Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation
Abstract
:1. Introduction
2. Membrane Trafficking Components in CDG
2.1. Vacuolar H+-ATPase
2.2. Golgins, GRASPs, GORAB, and Rabs
2.3. Conserved Oligomeric Golgi Tethering Complex
2.4. SNAREs
3. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Dennis, J.W.; Lau, K.S.; Demetriou, M.; Nabi, I.R. Adaptive Regulation at the Cell Surface by N-Glycosylation. Traffic 2009, 10, 1569–1578. [Google Scholar] [CrossRef]
- Haltiwanger, R.S.; Lowe, J.B. Role of Glycosylation in Development. Annu. Rev. Biochem. 2004, 73, 491–537. [Google Scholar] [CrossRef]
- Hoseki, J.; Ushioda, R.; Nagata, K. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 2010, 147, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kollmann, K.; Pohl, S.; Marschner, K.; Encarnação, M.; Sakwa, I.; Tiede, S.; Poorthuis, B.J.; Lübke, T.; Müller-Loennies, S.; Storch, S.; et al. Mannose phosphorylation in health and disease. Eur. J. Cell Biol. 2010, 89, 117–123. [Google Scholar] [CrossRef]
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462. [Google Scholar] [CrossRef] [Green Version]
- Rothman, J.E.; Fine, R.E. Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages. Proc. Natl. Acad. Sci. USA 1980, 77, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–130. [Google Scholar] [CrossRef] [PubMed]
- Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 2009, 5, 1087–1104. [Google Scholar] [CrossRef]
- Joshi, H.J.; Hansen, L.; Narimatsu, Y.; Freeze, H.H.; Henrissat, B.; Bennett, E.; Wandall, H.H.; Clausen, H.; Schjoldager, K.T. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology 2018, 28, 284–294. [Google Scholar] [CrossRef]
- Nairn, A.; Moremen, K. Handbook of Glycomics; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Nairn, A.V.; York, W.S.; Harris, K.; Hall, E.M.; Pierce, J.M.; Moremen, K.W. Regulation of Glycan Structures in Animal Tissues TRANSCRIPT PROFILING OF GLYCAN-RELATED GENES. J. Biol. Chem. 2008, 283, 17298–17313. [Google Scholar] [CrossRef] [Green Version]
- Narimatsu, Y.; Joshi, H.J.; Nason, R.; Coillie, J.V.; Karlsson, R.; Sun, L.; Ye, Z.; Chen, Y.-H.; Schjoldager, K.T.; Steentoft, C.; et al. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol. Cell 2019, 75, 394–407.e5. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemersma, M.; Froese, D.S.; van Tol, W.; Engelke, U.F.; Kopec, J.; van Scherpenzeel, M.; Ashikov, A.; Krojer, T.; von Delft, F.; Tessari, M.; et al. Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation. Chem. Biol. 2015, 22, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, R.; Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631–664. [Google Scholar] [CrossRef]
- Lizak, C.; Gerber, S.; Numao, S.; Aebi, M.; Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 2011, 474, 350–355. [Google Scholar] [CrossRef]
- Ruiz-Canada, C.; Kelleher, D.J.; Gilmore, R. Cotranslational and Posttranslational N-Glycosylation of Polypeptides by Distinct Mammalian OST Isoforms. Cell 2009, 136, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, D.J.; Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 2006, 16, 47R–62R. [Google Scholar] [CrossRef]
- Schreiner, R.; Schnabel, E.; Wieland, F. Novel N-glycosylation in eukaryotes: Laminin contains the linkage unit beta-glucosylasparagine. J. Cell Biol. 1994, 124, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Valliere-Douglass, J.F.; Eakin, C.M.; Wallace, A.; Ketchem, R.R.; Wang, W.; Treuheit, M.J.; Balland, A. Glutamine-linked and Non-consensus Asparagine-linked Oligosaccharides Present in Human Recombinant Antibodies Define Novel Protein Glycosylation Motifs. J. Biol. Chem. 2010, 285, 16012–16022. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, D.F.; Gnad, F.; Wiśniewski, J.R.; Mann, M. Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints. Cell 2010, 141, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Helenius, A.; Aebi, M. Roles of N-Linked Glycans in the Endoplasmic Reticulum. Annu. Rev. Biochem. 2004, 73, 1019–1049. [Google Scholar] [CrossRef]
- Lederkremer, G.Z. Glycoprotein folding, quality control and ER-associated degradation. Curr. Opin. Struct. Biol. 2009, 19, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, C.; Andersson, H.; Kappeler, F.; Hauri, H.-P. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1999, 1, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller-Herzog, C.; Roche, A.-C.; Nufer, O.; Hauri, H.-P. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J. Biol. Chem. 2004, 279, 12943–12950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, Y.; Kamiya, D.; Yamamoto, K.; Nyfeler, B.; Hauri, H.-P.; Kato, K. Molecular Basis of Sugar Recognition by the Human L-type Lectins ERGIC-53, VIPL, and VIP36. J. Biol. Chem. 2008, 283, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Cottam, N.P.; Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 2012, 249, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Papanikou, E.; Glick, B.S. The yeast Golgi apparatus: Insights and mysteries. FEBS Lett. 2009, 583, 3746–3751. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.L. Mechanisms of transport through the Golgi complex. J. Cell Sci. 2009, 122, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Rowe, T.; Dascher, C.; Bannykh, S.; Plutner, H.; Balch, W.E. Role of vesicle-associated syntaxin 5 in the assembly of pre-Golgi intermediates. Science 1998, 279, 696–700. [Google Scholar] [CrossRef]
- Appenzeller-Herzog, C.; Hauri, H.-P. The ER-Golgi intermediate compartment (ERGIC): In search of its identity and function. J. Cell Sci. 2006, 119, 2173 LP–2183 LP. [Google Scholar] [CrossRef] [Green Version]
- Dejgaard, S.Y.; Murshid, A.; Dee, K.M.; Presley, J.F. Confocal microscopy-based linescan methodologies for intra-Golgi localization of proteins. J. Histochem. Cytochem. 2007, 55, 709–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeze, H.H.; Ng, B.G. Golgi glycosylation and human inherited diseases. Cold Spring Harb. Perspect. Biol. 2011, 3, a005371. [Google Scholar] [CrossRef] [PubMed]
- Rabouille, C.; Hui, N.; Hunte, F.; Kieckbusch, R.; Berger, E.G.; Warren, G.; Nilsson, T. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell. Sci. 1995, 108, 1617–1627. [Google Scholar] [PubMed]
- Stanley, P. Golgi Glycosylation. Cold Spring Harb. Perspect. Biol. 2011, 3, a005199. [Google Scholar] [CrossRef] [PubMed]
- Mogelsvang, S.; Marsh, B.J.; Ladinsky, M.S.; Howell, K.E. Predicting Function from Structure: 3D Structure Studies of the Mammalian Golgi Complex. Traffic 2004, 5, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, T.; Pypaert, M.; Hoe, M.H.; Slusarewicz, P.; Berger, E.G.; Warren, G. Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J. Cell Biol. 1993, 120, 5–13. [Google Scholar] [CrossRef]
- Ripoche, J.; Link, B.; Yucel, J.K.; Tokuyasu, K.; Malhotra, V. Location of Golgi membranes with reference to dividing nuclei in syncytial Drosophila embryos. Proc. Natl. Acad. Sci. USA 1994, 91, 1878–1882. [Google Scholar] [CrossRef] [Green Version]
- Velasco, A.; Hendricks, L.; Moremen, K.W.; Tulsiani, D.R.; Touster, O.; Farquhar, M.G. Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II. J. Cell Biol. 1993, 122, 39–51. [Google Scholar] [CrossRef]
- Forgac, M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 2007, 8, 917. [Google Scholar] [CrossRef]
- Nishi, T.; Forgac, M. The vacuolar (H+)-ATPases--nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 2002, 3, 94–103. [Google Scholar] [CrossRef]
- Kawasaki-Nishi, S.; Bowers, K.; Nishi, T.; Forgac, M.; Stevens, T.H. The Amino-terminal Domain of the Vacuolar Proton-translocating ATPase a Subunit Controls Targeting and in Vivo Dissociation, and the Carboxyl-terminal Domain Affects Coupling of Proton Transport and ATP Hydrolysis. J. Biol. Chem. 2001, 276, 47411–47420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki-Nishi, S.; Nishi, T.; Forgac, M. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J. Biol. Chem. 2001, 276, 17941–17948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolson, M.F.; Wu, B.; Proteau, D.; Taillon, B.E.; Roberts, B.T.; Hoyt, M.A.; Jones, E.W. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J. Biol. Chem. 1994, 269, 14064–14074. [Google Scholar]
- Sun-Wada, G.-H.; Tabata, H.; Kawamura, N.; Aoyama, M.; Wada, Y. Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J. Cell Sci. 2009, 122, 2504–2513. [Google Scholar] [CrossRef] [Green Version]
- Toyomura, T.; Murata, Y.; Yamamoto, A.; Oka, T.; Sun-Wada, G.-H.; Wada, Y.; Futai, M. From Lysosomes to the Plasma Membrane Localization Of Vacuolar Type H+-ATPase With The A3 Isoform During Osteoclast Differentiation. J. Biol. Chem. 2003, 278, 22023–22030. [Google Scholar] [CrossRef] [Green Version]
- Saw, N.M.N.; Kang, S.-Y.A.; Parsaud, L.; Han, G.A.; Jiang, T.; Grzegorczyk, K.; Surkont, M.; Sun-Wada, G.-H.; Wada, Y.; Li, L.; et al. Vacuolar H+-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. MBoC 2011, 22, 3394–3409. [Google Scholar] [CrossRef]
- Kornak, U.; Reynders, E.; Dimopoulou, A.; van Reeuwijk, J.; Fischer, B.; Rajab, A.; Budde, B.; Nürnberg, P.; Foulquier, F.; Lefeber, D.; et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + -ATPase subunit ATP6V0A2. Nat. Genet. 2008, 40, 32–34. [Google Scholar] [CrossRef]
- Pietrement, C.; Sun-Wada, G.-H.; Da Silva, N.; McKee, M.; Marshansky, V.; Brown, D.; Futai, M.; Breton, S. Distinct Expression Patterns of Different Subunit Isoforms of the V-ATPase in the Rat Epididymis. Biol. Reprod. 2006, 74, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Lorenzo, A.; Skinner, M.; Annan, J.E.; Futai, M.; Sun-Wada, G.-H.; Bourgoin, S.; Casanova, J.; Wildeman, A.; Bechoua, S.; Ausiello, D.A.; et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 2006, 8, 124–136. [Google Scholar] [CrossRef]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef]
- Gawlitzek, M.; Ryll, T.; Lofgren, J.; Sliwkowski, M.B. Ammonium alters N-glycan structures of recombinant TNFR-IgG: Degradative versus biosynthetic mechanisms. Biotechnol. Bioeng. 2000, 68, 637–646. [Google Scholar] [CrossRef]
- Fisher, P.; Ungar, D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front. Cell Dev. Biol. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Rivinoja, A.; Hassinen, A.; Kokkonen, N.; Kauppila, A.; Kellokumpu, S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J. Cell. Physiol. 2009, 220, 144–154. [Google Scholar] [CrossRef]
- Maeda, Y.; Kinoshita, T. Chapter Twenty-Three—The Acidic Environment of the Golgi Is Critical for Glycosylation and Transport. In Methods in Enzymology; Glycobiology; Fukuda, M., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 480, pp. 495–510. [Google Scholar]
- Glick, B.S.; Nakano, A. Membrane Traffic Within the Golgi Apparatus. Ann. Rev. Cell Dev. Biol. 2009, 25, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Muschalik, N.; Munro, S. Golgins. Curr. Biol. 2018, 28, R374–R376. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Munro, S. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 2014, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.; Gillingham, A.K.; Munro, S. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol. 2017, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drin, G.; Morello, V.; Casella, J.-F.; Gounon, P.; Antonny, B. Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin. Science 2008, 320, 670–673. [Google Scholar] [CrossRef] [Green Version]
- Fridmann-Sirkis, Y.; Siniossoglou, S.; Pelham, H.R. TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol. 2004, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Setty, S.R.G.; Shin, M.E.; Yoshino, A.; Marks, M.S.; Burd, C.G. Golgi Recruitment of GRIP Domain Proteins by Arf-like GTPase 1 Is Regulated by Arf-like GTPase 3. Curr. Biol. 2003, 13, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Kelly, E.E.; Giordano, F.; Horgan, C.P.; Jollivet, F.; Raposo, G.; McCaffrey, M.W. Rab30 is required for the morphological integrity of the Golgi apparatus. Biol. Cell 2012, 104, 84–101. [Google Scholar] [CrossRef]
- Miserey-Lenkei, S.; Chalancon, G.; Bardin, S.; Formstecher, E.; Goud, B.; Echard, A. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat. Cell Biol. 2010, 12, 645–654. [Google Scholar] [CrossRef]
- Hayes, G.L.; Brown, F.C.; Haas, A.K.; Nottingham, R.M.; Barr, F.A.; Pfeffer, S.R. Multiple Rab GTPase Binding Sites in GCC185 Suggest a Model for Vesicle Tethering at the Trans-Golgi. Mol. Biol. Cell 2009, 20, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Zerial, M.; McBride, H.; Woodman, P.G.; Allan, V.J. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2001, 2, 107–117. [Google Scholar] [CrossRef]
- Wandinger-Ness, A.; Zerial, M. Rab Proteins and the Compartmentalization of the Endosomal System. Cold Spring Harb. Perspect. Biol. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.A.; Yip, C.K.; Walz, T.; Hughson, F.M. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol. 2010, 17, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Yu, I.-M.; Hughson, F.M. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annu. Rev. Cell Dev. Biol. 2010, 26, 137–156. [Google Scholar] [CrossRef]
- Freeze, H.H. Genetic defects in the human glycome. Nat. Rev. Genet. 2006, 7, 537–551. [Google Scholar] [CrossRef]
- Freeze, H.H.; Chong, J.X.; Bamshad, M.J.; Ng, B.G. Solving Glycosylation Disorders: Fundamental Approaches Reveal Complicated Pathways. Am. J. Hum. Genet. 2014, 94, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Van Scherpenzeel, M.; Steenbergen, G.; Morava, E.; Wevers, R.A.; Lefeber, D.J. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Trans. Res. 2015, 166, 639–649.e1. [Google Scholar] [CrossRef]
- Morelle, W.; Michalski, J.-C. Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2007, 2, 1585–1602. [Google Scholar] [CrossRef] [PubMed]
- De Ligt, J.; Willemsen, M.H.; van Bon, B.W.M.; Kleefstra, T.; Yntema, H.G.; Kroes, T.; Vulto-van Silfhout, A.T.; Koolen, D.A.; de Vries, P.; Gilissen, C.; et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. N. Engl. J. Med. 2012, 367, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Gilissen, C.; Hehir-Kwa, J.Y.; Thung, D.T.; van de Vorst, M.; van Bon, B.W.M.; Willemsen, M.H.; Kwint, M.; Janssen, I.M.; Hoischen, A.; Schenck, A.; et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014, 511, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Galea, G.; Bexiga, M.G.; Panarella, A.; O’Neill, E.D.; Simpson, J.C. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J. Cell Sci. 2015, 128, 2339–2349. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, M.A.B.; Karlsson, N.G.; Steel, D.M.; Ouwendijk, J.; Nilsson, T.; Hansson, G.C. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology 2001, 11, 633–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Tekaya, H.; Miura, K.; Pepperkok, R.; Hauri, H.-P. Live imaging of bidirectional traffic from the ERGIC. J. Cell Sci. 2005, 118, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Davis-Kaplan, S.R.; Compton, M.A.; Flannery, A.R.; Ward, D.M.; Kaplan, J.; Stevens, T.H.; Graham, L.A. PKR1 encodes an assembly factor for the yeast V-type ATPase. J. Biol. Chem. 2006, 281, 32025–32035. [Google Scholar] [CrossRef] [Green Version]
- Malkus, P.; Graham, L.A.; Stevens, T.H.; Schekman, R. Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol. Biol. Cell 2004, 15, 5075–5091. [Google Scholar] [CrossRef]
- Esmail, S.; Yao, Y.; Kartner, N.; Li, J.; Reithmeier, R.A.F.; Manolson, M.F. N-Linked Glycosylation Is Required for Vacuolar H+ -ATPase (V-ATPase) a4 Subunit Stability, Assembly, and Cell Surface Expression. J. Cell. Biochem. 2016, 117, 2757–2768. [Google Scholar] [CrossRef]
- Esmail, S.; Kartner, N.; Yao, Y.; Kim, J.W.; Reithmeier, R.A.F.; Manolson, M.F. N-linked glycosylation of a subunit isoforms is critical for vertebrate vacuolar H+-ATPase (V-ATPase) biosynthesis. J. Cell. Biochem. 2017, 119, 861–875. [Google Scholar] [CrossRef]
- Graham, L.A.; Flannery, A.R.; Stevens, T.H. Structure and assembly of the yeast V-ATPase. J. Bioenerg. Biomembr. 2003, 35, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Cheng, T.; Pavlos, N.J.; Yip, K.H.M.; Carrello, A.; Seeber, R.; Eidne, K.; Zheng, M.H.; Xu, J. Cytoplasmic Terminus of Vacuolar Type Proton Pump Accessory Subunit Ac45 Is Required for Proper Interaction with V0 Domain Subunits and Efficient Osteoclastic Bone Resorption. J. Biol. Chem. 2008, 283, 13194–13204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodi, F.S.; Schmollinger, J.C.; Soiffer, R.J.; Salgia, R.; Lynch, T.; Ritz, J.; Alyea, E.P.; Yang, J.; Neuberg, D.; Mihm, M.; et al. ATP6S1 elicits potent humoral responses associated with immune-mediated tumor destruction. Proc. Natl. Acad. Sci. USA 2002, 99, 6919–6924. [Google Scholar] [CrossRef] [Green Version]
- Holthuis, J.C.M.; Jansen, E.J.R.; Schoonderwoert, V.T.G.; Burbach, J.P.H.; Martens, G.J.M. Biosynthesis of the vacuolar H+-ATPase accessory subunit Ac45 in Xenopus pituitary. Eur. J. Biochem. 1999, 262, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Supek, F.; Supekova, L.; Mandiyan, S.; Pan, Y.C.; Nelson, H.; Nelson, N. A novel accessory subunit for vacuolar H(+)-ATPase from chromaffin granules. J. Biol. Chem. 1994, 269, 24102–24106. [Google Scholar]
- Jansen, E.J.R.; Scheenen, W.J.J.M.; Hafmans, T.G.M.; Martens, G.J.M. Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway. Biochim. Biophys. Acta 2008, 1783, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- Jansen, E.J.R.; Hafmans, T.G.M.; Martens, G.J.M. V-ATPase-Mediated Granular Acidification Is Regulated by the V-ATPase Accessory Subunit Ac45 in POMC-Producing Cells. Mol. Biol Cell 2010, 21, 3330–3339. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Cheng, T.S.; Lin, Z.; Pavlos, N.J.; Jiang, Q.; Xu, J.; Dai, K.R.; Zheng, M.H. Versatile Roles of V-ATPases Accessory Subunit Ac45 in Osteoclast Formation and Function. PLoS ONE 2011, 6, e27155. [Google Scholar] [CrossRef]
- Yang, D.-Q.; Feng, S.; Chen, W.; Zhao, H.; Paulson, C.; Li, Y.-P. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. J. Bone Miner. Res. 2012, 27, 1695–1707. [Google Scholar] [CrossRef] [Green Version]
- Jansen, E.J.R.; Timal, S.; Ryan, M.; Ashikov, A.; van Scherpenzeel, M.; Graham, L.A.; Mandel, H.; Hoischen, A.; Iancu, T.C.; Raymond, K.; et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat. Commun. 2016, 7, 11600. [Google Scholar] [CrossRef]
- Rujano, M.A.; Cannata Serio, M.; Panasyuk, G.; Péanne, R.; Reunert, J.; Rymen, D.; Hauser, V.; Park, J.H.; Freisinger, P.; Souche, E.; et al. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J. Exp. Med. 2017, 214, 3707–3729. [Google Scholar] [CrossRef]
- Kinouchi, K.; Ichihara, A.; Sano, M.; Sun-Wada, G.-H.; Wada, Y.; Ochi, H.; Fukuda, T.; Bokuda, K.; Kurosawa, H.; Yoshida, N.; et al. The Role of Individual Domains and the Significance of Shedding of ATP6AP2/(pro)renin Receptor in Vacuolar H+-ATPase Biogenesis. PLoS ONE 2013, 8, e78603. [Google Scholar] [CrossRef] [Green Version]
- Kenichiro, K.; Atsuhiro, I.; Motoaki, S.; Ge-Hong, S.-W.; Yoh, W.; Asako, K.-M.; Kanako, B.; Tatsuya, N.; Yoichi, O.; Mariyo, S.; et al. The (Pro)renin Receptor/ATP6AP2 is Essential for Vacuolar H+-ATPase Assembly in Murine Cardiomyocytes. Circ. Res. 2010, 107, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Kissing, S.; Rudnik, S.; Damme, M.; Lüllmann-Rauch, R.; Ichihara, A.; Kornak, U.; Eskelinen, E.-L.; Jabs, S.; Heeren, J.; Brabander, J.K.D.; et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy 2017, 13, 670–685. [Google Scholar] [CrossRef] [Green Version]
- Cannata Serio, M.; Graham, L.A.; Ashikov, A.; Larsen, L.E.; Raymond, K.; Timal, S.; Le Meur, G.; Ryan, M.; Czarnowska, E.; Jansen, J.C.; et al. Mutations in the V-ATPase assembly factor VMA21 cause a congenital disorder of glycosylation with autophagic liver disease. Hepatology 2020. [Google Scholar] [CrossRef] [Green Version]
- Dingjan, I.; Linders, P.T.A.; Verboogen, D.R.J.; Revelo, N.H.; ter Beest, M.; van den Bogaart, G. Endosomal and Phagosomal SNAREs. Physiol. Rev. 2018, 98, 1465–1492. [Google Scholar] [CrossRef]
- Linders, P.T.; van der Horst, C.; ter Beest, M.; van den Bogaart, G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019, 8, 780. [Google Scholar] [CrossRef] [Green Version]
- Welsh, L.M.; Tong, A.H.Y.; Boone, C.; Jensen, O.N.; Otte, S. Genetic and molecular interactions of the Erv41p-Erv46p complex involved in transport between the endoplasmic reticulum and Golgi complex. J. Cell Sci. 2006, 119, 4730–4740. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.C.; Cirak, S.; van Scherpenzeel, M.; Timal, S.; Reunert, J.; Rust, S.; Pérez, B.; Vicogne, D.; Krawitz, P.; Wada, Y.; et al. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. Am. J. Hum. Genet. 2016, 98, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.C.; Timal, S.; van Scherpenzeel, M.; Michelakakis, H.; Vicogne, D.; Ashikov, A.; Moraitou, M.; Hoischen, A.; Huijben, K.; Steenbergen, G.; et al. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. Am. J. Hum. Genet. 2016, 98, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.A.; Hill, K.J.; Stevens, T.H. Assembly of the Yeast Vacuolar H+-ATPase Occurs in the Endoplasmic Reticulum and Requires a Vma12p/Vma22p Assembly Complex. J. Cell Biol. 1998, 142, 39–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, K.J.; Stevens, T.H. Vma22p Is a Novel Endoplasmic Reticulum-associated Protein Required for Assembly of the Yeast Vacuolar H+-ATPase Complex. J. Biol. Chem. 1995, 270, 22329–22336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, D.D.; Stevens, T.H. VMA12 Encodes a Yeast Endoplasmic Reticulum Protein Required for Vacuolar H+-ATPase Assembly. J. Biol. Chem. 1997, 272, 25928–25934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, A.L.; Burr, S.P.; Grice, G.L.; Nathan, J.A. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels. eLife 2017, 6, e22693. [Google Scholar] [CrossRef]
- Nishi, T.; Forgac, M. Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J. Biol. Chem. 2000, 275, 6824–6830. [Google Scholar] [CrossRef] [Green Version]
- Schulz, N.; Dave, M.H.; Stehberger, P.A.; Chau, T.C.; Wagner, C.A. Differential Localization of Vacuolar H+-ATPases Containing a1, a2, a3, or a4 (ATP6V0A1-4) Subunit Isoforms Along the Nephron. Cell. Physiol. Biochem. 2007, 20, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Toyomura, T.; Oka, T.; Yamaguchi, C.; Wada, Y.; Futai, M. Three Subunit a Isoforms of Mouse Vacuolar H+-ATPase Preferential Expression Of The A3 Isoform During Osteoclast Differentiation. J. Biol. Chem. 2000, 275, 8760–8765. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Clohisey, S.M.; Chia, B.S.; Wang, B.; Cui, A.; Eisenhaure, T.; Schweitzer, L.D.; Hoover, P.; Parkinson, N.J.; Nachshon, A.; et al. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Foulquier, F.; Amyere, M.; Jaeken, J.; Zeevaert, R.; Schollen, E.; Race, V.; Bammens, R.; Morelle, W.; Rosnoblet, C.; Legrand, D.; et al. TMEM165 Deficiency Causes a Congenital Disorder of Glycosylation. Am. J. Hum. Genet. 2012, 91, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Potelle, S.; Morelle, W.; Dulary, E.; Duvet, S.; Vicogne, D.; Spriet, C.; Krzewinski-Recchi, M.-A.; Morsomme, P.; Jaeken, J.; Matthijs, G.; et al. Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. Hum. Mol. Genet. 2016, 25, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hogrebe, M.; Grüneberg, M.; DuChesne, I.; von der Heiden, A.L.; Reunert, J.; Schlingmann, K.P.; Boycott, K.M.; Beaulieu, C.L.; Mhanni, A.A.; et al. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation. Am. J. Hum. Genet. 2015, 97, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.T.; Brew, K. Metal ion activation of galactosyltransferase. J. Biol. Chem. 1976, 251, 3645–3652. [Google Scholar] [PubMed]
- Witkos, T.M.; Lowe, M. The Golgin Family of Coiled-Coil Tethering Proteins. Front. Cell Dev. Biol. 2016, 3, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, F.A.; Puype, M.; Vandekerckhove, J.; Warren, G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 1997, 91, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.; Bolton, A.D.; Funari, V.; Hong, M.; Boyden, E.D.; Lu, L.; Manning, D.K.; Dwyer, N.D.; Moran, J.L.; Prysak, M.; et al. Lethal Skeletal Dysplasia in Mice and Humans Lacking the Golgin GMAP-210. N. Engl. J. Med. 2010, 362, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Roboti, P.; Sato, K.; Lowe, M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway. J. Cell. Sci. 2015, 128, 1595–1606. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Roboti, P.; Mironov, A.A.; Lowe, M. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. MBoC 2014, 26, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Wehrle, A.; Witkos, T.M.; Unger, S.; Schneider, J.; Follit, J.A.; Hermann, J.; Welting, T.; Fano, V.; Hietala, M.; Vatanavicharn, N.; et al. Hypomorphic mutations of TRIP11 cause odontochondrodysplasia. JCI Insight 2019, 4. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, N.; Liu, H.; Xu, J.; Jiang, R. Golgb1 regulates protein glycosylation and is crucial for mammalian palate development. Development 2016, 143, 2344–2355. [Google Scholar] [CrossRef] [Green Version]
- Satoh, A.; Hayashi-Nishino, M.; Shakuno, T.; Masuda, J.; Koreishi, M.; Murakami, R.; Nakamura, Y.; Nakamura, T.; Abe-Kanoh, N.; Honjo, Y.; et al. The Golgin Protein Giantin Regulates Interconnections Between Golgi Stacks. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Koreishi, M.; Gniadek, T.J.; Yu, S.; Masuda, J.; Honjo, Y.; Satoh, A. The Golgin Tether Giantin Regulates the Secretory Pathway by Controlling Stack Organization within Golgi Apparatus. PLoS ONE 2013, 8, e59821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.; Zhang, X.; Nix, D.B.; Katoh, T.; Aoki, K.; Tiemeyer, M.; Wang, Y. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat. Commun. 2013, 4, 1659. [Google Scholar] [CrossRef] [Green Version]
- Witkos, T.M.; Chan, W.L.; Joensuu, M.; Rhiel, M.; Pallister, E.; Thomas-Oates, J.; Mould, A.P.; Mironov, A.A.; Biot, C.; Guerardel, Y.; et al. GORAB scaffolds COPI at the trans -Golgi for efficient enzyme recycling and correct protein glycosylation. Nat. Commun. 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Lowe, M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef]
- Hennies, H.C.; Kornak, U.; Zhang, H.; Egerer, J.; Zhang, X.; Seifert, W.; Kühnisch, J.; Budde, B.; Nätebus, M.; Brancati, F.; et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 2008, 40, 1410–1412. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.L.; Steiner, M.; Witkos, T.; Egerer, J.; Busse, B.; Mizumoto, S.; Pestka, J.M.; Zhang, H.; Hausser, I.; Khayal, L.A.; et al. Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genet. 2018, 14, e1007242. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.G.W.; Martsolf, J.T.; Baker, C.G.; Reed, M.H. Geroderma osteodysplastica. Hum. Genet. 1978, 40, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Lisker, R.; Hernández, A.; Martínez-Lavin, M.; Mutchinick, O.; Armas, C.; Reyes, P.; Robles-Gil, J.; Optiz, J.M. Gerodermia osteodysplastica hereditaria: Report of three affected brothers and literature review. Am. J. Med. Genet. 1979, 3, 389–395. [Google Scholar] [CrossRef]
- Burman, J.L.; Bourbonniere, L.; Philie, J.; Stroh, T.; Dejgaard, S.Y.; Presley, J.F.; McPherson, P.S. Scyl1, mutated in a recessive form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic. J. Biol. Chem. 2008, 283, 22774–22786. [Google Scholar] [CrossRef] [Green Version]
- Lenz, D.; McClean, P.; Kansu, A.; Bonnen, P.E.; Ranucci, G.; Thiel, C.; Straub, B.K.; Harting, I.; Alhaddad, B.; Dimitrov, B.; et al. SCYL1 variants cause a syndrome with low γ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN). Genet. Med. 2018, 20, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.M.; Kraus, C.; Höger, H.; Hochmeister, S.; Oberndorfer, F.; Branka, M.; Bingemann, S.; Lassmann, H.; Müller, M.; Macedo-Souza, L.I.; et al. Mutation in the Scyl1 gene encoding amino-terminal kinase-like protein causes a recessive form of spinocerebellar neurodegeneration. EMBO Rep. 2007, 8, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.M.; Rutledge, S.L.; Schüle, R.; Mayerhofer, B.; Züchner, S.; Boltshauser, E.; Bittner, R.E. Disruptive SCYL1 Mutations Underlie a Syndrome Characterized by Recurrent Episodes of Liver Failure, Peripheral Neuropathy, Cerebellar Atrophy, and Ataxia. Am. J. Hum. Genet. 2015, 97, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Climer, L.K.; Dobretsov, M.; Lupashin, V. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci. 2008, 65, 2801–2813. [Google Scholar] [CrossRef]
- Oka, T.; Vasile, E.; Penman, M.; Novina, C.D.; Dykxhoorn, D.M.; Ungar, D.; Hughson, F.M.; Krieger, M. Genetic Analysis of the Subunit Organization and Function of the Conserved Oligomeric Golgi (COG) Complex Studies of COG5- and COG7-Deficient Mammalian Cells. J. Biol. Chem. 2005, 280, 32736–32745. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Ungar, D.; Hughson, F.M.; Krieger, M. The COG and COPI Complexes Interact to Control the Abundance of GEARs, a Subset of Golgi Integral Membrane Proteins. MBoC 2004, 15, 2423–2435. [Google Scholar] [CrossRef]
- Witkos, T.M.; Lowe, M. Recognition and tethering of transport vesicles at the Golgi apparatus. Curr. Opin. Cell Biol. 2017, 47, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.B.; D’Souza, Z.; Lupashin, V.V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 2019, 593, 2466–2487. [Google Scholar] [CrossRef] [Green Version]
- Kudlyk, T.; Willett, R.; Pokrovskaya, I.D.; Lupashin, V. COG6 Interacts with a Subset of the Golgi SNAREs and Is Important for the Golgi Complex Integrity. Traffic 2013, 14, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Shestakova, A.; Suvorova, E.; Pavliv, O.; Khaidakova, G.; Lupashin, V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol. 2007, 179, 1179–1192. [Google Scholar] [CrossRef] [Green Version]
- Willett, R.; Kudlyk, T.; Pokrovskaya, I.; Schönherr, R.; Ungar, D.; Duden, R.; Lupashin, V. COG complexes form spatial landmarks for distinct SNARE complexes. Nat. Commun. 2013, 4, 1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.D.; Willett, R.; Kudlyk, T.; Pokrovskaya, I.; Paton, A.W.; Paton, J.C.; Lupashin, V.V. The COG Complex, Rab6 and COPI Define a Novel Golgi Retrograde Trafficking Pathway that is Exploited by SubAB Toxin. Traffic 2009, 10, 1502–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, R.; Blackburn, J.B.; Climer, L.; Pokrovskaya, I.; Kudlyk, T.; Wang, W.; Lupashin, V. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep. 2016, 6, 29139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, V.J.; Ungar, D. Re’COG’nition at the Golgi. Traffic 2012, 13, 891–897. [Google Scholar] [CrossRef]
- Shestakova, A.; Zolov, S.; Lupashin, V. COG Complex-Mediated Recycling of Golgi Glycosyltransferases is Essential for Normal Protein Glycosylation. Traffic 2006, 7, 191–204. [Google Scholar] [CrossRef]
- Pokrovskaya, I.D.; Willett, R.; Smith, R.D.; Morelle, W.; Kudlyk, T.; Lupashin, V.V. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 2011, 21, 1554–1569. [Google Scholar] [CrossRef] [Green Version]
- Reynders, E.; Foulquier, F.; Annaert, W.; Matthijs, G. How Golgi glycosylation meets and needs trafficking: The case of the COG complex. Glycobiology 2011, 21, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Ong, Y.S.; Tran, T.H.T.; Gounko, N.V.; Hong, W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J. Cell Sci. 2014, 127, 2825–2839. [Google Scholar] [CrossRef] [Green Version]
- Climer, L.K.; Pokrovskaya, I.D.; Blackburn, J.B.; Lupashin, V.V. Membrane detachment is not essential for COG complex function. MBoC 2018, 29, 964–974. [Google Scholar] [CrossRef]
- Kodera, H.; Ando, N.; Yuasa, I.; Wada, Y.; Tsurusaki, Y.; Nakashima, M.; Miyake, N.; Saitoh, S.; Matsumoto, N.; Saitsu, H. Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation. Clin. Genet. 2015, 87, 455–460. [Google Scholar] [CrossRef]
- Foulquier, F.; Vasile, E.; Schollen, E.; Callewaert, N.; Raemaekers, T.; Quelhas, D.; Jaeken, J.; Mills, P.; Winchester, B.; Krieger, M.; et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc. Natl. Acad. Sci. USA 2006, 103, 3764–3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmigiano, A.; Bua, R.O.; Barone, R.; Rymen, D.; Régal, L.; Deconinck, N.; Dionisi-Vici, C.; Fung, C.-W.; Garozzo, D.; Jaeken, J.; et al. MALDI-MS profiling of serum O-glycosylation and N-glycosylation in COG5-CDG. J. Mass Spectrom. 2017, 52, 372–377. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Lefeber, D.J.; van Scherpenzeel, M. Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 2018, 41, 499–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulquier, F. COG defects, birth and rise! Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2009, 1792, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; Zeevaert, R.; Korsch, E.; Huijben, K.; Wopereis, S.; Matthijs, G.; Keymolen, K.; Lefeber, D.J.; Meirleir, L.D.; Wevers, R.A. A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur. J. Hum. Genet. 2007, 15, 638–645. [Google Scholar] [CrossRef]
- Ng, B.G.; Kranz, C.; Hagebeuk, E.E.O.; Duran, M.; Abeling, N.G.G.M.; Wuyts, B.; Ungar, D.; Lupashin, V.; Hartdorff, C.M.; Poll-The, B.T.; et al. Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol. Genet. Metab. 2007, 91, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Kranz, C.; Ng, B.G.; Sun, L.; Sharma, V.; Eklund, E.A.; Miura, Y.; Ungar, D.; Lupashin, V.; Winkel, R.D.; Cipollo, J.F.; et al. COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum. Mol. Genet. 2007, 16, 731–741. [Google Scholar] [CrossRef]
- Foulquier, F.; Ungar, D.; Reynders, E.; Zeevaert, R.; Mills, P.; García-Silva, M.T.; Briones, P.; Winchester, B.; Morelle, W.; Krieger, M.; et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum. Mol. Genet. 2007, 16, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Zeevaert, R.; Foulquier, F.; Dimitrov, B.; Reynders, E.; Van Damme-Lombaerts, R.; Simeonov, E.; Annaert, W.; Matthijs, G.; Jaeken, J. Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum. Mol. Genet. 2009, 18, 517–524. [Google Scholar] [CrossRef]
- Ng, B.G.; Sharma, V.; Sun, L.; Loh, E.; Hong, W.; Tay, S.K.H.; Freeze, H.H. Identification of the first COG–CDG patient of Indian origin. Mol. Genet. Metab. 2011, 102, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Miura, Y.; Tay, S.K.H.; Aw, M.M.; Eklund, E.A.; Freeze, H.H. Clinical and Biochemical Characterization of a Patient with Congenital Disorder of Glycosylation (CDG) IIx. J. Pediatr. 2005, 147, 851–853. [Google Scholar] [CrossRef]
- Reynders, E.; Foulquier, F.; Leão Teles, E.; Quelhas, D.; Morelle, W.; Rabouille, C.; Annaert, W.; Matthijs, G. Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum. Mol. Genet. 2009, 18, 3244–3256. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; Xia, Z.-J.; Clément, A.; Parry, D.A.; Davids, M.; Taylan, F.; Sharma, P.; Turgeon, C.T.; Blanco-Sánchez, B.; Ng, B.G.; et al. A Recurrent De Novo Heterozygous COG4 Substitution Leads to Saul-Wilson Syndrome, Disrupted Vesicular Trafficking, and Altered Proteoglycan Glycosylation. Am. J. Hum. Genet. 2018, 103, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.W.; Matthijs, G.; Sturiale, L.; Garozzo, D.; Wong, K.Y.; Wong, R.; Wong, V.; Jaeken, J. COG5-CDG with a Mild Neurohepatic Presentation. JIMD Rep. 2012, 3, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paesold-Burda, P.; Maag, C.; Troxler, H.; Foulquier, F.; Kleinert, P.; Schnabel, S.; Baumgartner, M.; Hennet, T. Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum. Mol. Genet. 2009, 18, 4350–4356. [Google Scholar] [CrossRef] [PubMed]
- Rymen, D.; Keldermans, L.; Race, V.; Régal, L.; Deconinck, N.; Dionisi-Vici, C.; Fung, C.-W.; Sturiale, L.; Rosnoblet, C.; Foulquier, F.; et al. COG5-CDG: Expanding the clinical spectrum. Orphanet J. Rare Dis. 2012, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Lübbehusen, J.; Thiel, C.; Rind, N.; Ungar, D.; Prinsen, B.H.C.M.T.; de Koning, T.J.; van Hasselt, P.M.; Körner, C. Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum. Mol. Genet. 2010, 19, 3623–3633. [Google Scholar] [CrossRef]
- Huybrechts, S.; De Laet, C.; Bontems, P.; Rooze, S.; Souayah, H.; Sznajer, Y.; Sturiale, L.; Garozzo, D.; Matthijs, G.; Ferster, A.; et al. Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG): Second Patient, Different Phenotype. JIMD Rep. 2012, 4, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, R.; Ansari, S.; Alshammari, M.J.; Alkhalidi, H.; Alrukban, H.; Eyaid, W.; Alkuraya, F.S. A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J. Med. Genet. 2013, 50, 431–436. [Google Scholar] [CrossRef]
- Rymen, D.; Winter, J.; Van Hasselt, P.M.; Jaeken, J.; Kasapkara, C.; Gokçay, G.; Haijes, H.; Goyens, P.; Tokatli, A.; Thiel, C.; et al. Key features and clinical variability of COG6-CDG. Mol. Genet. Metab. 2015, 116, 163–170. [Google Scholar] [CrossRef]
- Zeevaert, R.; Foulquier, F.; Cheillan, D.; Cloix, I.; Guffon, N.; Sturiale, L.; Garozzo, D.; Matthijs, G.; Jaeken, J. A new mutation in COG7 extends the spectrum of COG subunit deficiencies. Eur. J. Med. Genet. 2009, 52, 303–305. [Google Scholar] [CrossRef]
- Spaapen, L.J.M.; Bakker, J.A.; van der Meer, S.B.; Sijstermans, H.J.; Steet, R.A.; Wevers, R.A.; Jaeken, J. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J. Inherit. Metab. Dis. 2005, 28, 707. [Google Scholar] [CrossRef]
- Wu, X.; Steet, R.A.; Bohorov, O.; Bakker, J.; Newell, J.; Krieger, M.; Spaapen, L.; Kornfeld, S.; Freeze, H.H. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat. Med. 2004, 10, 518–523. [Google Scholar] [CrossRef]
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2005, 1744, 120–144. [Google Scholar] [CrossRef] [Green Version]
- Jahn, R.; Scheller, R.H. SNAREs—Engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 2006, 7, 631–643. [Google Scholar] [CrossRef]
- Xu, D.; Joglekar, A.P.; Williams, A.L.; Hay, J.C. Subunit structure of a mammalian ER/Golgi SNARE complex. J. Biol. Chem. 2000, 275, 39631–39639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Hong, W.; Rahimian, V.; Doege, C.A.; Paumet, F.; Eng, W.S.; Arango, N.; Parlati, F.; Ravazzola, M.; Orci, L.; et al. Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J. Biol. Chem. 2001, 276, 27480–27487. [Google Scholar] [CrossRef] [Green Version]
- Dascher, C.; Matteson, J.; Balch, W.E. Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. J. Biol. Chem. 1994, 269, 29363–29366. [Google Scholar] [PubMed]
- Hay, J.C.; Hirling, H.; Scheller, R.H. Mammalian vesicle trafficking proteins of the endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 1996, 271, 5671–5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, J.C.; Klumperman, J.; Oorschot, V.; Steegmaier, M.; Kuo, C.S.; Scheller, R.H. Localization, Dynamics, and Protein Interactions Reveal Distinct Roles for ER and Golgi SNAREs. J. Cell Biol. 1998, 141, 1489–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paek, I.; Orci, L.; Ravazzola, M.; Erdjument-Bromage, H.; Amherdt, M.; Tempst, P.; Söllner, T.H.; Rothman, J.E. ERS-24, a Mammalian v-SNARE Implicated in Vesicle Traffic between the ER and the Golgi. J. Cell Biol. 1997, 137, 1017–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Wong, S.H.; Tang, B.L.; Xu, Y.; Peter, F.; Subramaniam, V.N.; Hong, W. The Mammalian Protein (rbet1) Homologous to Yeast Bet1p Is Primarily Associated with the Pre-Golgi Intermediate Compartment and Is Involved in Vesicular Transport from the Endoplasmic Reticulum to the Golgi Apparatus. J. Cell Biol. 1997, 139, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Adolf, F.; Rhiel, M.; Reckmann, I.; Wieland, F.T. Sec24C/D-isoform–specific sorting of the preassembled ER–Golgi Q-SNARE complex. Mol. Biol. Cell 2016, 27, 2697–2707. [Google Scholar] [CrossRef] [PubMed]
- Malsam, J.; Söllner, T.H. Organization of SNAREs within the Golgi stack. Cold Spring Harb. Persp. Biol. 2011, 3, a005249. [Google Scholar] [CrossRef] [Green Version]
- Burri, L.; Varlamov, O.; Doege, C.A.; Hofmann, K.; Beilharz, T.; Rothman, J.E.; Söllner, T.H.; Lithgow, T. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2003, 100, 9873–9877. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Martin, S.; James, D.E.; Hong, W. GS15 Forms a SNARE Complex with Syntaxin 5, GS28, and Ykt6 and Is Implicated in Traffic in the Early Cisternae of the Golgi Apparatus. MBoC 2002, 13, 3493–3507. [Google Scholar] [CrossRef] [Green Version]
- Volchuk, A.; Ravazzola, M.; Perrelet, A.; Eng, W.S.; Di Liberto, M.; Varlamov, O.; Fukasawa, M.; Engel, T.; Söllner, T.H.; Rothman, J.E.; et al. Countercurrent Distribution of Two Distinct SNARE Complexes Mediating Transport within the Golgi Stack. MBoC 2004, 15, 1506–1518. [Google Scholar] [CrossRef] [Green Version]
- Tai, G.; Lu, L.; Wang, T.L.; Tang, B.L.; Goud, B.; Johannes, L.; Hong, W. Participation of the Syntaxin 5/Ykt6/GS28/GS15 SNARE Complex in Transport from the Early/Recycling Endosome to the Trans-Golgi Network. MBoC 2004, 15, 4011–4022. [Google Scholar] [CrossRef] [Green Version]
- Linders, P.; Gerretsen, E.; Ashikov, A.; Vals, M.-A.; Revelo, N.H.; Arts, R.; Baerenfaenger, M.; Zijlstra, F.; Huijben, K.; Raymond, K.; et al. Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. MedRXiv 2004. [Google Scholar] [CrossRef] [Green Version]
- Banfield, D.K.; Lewis, M.J.; Pelham, H.R.B. A SNARE-like protein required for traffic through the Golgi complex. Nature 1995, 375, 806–809. [Google Scholar] [CrossRef]
- Parlati, F.; McNew, J.A.; Fukuda, R.; Miller, R.; Söllner, T.H.; Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature 2000, 407, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Parlati, F.; Varlamov, O.; Paz, K.; McNew, J.A.; Hurtado, D.; Söllner, T.H.; Rothman, J.E. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 2002, 99, 5424–5429. [Google Scholar] [CrossRef] [Green Version]
- Araç, D.; Dulubova, I.; Pei, J.; Huryeva, I.; Grishin, N.V.; Rizo, J. Three-dimensional Structure of the rSly1 N-terminal Domain Reveals a Conformational Change Induced by Binding to Syntaxin 5. J. Mol. Biol. 2005, 346, 589–601. [Google Scholar] [CrossRef]
- Bracher, A.; Weissenhorn, W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 2002, 21, 6114–6124. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Gallwitz, D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J. Cell Biol. 2002, 157, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Dulubova, I.; Min, S.-W.; Chen, X.; Rizo, J.; Südhof, T.C. Sly1 Binds to Golgi and ER Syntaxins via a Conserved N-Terminal Peptide Motif. Dev. Cell 2002, 2, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Hui, N.; Nakamura, N.; Sönnichsen, B.; Shima, D.T.; Nilsson, T.; Warren, G. An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. Mol. Biol. Cell 1997, 8, 1777–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, E.; Ginefra, P.; Mastrodonato, V.; Beznoussenko, G.V.; Rusten, T.E.; Bilder, D.; Stenmark, H.; Mironov, A.A.; Vaccari, T. Multiple functions of the SNARE protein SNAP29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014, 10, 2251–2268. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.; Coughlin, C.C.; Monaghan, K.G.; Fiala, E.; McKinstry, R.C.; Paciorkowski, A.R.; Shinawi, M. CEDNIK: Phenotypic and Molecular Characterization of an Additional Patient and Review of the Literature. Child Neurol. Open 2017. [Google Scholar] [CrossRef] [Green Version]
- Llaci, L.; Ramsey, K.; Belnap, N.; Claasen, A.M.; Balak, C.D.; Szelinger, S.; Jepsen, W.M.; Siniard, A.L.; Richholt, R.; Izat, T.; et al. Compound heterozygous mutations in SNAP29 is associated with Pelizaeus-Merzbacher-like disorder (PMLD). Hum. Genet. 2019, 138, 1409–1417. [Google Scholar] [CrossRef]
- Poojary, S.; Shah, K.S.; Bhalala, K.B.; Hegde, A.U. CEDNIK syndrome in an Indian patient with a novel mutation of the SNAP29 gene. Pediatr. Dermatol. 2019, 36, 372–376. [Google Scholar] [CrossRef] [PubMed]
- McDonald-McGinn, D.M.; Fahiminiya, S.; Revil, T.; Nowakowska, B.A.; Suhl, J.; Bailey, A.; Mlynarski, E.; Lynch, D.R.; Yan, A.C.; Bilaniuk, L.T.; et al. Hemizygous mutations in SNAP29 unmask autosomal recessive conditions and contribute to atypical findings in patients with 22q11.2DS. J. Med. Genet. 2013, 50, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fu, Y.; Zhao, Y.; Li, F.; Qian, A.; Wu, B.; Li-Ling, J. Genetic analysis of genitourinary malformations. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2009, 26, 134–138. [Google Scholar] [CrossRef]
- Sprecher, E.; Ishida-Yamamoto, A.; Mizrahi-Koren, M.; Rapaport, D.; Goldsher, D.; Indelman, M.; Topaz, O.; Chefetz, I.; Keren, H.; O’Brien, T.J.; et al. A Mutation in SNAP29, Coding for a SNARE Protein Involved in Intracellular Trafficking, Causes a Novel Neurocutaneous Syndrome Characterized by Cerebral Dysgenesis, Neuropathy, Ichthyosis, and Palmoplantar Keratoderma. Am. J. of Hum. Genet. 2005, 77, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs-Telem, D.; Stewart, H.; Rapaport, D.; Nousbeck, J.; Gat, A.; Gini, M.; Lugassy, Y.; Emmert, S.; Eckl, K.; Hennies, H.C.; et al. CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br. J. Dermatol. 2011, 164, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Praschberger, R.; Lowe, S.A.; Malintan, N.T.; Giachello, C.N.G.; Patel, N.; Houlden, H.; Kullmann, D.M.; Baines, R.A.; Usowicz, M.M.; Krishnakumar, S.S.; et al. Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity. Cell Rep. 2017, 21, 97–109. [Google Scholar] [CrossRef]
- Praschberger, R.; Balint, B.; Mencacci, N.E.; Hersheson, J.; Rubio-Agusti, I.; Kullmann, D.M.; Bettencourt, C.; Bhatia, K.; Houlden, H. Expanding the Phenotype and Genetic Defects Associated with the GOSR2 Gene. Mov. Dis. Clin. Pract. 2015, 2, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Corbett, M.A.; Schwake, M.; Bahlo, M.; Dibbens, L.M.; Lin, M.; Gandolfo, L.C.; Vears, D.F.; O’Sullivan, J.D.; Robertson, T.; Bayly, M.A.; et al. A Mutation in the Golgi Qb-SNARE Gene GOSR2 Causes Progressive Myoclonus Epilepsy with Early Ataxia. Am. J. Hum. Genet. 2011, 88, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Bräuer, P.; Parker, J.L.; Gerondopoulos, A.; Zimmermann, I.; Seeger, M.A.; Barr, F.A.; Newstead, S. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 2019, 363, 1103–1107. [Google Scholar] [CrossRef]
- Bhide, G.P.; Colley, K.J. Sialylation of N-glycans: Mechanism, cellular compartmentalization and function. Histochem. Cell Biol. 2017, 147, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Hoe, M.H.; Slusarewicz, P.; Rabouille, C.; Watson, R.; Hunte, F.; Watzele, G.; Berger, E.G.; Warren, G. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 1994, 13, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Rabouille, C.; Hui, N.; Watson, R.; Warren, G. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J. Cell. Sci. 1996, 109, 1975–1989. [Google Scholar]
- Nilsson, T.; Slusarewicz, P.; Hoe, M.H.; Warren, G. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett. 1993, 330, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ma, J.; Lazic, A.; Backovic, M.; Colley, K.J. Formation of Insoluble Oligomers Correlates with ST6Gal I Stable Localization in the Golgi. J. Biol. Chem. 2000, 275, 13819–13826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenteany, F.H.; Colley, K.J. Multiple Signals Are Required for α2,6-Sialyltransferase (ST6Gal I) Oligomerization and Golgi Localization. J. Biol. Chem. 2005, 280, 5423–5429. [Google Scholar] [CrossRef] [Green Version]
- Opat, A.S.; Houghton, F.; Gleeson, P.A. Medial Golgi but Not Late Golgi Glycosyltransferases Exist as High Molecular Weight Complexes Role of Luminal Domain in Complex Formation and Localization. J. Biol. Chem. 2000, 275, 11836–11845. [Google Scholar] [CrossRef] [Green Version]
- Hassinen, A.; Kellokumpu, S. Organizational Interplay of Golgi N-Glycosyltransferases Involves Organelle Microenvironment-Dependent Transitions between Enzyme Homo- and Heteromers. J. Biol. Chem. 2014, 289, 26937–26948. [Google Scholar] [CrossRef] [Green Version]
- Kellokumpu, S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Kokkonen, N.; Rivinoja, A.; Kauppila, A.; Suokas, M.; Kellokumpu, I.; Kellokumpu, S. Defective acidification of intracellular organelles results in aberrant secretion of cathepsin D in cancer cells. J. Biol. Chem. 2004, 279, 39982–39988. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Dahms, N.M.; Kornfeld, S. Mannose 6-phosphate receptors: New twists in the tale. Nat. Rev. Mol. Cell Biol. 2003, 4, 202–212. [Google Scholar] [CrossRef]
- Caplan, M.J.; Stow, J.L.; Newman, A.P.; Madri, J.; Anderson, H.C.; Farquhar, M.G.; Palade, G.E.; Jamieson, J.D. Dependence on pH of polarized sorting of secreted proteins. Nature 1987, 329, 632–635. [Google Scholar] [CrossRef]
- Guo, Y.; Sirkis, D.W.; Schekman, R. Protein sorting at the trans-Golgi network. Annu. Rev. Cell Dev. Biol. 2014, 30, 169–206. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; Wopereis, S.; Coucke, P.; Gillessen-Kaesbach, G.; Voit, T.; Smeitink, J.; Wevers, R.; Grünewald, S. Defective protein glycosylation in patients with cutis laxa syndrome. Eur. J. Hum. Genet. 2005, 13, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Rajab, A.; Kornak, U.; Budde, B.S.; Hoffmann, K.; Jaeken, J.; Nürnberg, P.; Mundlos, S. Geroderma osteodysplasticum hereditaria and wrinkly skin syndrome in 22 patients from Oman. Am. J. Med. Genet. Part A 2008, 146A, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Marklová, E.; Albahri, Z. Screening and diagnosis of congenital disorders of glycosylation. Clin. Chim. Acta 2007, 385, 6–20. [Google Scholar] [CrossRef]
Gene | Mutation | CDG a | Clinical Phenotype b | N-Glycosylation c | Man | GlcNAc | Gal | Sia | O-Glycosylation c | Screening d | References |
---|---|---|---|---|---|---|---|---|---|---|---|
ATP6V0A2 | V66fsX107 | X | + | −−− | = | = | − | −− | −− | IEF, MS | [48] |
ATP6V0A2 | T643fsX683 | X | + | −−− | = | = | − | −− | n.d. | IEF | [48] |
ATP6V0A2 | Q765X | X | + | −−− | = | = | − | −− | −− | IEF, MS | [48] |
ATP6V0A2 | R63X | X | ++ | −−− | = | = | − | −− | −− | IEF, MS | [48,225] |
ATP6V0A2 | K117fsX144 | X | ++ | −−− | = | = | − | −− | −− | IEF, MS | [48,225] |
ATP6V0A2 | n.d. | X | ++ | −−− | = | = | − | −− | −− | IEF, MS | [48,225] |
ATP6V0A2 | D243fsX258 and E442fsX506 | X | ++ | −−− | = | = | − | −− | = | IEF, MS | [48] |
ATP6V0A2 | T280fsX285 | X | +++ | −−− | = | = | − | −− | −− | IEF, MS | [48] |
ATP6V0A2 | E442X | X | +++ | −−− | = | = | − | −− | = | IEF, MS | [48] |
ATP6AP1 | M4281 | X | + | −−− | = | = | −− | −− | −− | IEF, MS | [92] |
ATP6AP1 | L144P | X | + | −−− | = | = | −− | −− | −− | IEF, MS | [92] |
ATP6AP1 | E346K | X | ++ | −−− | = | = | −− | −− | −− | IEF, MS | [92] |
ATP6AP1 | Y313C | X | ++ | −−− | = | = | −− | −− | −− | IEF, MS | [92] |
ATP6AP2 | L98S | X | ++ | −−− | = | = | −− | −− | = | CZE, IEF, MS | [93] |
ATP6AP2 | L98S | X | + | −−− | = | = | −− | −− | = | CZE, IEF, MS | [93] |
ATP6AP2 | R71H | X | ++ | −−− | = | = | −− | −− | = | CZE, IEF, MS | [93] |
VMA21 | n.d.1 | X | + | −− | = | = | −− | −− | − | IEF, MS | [97] |
VMA21 | R18G* | X | + | −− | = | = | −− | −− | − | IEF, MS | [97] |
VMA21 | N63G | X | + | −− | = | = | −− | −− | − | IEF, MS | [97] |
TMEM199 | A7E | X | + | −−− | = | = | − | − | −−− | IEF, MS | [102] |
TMEM199 | A14P | X | + | −−− | = | = | − | − | = | IEF, MS | [102] |
TMEM199 | R31P | X | + | −−− | = | = | − | − | −−− | IEF, MS | [102] |
CCDC115 | L31S | X | ++ | −−− | = | = | −− | −− | −−− | IEF, MS | [101] |
CCDC115 | D11Y | X | ++ | −−− | = | = | −− | −− | −−− | IEF, MS | [101] |
TMEM165 | n.d.2 | X | ++ | −−− | = | = | −− | −− | = | IEF, MS, L | [111] |
TMEM165 | R126C | X | ++ | −−− | = | = | −− | −− | = | IEF, MS, L | [111] |
TMEM165 | R126C and G304R | X | + | −−− | = | = | −− | −− | IEF, MS, L | [111] | |
GMAP-210 | L1668X | − | +++ | −−− | = | = | −− | −− | = | L | [117] |
GMAP-210 | G439VfsX20 and n.d.4 | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | D410Y and E1606LfsX3 | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | Q196X and Q1512X | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | D410Y and I710CfsX19 | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | K541RfsX17 and M1806V | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | Q196X and K998SfsX5 | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GMAP-210 | Q196X and R264X | − | +++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Blot | [120] |
GOLGB1 | n.d.3 | − | ++ | −−− | = | = | −− | −− | −−− | L | [121] |
GORAB | F8L | − | ++ | −−− | = | = | = | −− | = | MS, L | [125] |
GORAB | K190del | − | ++ | −−− | = | = | = | −− | = | MS, L | [125] |
GORAB | M1? | X | ++ | = | = | = | = | = | = | CZE | [127,226] |
GORAB | E46X | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | P86RfsX70 | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | E123X | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | S175_R221del | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | Q247X | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | R262X | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
GORAB | F350LfsX26 | X | ++ | n.d. | = | = | = | = | n.d. | n.d. | [127] |
SCYL1 | H392PfsX30 | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [133] |
SCYL1 | V313CfsX6 and n.d.4 | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [134] |
SCYL1 | A504PfsX15 and Q546X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [134] |
SCYL1 | Q57X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | E86X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | A105V | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | V313CfsX6 and Q347X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | n.d.4 | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | D478G | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | A504PfsX15 | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | Q546X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
SCYL1 | Q628X | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [132] |
COG1 | 900X | X | ++ | −−− | = | = | −− | −− | −−− | IEF, MS, L | [153] |
COG1 | n.d.4 | X | ++ | −− | = | = | − | −− | −− | IEF, MS | [161] |
COG2 | Y234X and W634G | X | +++ | −− | = | = | − | −− | n.d. | IEF, MS | [152] |
COG4 | L773R | X | ++ | −−− | = | = | = | −− | −−− | IEF, HPLC, MS | [162,163] |
COG4 | E233X | X | ++ | −−− | = | = | = | −− | −−− | IEF, HPLC, MS | [162,163] |
COG4 | R729W | X | ++ | −−− | = | = | = | −− | = | IEF, MS | [164] |
COG4 | G516R | X | ++ | = | = | = | = | = | = | MS | [165] |
COG5 | n.d.4 | X | +/++ | −− | + | + | −− | −− | −− | IEF, MS | [154,166,167,168] |
COG6 | G549V | X | +++ | −− | = | = | − | −− | −− | IEF, HPLC, MS | [169,170,171,172] |
COG7 | n.d.4 | X | +++ | −−− | = | = | = | −− | −−− | IEF, L | [157,158,174,175] |
COG7 | n.d.4 | X | +++ | −− | = | = | − | −− | −− | IEF, MS | [173] |
COG8 | Y537X | X | ++ | −−− | = | = | − | − | −−− | IEF, MS, L | [160] |
COG8 | F563HfsX4 | X | ++ | −−− | = | = | = | − | −−− | MS, L | [159] |
STX5 | M55V | X | +++ | −−− | ++ | = | = | −− | −−− | IEF, MS, L | [191] |
SNAP29 | R29X | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [201] |
SNAP29 | L119AfsX15 and n.d.4 | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [202] |
SNAP29 | R85X | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [203] |
SNAP29 | T130fsX17 | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [204] |
SNAP29 | P10fsX42 | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [204] |
SNAP29 | R90C | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [204] |
SNAP29 | E89K | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [204,205] |
SNAP29 | V75fsX28 | − | +++ | = | = | = | = | = | = | ? | [206] |
SNAP29 | S163fsX5 | − | ++ | n.d. | = | = | = | = | n.d. | n.d. | [207] |
GOSR2 | G144W | − | ++ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [209,210] |
GOSR2 | K164del | − | + | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | [209] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linders, P.T.A.; Peters, E.; ter Beest, M.; Lefeber, D.J.; van den Bogaart, G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int. J. Mol. Sci. 2020, 21, 4654. https://doi.org/10.3390/ijms21134654
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. International Journal of Molecular Sciences. 2020; 21(13):4654. https://doi.org/10.3390/ijms21134654
Chicago/Turabian StyleLinders, Peter T. A., Ella Peters, Martin ter Beest, Dirk J. Lefeber, and Geert van den Bogaart. 2020. "Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation" International Journal of Molecular Sciences 21, no. 13: 4654. https://doi.org/10.3390/ijms21134654
APA StyleLinders, P. T. A., Peters, E., ter Beest, M., Lefeber, D. J., & van den Bogaart, G. (2020). Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. International Journal of Molecular Sciences, 21(13), 4654. https://doi.org/10.3390/ijms21134654