzled-related protein 4 (sfrp4) chemo-sensitizes cancer stem cells derived from human breast, prostate, and ovary tumor cell lines. Sci. Rep. 2017, 7, 2256. [Google Scholar] [CrossRef] [Green Version]
- Teeuwssen, M.; Fodde, R. Wnt signaling in ovarian cancer stemness, emt, and therapy resistance. J. Clin. Med. 2019, 8, 1658. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Zhao, Z.; Huang, L.; Wang, L.; Miao, Y.; Wu, J. Il-8 promotes cell migration through regulating emt by activating the wnt/beta-catenin pathway in ovarian cancer. J. Cell Mol. Med. 2020, 24, 1588–1598. [Google Scholar] [CrossRef] [Green Version]
- Weidle, U.H.; Birzele, F.; Kollmorgen, G.; Rueger, R. Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genom. Proteom. 2016, 13, 407–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, X.; Liu, A.; Zhong, M.; Wei, J.; Zhang, W.; Rong, Y.; Liu, W.; Li, M.; Qing, X.; Chen, G.; et al. Silencing lgr6 attenuates stemness and chemoresistance via inhibiting wnt/beta-catenin signaling in ovarian cancer. Mol. Ther. Oncolytics 2019, 14, 94–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaraj, A.B.; Joseph, P.; Kovalenko, O.; Singh, S.; Armstrong, A.; Redline, R.; Resnick, K.; Zanotti, K.; Waggoner, S.; DiFeo, A. Critical role of wnt/beta-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget 2015, 6, 23720–23734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Patel, L.; Mills, G.B.; Lu, K.H.; Sood, A.K.; Ding, L.; Kucherlapati, R.; Mardis, E.R.; Levine, D.A.; Shmulevich, I.; et al. Clinical significance of ctnnb1 mutation and wnt pathway activation in endometrioid endometrial carcinoma. J. Natl. Cancer Inst. 2014, 106, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurnit, K.C.; Kim, G.N.; Fellman, B.M.; Urbauer, D.L.; Mills, G.B.; Zhang, W.; Broaddus, R.R. Ctnnb1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod. Pathol. 2017, 30, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; Lee, H.S.; Franco, H.L.; Broaddus, R.R.; Taketo, M.M.; Tsai, S.Y.; Lydon, J.P.; DeMayo, F.J. Beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene 2009, 28, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Goad, J.; Ko, Y.A.; Kumar, M.; Jamaluddin, M.F.B.; Tanwar, P.S. Oestrogen fuels the growth of endometrial hyperplastic lesions initiated by overactive wnt/beta-catenin signalling. Carcinogenesis 2018, 39, 1105–1116. [Google Scholar] [CrossRef] [Green Version]
- Bulut, G.; Fallen, S.; Beauchamp, E.M.; Drebing, L.E.; Sun, J.; Berry, D.L.; Kallakury, B.; Crum, C.P.; Toretsky, J.A.; Schlegel, R.; et al. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLoS ONE 2011, 6, e27243. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Liu, Y.; Zhao, W.; Sun, B.; Chen, Q. Wnt5a expression is associated with the tumor metastasis and clinical survival in cervical cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 6072–6078. [Google Scholar]
- Perez-Plasencia, C.; Vazquez-Ortiz, G.; Lopez-Romero, R.; Pina-Sanchez, P.; Moreno, J.; Salcedo, M. Genome wide expression analysis in hpv16 cervical cancer: Identification of altered metabolic pathways. Infect. Agent Cancer 2007, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, N.; Zhang, Y.; Wang, S.; Pang, X.; Zhang, J.; Luo, Q.; Su, Y.; Zhang, S. Clinical significance of wnt-11 and squamous cell carcinoma antigen expression in cervical cancer. Med. Oncol. 2014, 31, 933. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, N.; Zhang, Y.; Wang, S.; Pang, X.; Zhang, S. Wnt-11 overexpression promoting the invasion of cervical cancer cells. Tumour Biol. 2016, 37, 11789–11798. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Zhao, Y.; Fan, Y.; Ma, B.; Yang, S.; Liu, Q.; Linghu, H.; Wang, H. Sulfiredoxin may promote cervical cancer metastasis via wnt/beta-catenin signaling pathway. Int. J. Mol. Sci. 2017, 18, 917. [Google Scholar]
- Zha, H.; Li, X.; Sun, H.; Duan, L.; Yuan, S.; Li, H.; Li, A.; Gu, Y.; Zhao, J.; Xie, J.; et al. S100a9 promotes the proliferation and migration of cervical cancer cells by inducing epithelialmesenchymal transition and activating the wnt/betacatenin pathway. Int. J. Oncol. 2019, 55, 35–44. [Google Scholar]
- Guo, X.; Xiao, H.; Guo, S.; Li, J.; Wang, Y.; Chen, J.; Lou, G. Long noncoding rna hotair knockdown inhibits autophagy and epithelial-mesenchymal transition through the wnt signaling pathway in radioresistant human cervical cancer hela cells. J. Cell Physiol. 2019, 234, 3478–3489. [Google Scholar] [CrossRef]
- Yamamoto, T.M.; McMellen, A.; Watson, Z.L.; Aguilera, J.; Ferguson, R.; Nurmemmedov, E.; Thakar, T.; Moldovan, G.L.; Kim, H.; Cittelly, D.M.; et al. Activation of wnt signaling promotes olaparib resistant ovarian cancer. Mol. Carcinog. 2019, 58, 1770–1782. [Google Scholar] [CrossRef]
- Bocchicchio, S.; Tesone, M.; Irusta, G. Convergence of wnt and notch signaling controls ovarian cancer cell survival. J. Cell Physiol. 2019, 234, 22130–22143. [Google Scholar] [CrossRef]
- Goldsberry, W.N.; Meza-Perez, S.; Londono, A.I.; Katre, A.A.; Mott, B.T.; Roane, B.M.; Goel, N.; Wall, J.A.; Cooper, S.J.; Norian, L.A.; et al. Inhibiting wnt ligand production for improved immune recognition in the ovarian tumor microenvironment. Cancers (Basel) 2020, 12, 766. [Google Scholar] [CrossRef] [Green Version]
- Doo, D.W.; Meza-Perez, S.; Londono, A.I.; Goldsberry, W.N.; Katre, A.A.; Boone, J.D.; Moore, D.J.; Hudson, C.T.; Betella, I.; McCaw, T.R.; et al. Inhibition of the wnt/beta-catenin pathway enhances antitumor immunity in ovarian cancer. Ther. Adv. Med. Oncol. 2020, 12, 1758835920913798. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.N.; Gunderson, C.C.; Sabbatini, P.; McMeekin, D.S.; Mantia-Smaldone, G.; Burger, R.A.; Morgan, M.A.; Kapoun, A.M.; Brachmann, R.K.; Stagg, R.; et al. A phase 1b dose escalation study of ipafricept (omp54f28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol. Oncol. 2019, 154, 294–301. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Zhang, S.; Wang, W.; Hu, P. Targeting of wnt/beta-catenin by anthelmintic drug pyrvinium enhances sensitivity of ovarian cancer cells to chemotherapy. Med. Sci. Monit. 2017, 23, 266–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Si, J.; Gan, L.; Guo, M.; Yan, J.; Chen, Y.; Wang, F.; Xie, Y.; Wang, Y.; Zhang, H. Inhibition of wnt signalling pathway by xav939 enhances radiosensitivity in human cervical cancer hela cells. Artif. Cells Nanomed. Biotechnol. 2020, 48, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Cao, L.; Zhu, J.; Tan, Z.; Tang, M.; Li, Z.; Hu, Y.; Yu, R.; Zhang, S.; Song, L.; et al. Loss of rbms3 confers platinum resistance in epithelial ovarian cancer via activation of mir-126-5p/beta-catenin/cbp signaling. Clin. Cancer Res. 2019, 25, 1022–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusse, R.; Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
- Arend, R.C.; Londono-Joshi, A.I.; Straughn, J.M., Jr.; Buchsbaum, D.J. The wnt/beta-catenin pathway in ovarian cancer: A review. Gynecol. Oncol. 2013, 131, 772–779. [Google Scholar] [CrossRef]
- Taciak, B.; Pruszynska, I.; Kiraga, L.; Bialasek, M.; Krol, M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. 2018, 69. [Google Scholar] [CrossRef]
- Simons, M.; Walz, G. Polycystic kidney disease: Cell division without a c(l)ue? Kidney Int. 2006, 70, 854–864. [Google Scholar] [CrossRef] [Green Version]
- Garriock, R.J.; D’Agostino, S.L.; Pilcher, K.C.; Krieg, P.A. Wnt11-r, a protein closely related to mammalian wnt11, is required for heart morphogenesis in xenopus. Dev. Biol. 2005, 279, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Curtin, J.A.; Quint, E.; Tsipouri, V.; Arkell, R.M.; Cattanach, B.; Copp, A.J.; Henderson, D.J.; Spurr, N.; Stanier, P.; Fisher, E.M.; et al. Mutation of celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 2003, 13, 1129–1133. [Google Scholar] [CrossRef]
- Leris, A.C.; Roberts, T.R.; Jiang, W.G.; Newbold, R.F.; Mokbel, K. Wnt5a expression in human breast cancer. Anticancer Res. 2005, 25, 731–734. [Google Scholar]
- MacLeod, R.J.; Hayes, M.; Pacheco, I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective wnt signaling in colon cancer cells. Am. J. Physiol. Gastrointest Liver Physiol. 2007, 293, G403–G411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitler, B.G.; Nicodemus, J.P.; Li, H.; Cai, Q.; Wu, H.; Hua, X.; Li, T.; Birrer, M.J.; Godwin, A.K.; Cairns, P.; et al. Wnt5a suppresses epithelial ovarian cancer by promoting cellular senescence. Cancer Res. 2011, 71, 6184–6194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasniewski, T.; Kiezun, J.; Krazinski, B.E.; Kowalczyk, A.E.; Szostak, B.; Wierzbicki, P.M.; Kiewisz, J. Wnt5a gene and protein expression in endometrial cancer. Folia Histochem. Cytobiol. 2019, 57, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikels, A.; Minami, Y.; Nusse, R. Ror2 receptor requires tyrosine kinase activity to mediate wnt5a signaling. J. Biol. Chem. 2009, 284, 30167–30176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramps, T.; Peter, O.; Brunner, E.; Nellen, D.; Froesch, B.; Chatterjee, S.; Murone, M.; Zullig, S.; Basler, K. Wnt/wingless signaling requires bcl9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-tcf complex. Cell 2002, 109, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Meng, F.; Xu, Y.; Yang, S.; Xiao, M.; Chen, X.; Lou, G. Overexpression of wnt7a is associated with tumor progression and unfavorable prognosis in endometrial cancer. Int. J. Gynecol. Cancer 2013, 23, 304–311. [Google Scholar] [CrossRef]
- Myers, A.; Barry, W.T.; Hirsch, M.S.; Matulonis, U.; Lee, L. Beta-catenin mutations in recurrent figo ia grade i endometrioid endometrial cancers. Gynecol. Oncol. 2014, 134, 426–427. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, S. Mutation hotspots in the beta-catenin gene: Lessons from the human cancer genome databases. Mol. Cells 2019, 42, 8–16. [Google Scholar]
- Yang, H.Y.; Shen, J.X.; Wang, Y.; Liu, Y.; Shen, D.Y.; Quan, S. Tankyrase promotes aerobic glycolysis and proliferation of ovarian cancer through activation of wnt/beta-catenin signaling. Biomed. Res. Int. 2019, 2019, 2686340. [Google Scholar]
- Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. Long non-coding rna uca1 increases chemoresistance of bladder cancer cells by regulating wnt signaling. FEBS J. 2014, 281, 1750–1758. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Klotz, D.M.; Wimberger, P. Cells of origin of ovarian cancer: Ovarian surface epithelium or fallopian tube? Arch. Gynecol. Obstet 2017, 296, 1055–1062. [Google Scholar] [CrossRef]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Heintz, A.P.; Odicino, F.; Maisonneuve, P.; Beller, U.; Benedet, J.L.; Creasman, W.T.; Ngan, H.Y.; Pecorelli, S. Carcinoma of the fallopian tube. Int. J. Gynaecol. Obstet. 2003, 83 (Suppl. 1), 119–133. [Google Scholar] [CrossRef]
- Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-grade serous ovarian cancer: Basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Li, P.; Liu, W.; Xu, Q.; Wang, C. Clinical significance and biological role of wnt10a in ovarian cancer. Oncol. Lett. 2017, 14, 6611–6617. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Xing, H.; Li, L.; Li, R.; Dai, J.; Li, Q.; Fang, S. The role of r-spondin 1 through activating wnt/beta-catenin in the growth, survival and migration of ovarian cancer cells. Gene 2019, 689, 124–130. [Google Scholar] [CrossRef]
- Kotrbova, A.; Ovesna, P.; Gybel, T.; Radaszkiewicz, T.; Bednarikova, M.; Hausnerova, J.; Jandakova, E.; Minar, L.; Crha, I.; Weinberger, V.; et al. Wnt signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Theranostics 2020, 10, 537–552. [Google Scholar] [CrossRef]
- Bernaudo, S.; Salem, M.; Qi, X.; Zhou, W.; Zhang, C.; Yang, W.; Rosman, D.; Deng, Z.; Ye, G.; Yang, B.B.; et al. Cyclin g2 inhibits epithelial-to-mesenchymal transition by disrupting wnt/beta-catenin signaling. Oncogene 2016, 35, 4816–4827. [Google Scholar] [CrossRef]
- Asem, M.; Young, A.M.; Oyama, C.; Claure De La Zerda, A.; Liu, Y.; Yang, J.; Hilliard, T.S.; Johnson, J.; Harper, E.I.; Guldner, I.; et al. Host wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis. Cancer Res. 2020, 80, 1156–1170. [Google Scholar] [CrossRef]
- Chehover, M.; Reich, R.; Davidson, B. Expression of wnt pathway molecules is associated with disease outcome in metastatic high-grade serous carcinoma. Virchows Archiv. 2020, 1–10. [Google Scholar] [CrossRef]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ariel3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 2016, 375, 2154–2164. [Google Scholar] [CrossRef]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a brca1/2 mutation (solo2/engot-ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.; O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ariel2 part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Bitler, B.G.; Watson, Z.L.; Wheeler, L.J.; Behbakht, K. Parp inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol. Oncol. 2017, 147, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Watson, Z.L.; Yamamoto, T.M.; McMellen, A.; Kim, H.; Hughes, C.J.; Wheeler, L.J.; Post, M.D.; Behbakht, K.; Bitler, B.G. Histone methyltransferases ehmt1 and ehmt2 (glp/g9a) maintain parp inhibitor resistance in high-grade serous ovarian carcinoma. Clin. Epigenetics 2019, 11, 165. [Google Scholar] [CrossRef]
- Du, Y.; Yamaguchi, H.; Wei, Y.; Hsu, J.L.; Wang, H.L.; Hsu, Y.H.; Lin, W.C.; Yu, W.H.; Leonard, P.G.; Lee, G.R.t.; et al. Blocking c-met-mediated parp1 phosphorylation enhances anti-tumor effects of parp inhibitors. Nat. Med. 2016, 22, 194–201. [Google Scholar] [CrossRef]
- Fukumoto, T.; Zhu, H.; Nacarelli, T.; Karakashev, S.; Fatkhutdinov, N.; Wu, S.; Liu, P.; Kossenkov, A.V.; Showe, L.C.; Jean, S.; et al. N(6)-methylation of adenosine of fzd10 mrna contributes to parp inhibitor resistance. Cancer Res. 2019, 79, 2812–2820. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.S.; Sahota, R.A.; Milne, K.; Kost, S.E.; Nesslinger, N.J.; Watson, P.H.; Nelson, B.H. Cd20+ tumor-infiltrating lymphocytes have an atypical cd27- memory phenotype and together with cd8+ t cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 2012, 18, 3281–3292. [Google Scholar] [CrossRef] [Green Version]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. Wnt/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [Green Version]
- Castagnoli, L.; Cancila, V.; Cordoba-Romero, S.L.; Faraci, S.; Talarico, G.; Belmonte, B.; Iorio, M.V.; Milani, M.; Volpari, T.; Chiodoni, C.; et al. Wnt signaling modulates pd-l1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 2019, 38, 4047–4060. [Google Scholar] [CrossRef] [Green Version]
- Betella, I.; Turbitt, W.J.; Szul, T.; Wu, B.; Martinez, A.; Katre, A.; Wall, J.A.; Norian, L.; Birrer, M.J.; Arend, R. Wnt signaling modulator dkk1 as an immunotherapeutic target in ovarian cancer. Gynecol. Oncol. 2020. [Google Scholar] [CrossRef]
- Nguyen, V.H.L.; Hough, R.; Bernaudo, S.; Peng, C. Wnt/beta-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J. Ovarian Res. 2019, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Niiro, E.; Morioka, S.; Iwai, K.; Yamada, Y.; Ogawa, K.; Kawahara, N.; Kobayashi, H. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. Biomed. Rep. 2018, 8, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Kurman, R.J.; Shih Ie, M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum. Pathol. 2011, 42, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.; Wilson, P.; Morland, S.; Campbell, I.; Walsh, M.; Hurst, T.; Ward, B.; Cummings, M.; Chenevix-Trench, G. Beta-catenin mutation and expression analysis in ovarian cancer: Exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int. J. Cancer 1999, 82, 625–629. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Dou, Y.; Kawaler, E.A.; Cui Zhou, D.; Gritsenko, M.A.; Huang, C.; Blumenberg, L.; Karpova, A.; Petyuk, V.A.; Savage, S.R.; Satpathy, S.; et al. Proteogenomic characterization of endometrial carcinoma. Cell 2020, 180, 729–748. [Google Scholar] [CrossRef]
- Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 2008, 8, 387–398. [Google Scholar] [CrossRef]
- Er, T.K.; Su, Y.F.; Wu, C.C.; Chen, C.C.; Wang, J.; Hsieh, T.H.; Herreros-Villanueva, M.; Chen, W.T.; Chen, Y.T.; Liu, T.C.; et al. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J. Mol. Med. (Berl.) 2016, 94, 835–847. [Google Scholar] [CrossRef]
- Li, R.N.; Liu, B.; Li, X.M.; Hou, L.S.; Mu, X.L.; Wang, H.; Linghu, H. Dact1 overexpression in type i ovarian cancer inhibits malignant expansion and cis-platinum resistance by modulating canonical wnt signalling and autophagy. Sci. Rep. 2017, 7, 9285. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 2010, 60, 277–300. [Google Scholar] [CrossRef]
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef]
- McAlpine, J.N.; Temkin, S.M.; Mackay, H.J. Endometrial cancer: Not your grandmother’s cancer. Cancer 2016, 122, 2787–2798. [Google Scholar] [CrossRef]
- Talhouk, A.; McAlpine, J.N. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract. 2016, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of promise: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelloo, E.; Bosse, T.; Nout, R.A.; MacKay, H.J.; Church, D.N.; Nijman, H.W.; Leary, A.; Edmondson, R.J.; Powell, M.E.; Crosbie, E.J.; et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a transportec initiative. Mod. Pathol. 2015, 28, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Saegusa, M.; Hashimura, M.; Yoshida, T.; Okayasu, I. Beta- catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br. J. Cancer 2001, 84, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Coopes, A.; Henry, C.E.; Llamosas, E.; Ford, C.E. An update of wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr. Relat. Cancer 2018, 25, R647–R662. [Google Scholar] [CrossRef]
- Byron, S.A.; Gartside, M.; Powell, M.A.; Wellens, C.L.; Gao, F.; Mutch, D.G.; Goodfellow, P.J.; Pollock, P.M. Fgfr2 point mutations in 466 endometrioid endometrial tumors: Relationship with msi, kras, pik3ca, ctnnb1 mutations and clinicopathological features. PLoS ONE 2012, 7, e30801. [Google Scholar] [CrossRef]
- McConechy, M.K.; Ding, J.; Cheang, M.C.; Wiegand, K.; Senz, J.; Tone, A.; Yang, W.; Prentice, L.; Tse, K.; Zeng, T.; et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J. Pathol. 2012, 228, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Costigan, D.C.; Dong, F.; Nucci, M.R.; Howitt, B.E. Clinicopathologic and immunohistochemical correlates of ctnnb1 mutated endometrial endometrioid carcinoma. Int. J. Gynecol. Pathol. 2020, 39, 119–127. [Google Scholar] [CrossRef]
- Kim, G.; Kurnit, K.C.; Djordjevic, B.; Singh, C.; Munsell, M.F.; Wang, W.L.; Lazar, A.J.; Zhang, W.; Broaddus, R. Nuclear beta-catenin localization and mutation of the ctnnb1 gene: A context-dependent association. Mod. Pathol. 2018, 31, 1553–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Hanifi-Moghaddam, P.; Hanekamp, E.E.; Kloosterboer, H.J.; Franken, P.; Veldscholte, J.; van Doorn, H.C.; Ewing, P.C.; Kim, J.J.; Grootegoed, J.A.; et al. Progesterone inhibition of wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin. Cancer Res. 2009, 15, 5784–5793. [Google Scholar] [CrossRef] [Green Version]
- Catalano, R.D.; Critchley, H.O.; Heikinheimo, O.; Baird, D.T.; Hapangama, D.; Sherwin, J.R.; Charnock-Jones, D.S.; Smith, S.K.; Sharkey, A.M. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol. Hum. Reprod. 2007, 13, 641–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018, 143 (Suppl. 2), 22–36. [Google Scholar] [CrossRef]
- Bello, J.O.; Nieva, L.O.; Paredes, A.C.; Gonzalez, A.M.; Zavaleta, L.R.; Lizano, M. Regulation of the wnt/beta-catenin signaling pathway by human papillomavirus e6 and e7 oncoproteins. Viruses 2015, 7, 4734–4755. [Google Scholar] [CrossRef]
- Chan, C.K.; Aimagambetova, G.; Ukybassova, T.; Kongrtay, K.; Azizan, A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination-review of current perspectives. J. Oncol. 2019, 2019, 3257939. [Google Scholar] [CrossRef]
- Yang, M.; Wang, M.; Li, X.; Xie, Y.; Xia, X.; Tian, J.; Zhang, K.; Tang, A. Wnt signaling in cervical cancer? J. Cancer 2018, 9, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jiang, Y.; Lu, X.; Zhao, H.; Chen, C.; Wang, Y.; Hu, W.; Zhu, Y.; Yan, H.; Yan, F. Genomic characterization of cervical cancer based on human papillomavirus status. Gynecol. Oncol. 2019, 152, 629–637. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada’s Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center & Research Institute at Christiana Care Health Services; et al. Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef]
- Ramos-Solano, M.; Meza-Canales, I.D.; Torres-Reyes, L.A.; Alvarez-Zavala, M.; Alvarado-Ruiz, L.; Rincon-Orozco, B.; Garcia-Chagollan, M.; Ochoa-Hernandez, A.B.; Ortiz-Lazareno, P.C.; Rosl, F.; et al. Expression of wnt genes in cervical cancer-derived cells: Implication of wnt7a in cell proliferation and migration. Exp. Cell Res. 2015, 335, 39–50. [Google Scholar] [CrossRef]
- Uren, A.; Fallen, S.; Yuan, H.; Usubutun, A.; Kucukali, T.; Schlegel, R.; Toretsky, J.A. Activation of the canonical wnt pathway during genital keratinocyte transformation: A model for cervical cancer progression. Cancer Res. 2005, 65, 6199–6206. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Sastre, M.A.; Gonzalez-Maya, L.; Delgado, R.; Lizano, M.; Tsubaki, G.; Mohar, A.; Garcia-Carranca, A. Abnormal distribution of e-cadherin and beta-catenin in different histologic types of cancer of the uterine cervix. Gynecol. Oncol. 2005, 97, 330–336. [Google Scholar] [CrossRef]
- Sominsky, S.; Kuslansky, Y.; Shapiro, B.; Jackman, A.; Haupt, Y.; Rosin-Arbesfeld, R.; Sherman, L. Hpv16 e6 and e6ap differentially cooperate to stimulate or augment wnt signaling. Virology 2014, 468–470, 510–523. [Google Scholar] [CrossRef] [Green Version]
- Sominsky, S.; Shterzer, N.; Jackman, A.; Shapiro, B.; Yaniv, A.; Sherman, L. E6 proteins of alpha and beta cutaneous hpv types differ in their ability to potentiate wnt signaling. Virology 2017, 509, 11–22. [Google Scholar] [CrossRef]
- Munoz-Bello, J.O.; Olmedo-Nieva, L.; Castro-Munoz, L.J.; Manzo-Merino, J.; Contreras-Paredes, A.; Gonzalez-Espinosa, C.; Lopez-Saavedra, A.; Lizano, M. Hpv-18 e6 oncoprotein and its spliced isoform e6*i regulate the wnt/beta-catenin cell signaling pathway through the tcf-4 transcriptional factor. Int. J. Mol. Sci. 2018, 19, 3153. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Li, L.; Zheng, P.S. Sall4 promotes the tumorigenicity of cervical cancer cells through activation of the wnt/beta-catenin pathway via ctnnb1. Cancer Sci. 2019, 110, 2794–2805. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, A.; Zhu, B.; Huang, J.; Lu, E.; Xu, H.; Xia, W.; Dong, G.; Jiang, F.; Xu, L. Kif18b promotes tumor progression through activating the wnt/beta-catenin pathway in cervical cancer. Onco Targets Ther. 2018, 11, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.; Liu, L.; Chen, X.; Zhang, Y.; Zhu, W. Lncrna casc11 promotes the cervical cancer progression by activating wnt/beta-catenin signaling pathway. Biol. Res. 2019, 52, 33. [Google Scholar] [CrossRef]
- Liu, X.F.; Li, X.Y.; Zheng, P.S.; Yang, W.T. Dax1 promotes cervical cancer cell growth and tumorigenicity through activation of wnt/beta-catenin pathway via gsk3beta. Cell Death Dis. 2018, 9, 339. [Google Scholar] [CrossRef]
- Li, L.; Yang, W.T.; Zheng, P.S.; Liu, X.F. Sox17 restrains proliferation and tumor formation by down-regulating activity of the wnt/beta-catenin signaling pathway via trans-suppressing beta-catenin in cervical cancer. Cell Death. Dis. 2018, 9, 741. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol. 2016, 27, e43. [Google Scholar] [CrossRef] [Green Version]
- Shojima, K.; Sato, A.; Hanaki, H.; Tsujimoto, I.; Nakamura, M.; Hattori, K.; Sato, Y.; Dohi, K.; Hirata, M.; Yamamoto, H.; et al. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci. Rep. 2015, 5, 8042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, N.; Kurzrock, R. Targeting the wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Lan, C.; Li, L.; Yang, D.; Xia, X.; Liao, Q.; Fu, W.; Chen, X.; An, S.; Wang, W.E.; et al. A novel porcupine inhibitor blocks wnt pathways and attenuates cardiac hypertrophy. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3459–3467. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Reyes, B.; Witt, L.; Jansen, B.; Karasu, E.; Gehring, T.; Leban, J.; Henne-Bruns, D.; Pichlo, C.; Brunstein, E.; Baumann, U.; et al. Discovery of inhibitor of wnt production 2 (iwp-2) and related compounds as selective atp-competitive inhibitors of casein kinase 1 (ck1) delta/epsilon. J. Med. Chem. 2018, 61, 4087–4102. [Google Scholar] [CrossRef]
- Rao, D.M.; Shackleford, M.T.; Bordeaux, E.K.; Sottnik, J.L.; Ferguson, R.L.; Yamamoto, T.M.; Wellberg, E.A.; Bitler, B.G.; Sikora, M.J. Wnt family member 4 (wnt4) and wnt3a activate cell-autonomous wnt signaling independent of porcupine o-acyltransferase or wnt secretion. J. Biol. Chem. 2019, 294, 19950–19966. [Google Scholar] [CrossRef] [PubMed]
- Jimeno, A.; Gordon, M.; Chugh, R.; Messersmith, W.; Mendelson, D.; Dupont, J.; Stagg, R.; Kapoun, A.M.; Xu, L.; Uttamsingh, S.; et al. A first-in-human phase i study of the anticancer stem cell agent ipafricept (omp-54f28), a decoy receptor for wnt ligands, in patients with advanced solid tumors. Clin. Cancer Res. 2017, 23, 7490–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurney, A.; Axelrod, F.; Bond, C.J.; Cain, J.; Chartier, C.; Donigan, L.; Fischer, M.; Chaudhari, A.; Ji, M.; Kapoun, A.M.; et al. Wnt pathway inhibition via the targeting of frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 11717–11722. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, Z.; Adams, J.J.; Blazer, L.L.; Gakhal, A.K.; Jarvik, N.; Steinhart, Z.; Robitaille, M.; Mascall, K.; Pan, J.; Angers, S.; et al. A synthetic anti-frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 2018, 10, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Le, P.N.; Keysar, S.B.; Miller, B.; Eagles, J.R.; Chimed, T.S.; Reisinger, J.; Gomez, K.E.; Nieto, C.; Jackson, B.C.; Somerset, H.L.; et al. Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol. Carcinog. 2019, 58, 398–410. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, J.; Hillier, J.; Lu, W.; Jones, E.Y. Antiepileptic drug carbamazepine binds to a novel pocket on the wnt receptor frizzled-8. J. Med. Chem. 2020, 63, 3252–3260. [Google Scholar] [CrossRef]
- Orvell, C.; Kristensson, K. The effects of monoclonal antibodies against the hemagglutinin-neuraminidase and fusion protein on the release of sendai virus from infected cells. Arch. Virol. 1985, 86, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.C.; Bourdelas, A.; Krauss, A.; Lee, H.J.; Shao, Y.; Wu, D.; Mlodzik, M.; Shi, D.L.; Zheng, J. Direct binding of the pdz domain of dishevelled to a conserved internal sequence in the c-terminal region of frizzled. Mol. Cell 2003, 12, 1251–1260. [Google Scholar] [CrossRef]
- Fujii, N.; You, L.; Xu, Z.; Uematsu, K.; Shan, J.; He, B.; Mikami, I.; Edmondson, L.R.; Neale, G.; Zheng, J.; et al. An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res. 2007, 67, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Thorne, C.A.; Hanson, A.J.; Schneider, J.; Tahinci, E.; Orton, D.; Cselenyi, C.S.; Jernigan, K.K.; Meyers, K.C.; Hang, B.I.; Waterson, A.G.; et al. Small-molecule inhibition of wnt signaling through activation of casein kinase 1alpha. Nat. Chem. Biol. 2010, 6, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Liu, Y.; Pan, J. Inhibitory effect of pyrvinium pamoate on uveal melanoma cells involves blocking of wnt/beta-catenin pathway. Acta Biochim. Biophys. Sin. (Shanghai) 2017, 49, 890–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamian, A.; Nazarian, H.; Ziai, S.A.; Zarnani, A.H.; Salehpour, S.; Paktinat, S.; Novin, M.G. Pyrvinium pamoate inhibits proliferation and invasion of human endometriotic stromal cells. Hum. Exp. Toxicol. 2020, 39, 662–672. [Google Scholar] [CrossRef]
- Mariotti, L.; Pollock, K.; Guettler, S. Regulation of wnt/beta-catenin signalling by tankyrase-dependent poly(adp-ribosyl)ation and scaffolding. Br. J. Pharmacol. 2017, 174, 4611–4636. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.H.; Hou, W.J.; Fang, Y.; Fan, J.; Tong, H.; Bai, S.L.; Chen, Q.; Xu, H.; Li, Y. Xav939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting wnt/beta-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2013, 32, 100. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, H.; Sato, S.; Koyama, K.; Morizumi, S.; Abe, S.; Azuma, M.; Chen, Y.; Goto, H.; Aono, Y.; Ogawa, H.; et al. The novel inhibitor pri-724 for wnt/beta-catenin/cbp signaling ameliorates bleomycin-induced pulmonary fibrosis in mice. Exp. Lung Res. 2019, 45, 188–199. [Google Scholar] [CrossRef]
- Kimura, K.; Ikoma, A.; Shibakawa, M.; Shimoda, S.; Harada, K.; Saio, M.; Imamura, J.; Osawa, Y.; Kimura, M.; Nishikawa, K.; et al. Safety, tolerability, and preliminary efficacy of the anti-fibrotic small molecule pri-724, a cbp/beta-catenin inhibitor, in patients with hepatitis c virus-related cirrhosis: A single-center, open-label, dose escalation phase 1 trial. EBioMedicine 2017, 23, 79–87. [Google Scholar] [CrossRef]
- Tam, B.Y.; Chiu, K.; Chung, H.; Bossard, C.; Nguyen, J.D.; Creger, E.; Eastman, B.W.; Mak, C.C.; Ibanez, M.; Ghias, A.; et al. The clk inhibitor sm08502 induces anti-tumor activity and reduces wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 2020, 473, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Kahn, M. Can we safely target the wnt pathway? Nat. Rev. Drug Discov. 2014, 13, 513–532. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Zhou, X.; Zhang, W.; Qu, Y.; Ke, X. Is beta-catenin a druggable target for cancer therapy? Trends Biochem. Sci. 2018, 43, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Madan, B.; McDonald, M.J.; Foxa, G.E.; Diegel, C.R.; Williams, B.O.; Virshup, D.M. Bone loss from wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 2018, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Katavolos, P.; Nguyen, T.; Lau, T.; Boggs, J.; Sambrone, A.; Kan, D.; Merchant, M.; Harstad, E.; Diaz, D.; et al. Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index <1. Toxicol. Pathol. 2016, 44, 267–278. [Google Scholar] [PubMed]
TCGA, OVCA, Firehose Legacy | |||||
---|---|---|---|---|---|
Wnt/Beta-Catenin Pathway | Gene | AMP | HOMDEL | Mut | Altered (AMP+HOMDEL+Mut) |
Degradation Complex | APC | 1.38% | 2.94% | 2.22% | 6.54% |
Degradation Complex | CSNK2A1 | 8.29% | 0.17% | 0.32% | 8.78% |
Degradation Complex | CSNK2B | 6.39% | 0.00% | 0.32% | 6.71% |
Inhibitor | DKK4 | 5.87% | 0.17% | 0.00% | 6.04% |
Ligand | CER1 | 3.97% | 1.38% | 0.00% | 5.35% |
Ligand | WNT11 | 9.84% | 0.17% | 0.63% | 10.65% |
Ligand | WNT16 | 7.08% | 0.52% | 0.95% | 8.55% |
Ligand | WNT2 | 6.91% | 0.35% | 0.32% | 7.57% |
Ligand | WNT3A | 7.94% | 0.00% | 0.00% | 7.94% |
Ligand | WNT5B | 11.92% | 0.00% | 0.00% | 11.92% |
Ligand | WNT7B | 0.35% | 6.56% | 0.63% | 7.54% |
Ligand | WNT9A | 7.77% | 0.00% | 0.63% | 8.41% |
Receptor | FZD3 | 0.86% | 6.04% | 0.00% | 6.91% |
Receptor | FZD4 | 10.02% | 0.17% | 0.00% | 10.19% |
Receptor | FZD6 | 20.90% | 0.17% | 0.00% | 21.07% |
Receptor | LRP5 | 5.35% | 0.17% | 0.95% | 6.48% |
Receptor | LRP6 | 10.02% | 0.17% | 0.32% | 10.51% |
Signaling | CACYBP | 5.87% | 0.00% | 0.00% | 5.87% |
Signaling | DAAM2 | 5.35% | 0.00% | 0.63% | 5.99% |
Signaling | DVL1 | 3.97% | 1.38% | 0.00% | 5.35% |
Signaling | DVL3 | 26.77% | 0.00% | 0.32% | 27.09% |
Signaling | PLCB1 | 7.08% | 0.17% | 1.27% | 8.52% |
Signaling | PLCB4 | 6.04% | 0.00% | 0.32% | 6.36% |
Signaling | PPARD | 6.04% | 0.00% | 0.63% | 6.68% |
Signaling | PPP2CB | 1.21% | 4.32% | 0.00% | 5.53% |
Signaling | PPP2R5A | 4.32% | 0.52% | 0.32% | 5.15% |
Signaling | PPP2R5D | 5.70% | 0.17% | 0.32% | 6.19% |
Signaling | PPP3CC | 0.17% | 7.25% | 0.32% | 7.74% |
Signaling | PRKACA | 15.37% | 0.00% | 0.00% | 15.37% |
Signaling | VANGL2 | 5.01% | 0.00% | 0.32% | 5.33% |
Secretion | PORCN | 6.56% | 0.69% | 0.63% | 7.89% |
Transcriptional Target/Regulation | CCND1 | 6.74% | 0.00% | 0.00% | 6.74% |
Transcriptional Target/Regulation | CCND2 | 11.57% | 0.17% | 0.00% | 11.74% |
Transcriptional Target/Regulation | CCND3 | 6.04% | 0.17% | 0.00% | 6.22% |
Transcriptional Target/Regulation | CHD8 | 4.15% | 0.35% | 1.59% | 6.08% |
Transcriptional Target/Regulation | CREBBP | 1.55% | 2.59% | 2.22% | 6.37% |
Transcriptional Target/Regulation | CTBP1 | 6.91% | 0.69% | 0.32% | 7.92% |
Transcriptional Target/Regulation | CTBP2 | 5.87% | 1.04% | 0.32% | 7.23% |
Transcriptional Target/Regulation | CUL1 | 11.23% | 0.69% | 0.00% | 11.92% |
Transcriptional Target/Regulation | JUN | 4.66% | 0.86% | 0.00% | 5.53% |
Transcriptional Target/Regulation | MMP7 | 7.60% | 0.52% | 0.32% | 8.43% |
Transcriptional Target/Regulation | MYC | 41.97% | 0.00% | 0.00% | 41.97% |
Transcriptional Target/Regulation | NFATC2 | 8.46% | 0.17% | 0.32% | 8.95% |
Transcriptional Target/Regulation | NKD2 | 14.34% | 0.17% | 0.00% | 14.51% |
Transcriptional Target/Regulation | RAC3 | 6.91% | 0.86% | 0.00% | 7.77% |
Transcriptional Target/Regulation | RUVBL1 | 5.53% | 0.00% | 0.00% | 5.53% |
Transcriptional Target/Regulation | SENP2 | 26.60% | 0.00% | 0.00% | 26.60% |
Transcriptional Target/Regulation | SOX17 | 11.23% | 0.00% | 0.00% | 11.23% |
Transcriptional Target/Regulation | TBL1XR1 | 28.67% | 0.00% | 0.32% | 28.99% |
Transcriptional Target/Regulation | TP53 | 1.38% | 0.35% | 87.62% | 89.35% |
TCGA, EC, Firehose Legacy | |||||
---|---|---|---|---|---|
Wnt/Beta-Catenin Pathway | Gene | AMP | HOMDEL | Mut | Altered (AMP+HOMDEL+Mut) |
Degradation Complex | APC | 0.41% | 0.00% | 11.98% | 12.40% |
Receptor | LRP6 | 0.83% | 0.00% | 7.85% | 8.68% |
Signaling | CTNNB1 | 0.00% | 0.41% | 29.75% | 30.17% |
Signaling | DVL3 | 7.02% | 0.83% | 3.72% | 11.57% |
Signaling | PPP2R1A | 0.83% | 0.41% | 10.74% | 11.98% |
Signaling | PRKACA | 5.79% | 0.00% | 2.48% | 8.26% |
Signaling | ROCK2 | 2.89% | 0.00% | 5.79% | 8.68% |
Transcriptional Target/Regulation | CCND1 | 3.31% | 0.00% | 6.20% | 9.50% |
Transcriptional Target/Regulation | CHD8 | 0.41% | 0.00% | 7.85% | 8.26% |
Transcriptional Target/Regulation | CREBBP | 1.65% | 0.41% | 9.09% | 11.16% |
Transcriptional Target/Regulation | EP300 | 1.65% | 0.00% | 9.09% | 10.74% |
Transcriptional Target/Regulation | MYC | 7.02% | 0.00% | 3.31% | 10.33% |
Transcriptional Target/Regulation | SENP2 | 6.20% | 0.83% | 2.89% | 9.92% |
Transcriptional Target/Regulation | SOX17 | 6.61% | 0.00% | 2.89% | 9.50% |
Transcriptional Target/Regulation | TBL1XR1 | 6.61% | 0.41% | 4.96% | 11.98% |
Transcriptional Target/Regulation | TP53 | 0.00% | 0.00% | 28.10% | 28.10% |
TCGA, CC, Firehose Legacy | |||||
---|---|---|---|---|---|
Wnt/Beta-Catenin Pathway | Gene | AMP | HOMDEL | Mut | Altered (AMP+HOMDEL+Mut) |
Receptor | FZD6 | 6.89% | 0.13% | 0.39% | 7.41% |
Signaling | DVL3 | 17.73% | 0.00% | 0.20% | 17.93% |
Signaling | PRKACA | 7.65% | 0.38% | 0.39% | 8.42% |
Transcriptional Target/Regulation | MMP7 | 5.99% | 0.51% | 0.39% | 6.89% |
Transcriptional Target/Regulation | MYC | 21.43% | 0.00% | 0.20% | 21.63% |
Transcriptional Target/Regulation | NKD2 | 7.53% | 0.26% | 0.20% | 7.99% |
Transcriptional Target/Regulation | SENP2 | 17.35% | 0.00% | 0.20% | 17.55% |
Transcriptional Target/Regulation | TBL1XR1 | 19.26% | 0.38% | 0.98% | 20.62% |
Transcriptional Target/Regulation | TP53 | 0.38% | 0.51% | 61.18% | 62.07% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMellen, A.; Woodruff, E.R.; Corr, B.R.; Bitler, B.G.; Moroney, M.R. Wnt Signaling in Gynecologic Malignancies. Int. J. Mol. Sci. 2020, 21, 4272. https://doi.org/10.3390/ijms21124272
McMellen A, Woodruff ER, Corr BR, Bitler BG, Moroney MR. Wnt Signaling in Gynecologic Malignancies. International Journal of Molecular Sciences. 2020; 21(12):4272. https://doi.org/10.3390/ijms21124272
Chicago/Turabian StyleMcMellen, Alexandra, Elizabeth R. Woodruff, Bradley R. Corr, Benjamin G. Bitler, and Marisa R. Moroney. 2020. "Wnt Signaling in Gynecologic Malignancies" International Journal of Molecular Sciences 21, no. 12: 4272. https://doi.org/10.3390/ijms21124272
APA StyleMcMellen, A., Woodruff, E. R., Corr, B. R., Bitler, B. G., & Moroney, M. R. (2020). Wnt Signaling in Gynecologic Malignancies. International Journal of Molecular Sciences, 21(12), 4272. https://doi.org/10.3390/ijms21124272