Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro
Abstract
:1. Background
1.1. Xenobiotic Metabolism
1.2. Methods to Measure XME Activities In Vitro
1.3. Coumarins as Substrates for XMEs
1.4. Establishing Fluorescence Assays—Practical Aspects
2. Use of Coumarin Substrates in Studying XMEs
2.1. CYP Enzymes
2.1.1. CYP1 Family
2.1.2. CYP2 Family
2.1.3. CYP3 Family
2.2. Conjugating Enzymes
2.2.1. UGT Enzymes
2.2.2. SULTs
2.2.3. Catechol O-methyltransferases (COMTs)
3. Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CYP | Cytochrome P450 |
XME | Xenobiotic-metabolizing enzyme |
UGT | Uridine diphosphate glucuronosyltransferase |
SULT | Sulfotransferase |
LC-MS | Liquid chromatography-mass spectrometry |
CEC | 3-cyano-7-ethoxycoumarin |
EFC | 7-ethoxy-4-trifluoromethylcoumarin |
MFC | 7-methoxy-4-trifluoromethylcoumarin |
MAMC | 7-methoxy-4-aminomethylcoumarin |
AMMC | 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin |
BFC | 7-benzyloxy-4-trifluoromethylcoumarin |
UDPGA | Uridine 5’-diphosphoglucuronic acid |
PAPS | 3’-phosphoadenylyl sulfate |
SAM | S-adenosylmethionine |
BP | 4-benzylpyridine |
CBP | 4-(4-chlorobenzyl)pyridine |
HFC | 7-hydroxy-4-trifluoromethylcoumarin |
COMT | Catechol O-methyltransferase |
References
- Gonzalez, F.J.; Coughtrie, M.; Tukey, R.H. Drug metabolism. In Goodman & Gilmans’s the Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Hilal-Dandan, R., Knollman, B.C., Eds.; McGraw-Hill: New York, NY, USA, 2018; pp. 85–100. [Google Scholar]
- Parkinson, A.; Ogilvie, B.W.; Buckley, D.B.; Kazmi, F.; Parkinson, O. Biotransformation of xenobiotics. In Casarett & Doull’s Toxicology: The Basic Science of Poisons, 9th ed.; Klaassen, C.D., Ed.; Mc Graw Hill: New York, NY, USA, 2018; pp. 193–430. [Google Scholar]
- Guengerich, F.P. Intersection of the roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates: Relevance to toxicity and drug interactions. Chem. Res. Toxicol. 2017, 30, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Nebert, D.W.; Wikvall, K.; Miller, W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120431. [Google Scholar] [CrossRef]
- Sevior, D.K.; Pelkonen, O.; Ahokas, J.T. Hepatocytes: The powerhouse of biotransformation. Int. J. Biochem. Cell. Biol. 2012, 44, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today 2012, 17, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Glen, R.C.; Schneider, G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015, 14, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Tolonen, A.; Pelkonen, O. Analytical challenges for conducting rapid metabolism characterization for QIVIVE. Toxicology 2015, 332, 20–29. [Google Scholar] [CrossRef]
- Lavis, L.D.; Raines, R.T. Bright building blocks for chemical biology. ACS Chem. Biol. 2014, 9, 855–866. [Google Scholar] [CrossRef]
- Eccleston, J.F.; Hutchinson, J.P.; Jameson, D.M. Fluorescence-based assays. Prog. Med. Chem. 2005, 43, 19–48. [Google Scholar]
- Crespi, C.L.; Miller, V.P.; Penman, B.W. Microtiter plate assays for the inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 1997, 248, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.T.; Gómez-Lechón, M.J. Fluorescence-based screening of cytochrome P450 activities in intact cells. Methods Mol. Biol. 2013, 987, 135–148. [Google Scholar] [PubMed]
- Ou, Y.; Wilson, R.E.; Weber, S.G. Methods of Measuring Enzyme Activity Ex Vivo and In Vivo. Annu. Rev. Anal. Chem. 2018, 11, 509–533. [Google Scholar] [CrossRef]
- Burke, M.D.; Thompson, S.; Weaver, R.J.; Wolf, C.R.; Mayer, R.T. Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem. Pharmacol. 1994, 48, 923–936. [Google Scholar] [CrossRef]
- Stresser, D.M.; Blanchard, A.P.; Turner, S.D.; Erve, J.C.L.; Dandeneau, A.A.; Miller, V.P.; Crespi, C.L. Substrate-dependent modulation of CYP3A4 catalytic activity: Analysis of 27 test compounds with four fluorometric substrates. Drug Metab. Dispos. 2000, 28, 1440–1448. [Google Scholar] [PubMed]
- Trubetskoy, O.V.; Gibson, J.R.; Marks, B.D. Highly miniaturized formats for in vitro drug metabolism assays using vivid fluorescent substrates and recombinant human cytochrome P450 enzymes. J. Biomol. Screen. 2005, 10, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.D.; Nahar, L. Progress in the Chemistry of Naturally Occurring Coumarins. Prog. Chem. Org. Nat. Prod. 2017, 106, 241–304. [Google Scholar]
- Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem. 2010, 17, 1325–1338. [Google Scholar] [CrossRef]
- Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem. 2018, 18, 124–148. [Google Scholar] [CrossRef]
- Mead, J.A.; Smith, J.N.; Williams, R.T. Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem. J. 1955, 61, 569–574. [Google Scholar] [CrossRef]
- Creaven, P.J.; Parke, D.V.; Williams, R.T. A spectrofluorimetric study of the 7-hydroxylation of coumarin by liver microsomes. Biochem. J. 1965, 96, 390–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitio, A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal. Biochem. 1978, 85, 488–491. [Google Scholar] [CrossRef]
- Crespi, C.L.; Stresser, D.M. Fluorometric screening for metabolism-based drug-drug interactions. J. Pharmacol. Toxicol. Methods 2001, 44, 325–331. [Google Scholar] [CrossRef]
- Rendic, S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002, 34, 83–448. [Google Scholar] [CrossRef]
- Turpeinen, M.; Korhonen, L.E.; Tolonen, A.; Uusitalo, J.; Juvonen, R.; Raunio, H.; Pelkonen, O. Cytochrome P450 (CYP) inhibition screening: Comparison of three tests. Eur. J. Pharm. Sci. 2006, 29, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, O.; Rautio, A.; Raunio, H.; Pasanen, M. CYP2A6: A human coumarin 7-hydroxylase. Toxicology 2000, 144, 139–147. [Google Scholar] [CrossRef]
- Raunio, H.; Rahnasto-Rilla, M. CYP2A6: Genetics, structure, regulation, and function. Drug Metabol. Drug Interact. 2012, 27, 73–88. [Google Scholar] [CrossRef]
- Mäenpää, J.; Juvonen, R.; Raunio, H.; Rautio, A.; Pelkonen, O. Metabolic interactions of methoxsalen and coumarin in humans and mice. Biochem. Pharmacol. 1994, 48, 1363–1369. [Google Scholar] [CrossRef]
- Foroozesh, M.; Sridhar, J.; Goyal, N.; Liu, J. Coumarins and P450s, Studies Reported to-Date. Molecules 2019, 24, 1620. [Google Scholar] [CrossRef] [Green Version]
- Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol. 2008, 82, 667–715. [Google Scholar] [CrossRef]
- Juvonen, R.O.; Rauhamäki, S.; Kortet, S.; Niinivehmas, S.; Troberg, J.; Petsalo, A.; Huuskonen, J.; Raunio, H.; Finel, M.; Pentikäinen, O.T. Molecular Docking-Based Design and Development of a Highly Selective Probe Substrate for UDP-glucuronosyltransferase 1A10. Mol. Pharm. 2018, 15, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Niinivehmas, S.; Postila, P.A.; Rauhamäki, S.; Manivannan, E.; Kortet, S.; Ahinko, M.; Huuskonen, P.; Nyberg, N.; Koskimies, P.; Lätti, S.; et al. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J. Enzym. Inhib. Med. Chem. 2018, 33, 743–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauhamäki, S.; Postila, P.A.; Niinivehmas, S.; Kortet, S.; Schildt, E.; Pasanen, M.; Manivannan, E.; Ahinko, M.; Koskimies, P.; Nyberg, N.; et al. Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors. Front. Chem. 2018, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Foti, R.S.; Wienkers, L.C.; Wahlstrom, J.L. Application of cytochrome P450 drug interaction screening in drug discovery. Combin. Chem. High Throughput Screen. 2010, 13, 145–158. [Google Scholar] [CrossRef]
- Kramer, M.A.; Tracy, T.S. Studying cytochrome P450 kinetics in drug metabolism. Expert Opin. Drug Metab. Toxicol. 2008, 4, 591–603. [Google Scholar] [CrossRef]
- Leow, J.W.H.; Chan, E.C.Y. Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: A focus on substrate inhibition. Biochem. Pharmacol. 2019, 169, 113615. [Google Scholar] [CrossRef]
- Raunio, H.; Kuusisto, M.; Juvonen, R.O.; Pentikäinen, O.T. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes. Front. Pharmacol. 2015, 6, 123. [Google Scholar] [CrossRef]
- Sridhar, J.; Goyal, N.; Liu, J.; Foroozesh, M. Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date. Molecules 2017, 22, 1143. [Google Scholar] [CrossRef] [Green Version]
- Juvonen, R.O.; Ahinko, M.; Huuskonen, J.; Raunio, H.; Pentikäinen, O.T. Development of new coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica 2019, 49, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Juvonen, R.O.; Jokinen, E.M.; Javaid, A.; Lehtonen, M.; Raunio, H.; Pentikäinen, O.T. Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5- dichlorophenyl)cyclopropanecarboxamide—An in vitro and in silico study. Chem. Biol. Drug Des. 2020, 95, 520–533. [Google Scholar] [CrossRef]
- DeVore, N.M.; Meneely, K.M.; Bart, A.G.; Stephens, E.S.; Battaile, K.P.; Scott, E.E. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J. 2012, 279, 1621–1631. [Google Scholar] [CrossRef]
- Yano, J.K.; Hsu, M.H.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol. 2005, 12, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Felter, S.P.; Vassallo, J.D.; Carlton, B.D.; Daston, G.P. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem. Toxicol. 2006, 44, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, R.O.; Kuusisto, M.; Fohrgrup, C.; Pitkänen, M.H.; Nevalainen, T.J.; Auriola, S.; Raunio, H.; Pasanen, M.; Pentikäinen, O.T. Inhibitory effects and oxidation of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin via human CYP2A6 and its mouse and pig orthologous enzymes. Xenobiotica 2016, 46, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Hukkanen, J.; Jacob, P., III; Benowitz, N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, J.A.; Tyndale, R.F. Variation in CYP2A6 Activity and Personalized Medicine. J. Pers. Med. 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Siu, E.C.; Tyndale, R.F. Non-nicotinic therapies for smoking cessation. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 541–564. [Google Scholar] [CrossRef] [PubMed]
- Rahnasto, M.K.; Raunio, H.A.; Wittekindt, C.; Salminen, K.A.; Leppänen, J.; Juvonen, R.O.; Poso, A.; Lahtela-Kakkonen, M.K. Identification of novel CYP2A6 inhibitors by virtual screening. Bioorg. Med. Chem. 2011, 19, 7186–7193. [Google Scholar] [CrossRef]
- Tani, N.; Juvonen, R.O.; Raunio, H.; Fashe, M.; Leppänen, J.; Zhao, B.; Tyndale, R.F.; Rahnasto-Rilla, M. Rational design of novel CYP2A6 inhibitors. Bioorg. Med. Chem. 2014, 22, 6655–6664. [Google Scholar] [CrossRef]
- Hung, H.Y.; Kuo, S.C. Recent studies and progression of Yin Chen Hao (Yīn Chén Hāo), a long-term used traditional Chinese medicine. J. Tradit. Complement. Med. 2013, 3, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Fayyaz, A.; Makwinja, S.; Auriola, S.; Raunio, H.; Juvonen, R.O. Comparison of In Vitro Hepatic Scoparone 7-O-Demethylation between Humans and Experimental Animals. Planta Med. 2018, 84, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, R.O.; Novák, F.; Emmanouilidou, E.; Auriola, S.; Timonen, J.; Heikkinen, A.T.; Küblbeck, J.; Finel, M.; Raunio, H. Metabolism of Scoparone in Experimental Animals and Humans. Planta Med. 2019, 85, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, L.E.; Turpeinen, M.; Rahnasto, M.; Wittekindt, C.; Poso, A.; Pelkonen, O.; Raunio, H.; Juvonen, R.O. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Br. J. Pharmacol. 2007, 150, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.B.; Pascual, J.; Zhang, Q.; Stout, C.D.; Halpert, J.R. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: Insight into inhibitor binding and rearrangement of active site side chains. Mol. Pharmacol. 2011, 80, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Chauret, N.; Dobbs, B.; Lackman, R.L.; Bateman, K.; Nicoll-Griffith, D.A.; Stresser, D.M.; Ackermann, J.M.; Turner, S.D.; Miller, V.P.; Crespi, C.L. The use of 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC) as a specific CYP2D6 probe in human liver microsomes. Drug Metab. Dispos. 2001, 29, 1196–1200. [Google Scholar]
- Martikainen, L.E.; Rahnasto-Rilla, M.; Neshybova, S.; Lahtela-Kakkonen, M.; Raunio, H.; Juvonen, R.O. Interactions of inhibitor molecules with the human CYP2E1 enzyme active site. Eur. J. Pharm. Sci. 2012, 47, 996–1005. [Google Scholar] [CrossRef]
- Solanki, M.; Pointon, A.; Jones, B.; Herbert, K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab. Dispos. 2018, 46, 1053–1065. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.P.; Stresser, D.M.; Blanchard, A.P.; Turner, S.; Crespi, C.L. Fluorometric high-throughput screening for inhibitors of cytochrome P450. Ann. N. Y. Acad. Sci. 2000, 919, 26–32. [Google Scholar] [CrossRef]
- Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell. Biol. 2013, 45, 1121–1132. [Google Scholar] [CrossRef]
- Rahikainen, T.; Häkkinen, M.R.; Finel, M.; Pasanen, M.; Juvonen, R.O. A high throughput assay for the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin by recombinant human UDP-glucuronosyltransferases and liver microsomes. Xenobiotica 2013, 43, 853–861. [Google Scholar] [CrossRef]
- Juvonen, R.O.; Heikkinen, A.T.; Kärkkäinen, O.; Jehangir, R.; Huuskonen, J.; Troberg, J.; Raunio, H.; Pentikäinen, O.T.; Finel, M. In vitro glucuronidation of 7-hydroxycoumarin derivatives in intestine and liver microsomes of Beagle dogs. Eur. J. Pharm. Sci. 2020, 141, 105118. [Google Scholar] [CrossRef] [PubMed]
- Tibbs, Z.E.; Rohn-Glowacki, K.J.; Crittenden, F.; Guidry, A.L.; Falany, C.N. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab. Pharmacokinet. 2015, 30, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, R.O.; Pentikäinen, O.; Huuskonen, J.; Timonetn, J.; Kärkkäinen, O.; Heikkinen, A.; Fashe, M.; Raunio, H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020, 50, 885–893. [Google Scholar] [CrossRef]
- Veser, J. Kinetics and inhibition studies of catechol O-methyltransferase from the yeast Candida tropicalis. J. Bacteriol. 1987, 169, 3696–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurkela, M.; Siiskonen, A.; Finel, M.; Tammela, P.; Taskinen, J.; Vuorela, P. Microplate screening assay to identify inhibitors of human catechol-O-methyltransferase. Anal. Biochem. 2004, 331, 198–200. [Google Scholar] [CrossRef]
- Fowler, S.; Morcos, P.N.; Cleary, Y.; Martin-Facklam, M.; Parrott, N.; Gertz, M.; Yu, L. Progress in Prediction and Interpretation of Clinically Relevant Metabolic Drug-Drug Interactions: A Minireview Illustrating Recent Developments and Current Opportunities. Curr. Pharmacol. Rep. 2017, 3, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Pelkonen, O.; Xu, Q.; Fan, T.P. Why is Research on Herbal Medicinal Products Important and How Can We Improve Its Quality? J. Tradit. Complement. Med. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornio, A.; Filppula, A.M.; Niemi, M.; Backman, J.T. Clinical Studies on Drug-Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin. Pharmacol. Ther. 2019, 105, 1345–1361. [Google Scholar] [CrossRef]
- Pelkonen, O.; Turpeinen, M.; Uusitalo, J.; Rautio, A.; Raunio, H. Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin. Pharmacol. Toxicol. 2005, 96, 167–175. [Google Scholar] [CrossRef]
- Ung, Y.T.; Ong, C.E.; Pan, Y. Current High-Throughput Approaches of Screening Modulatory Effects of Xenobiotics on Cytochrome P450 (CYP) Enzymes. High Throughput 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.H.; Remley, M.J.; Raunig, D.; Vaz, A.D. In vitro drug interactions of cytochrome P450: An evaluation of fluorogenic to conventional substrates. Drug Metab. Dispos. 2003, 31, 1005–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raunio, H.; Pentikäinen, O.; Juvonen, R.O. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro. Int. J. Mol. Sci. 2020, 21, 4708. https://doi.org/10.3390/ijms21134708
Raunio H, Pentikäinen O, Juvonen RO. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro. International Journal of Molecular Sciences. 2020; 21(13):4708. https://doi.org/10.3390/ijms21134708
Chicago/Turabian StyleRaunio, Hannu, Olli Pentikäinen, and Risto O. Juvonen. 2020. "Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro" International Journal of Molecular Sciences 21, no. 13: 4708. https://doi.org/10.3390/ijms21134708
APA StyleRaunio, H., Pentikäinen, O., & Juvonen, R. O. (2020). Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro. International Journal of Molecular Sciences, 21(13), 4708. https://doi.org/10.3390/ijms21134708