The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice
Abstract
:1. Introduction
2. Results
2.1. AUY-922 Reduces NM-Induced Weight Loss
2.2. AUY-922 Blocks NM-Induced Alveolar Inflammation
2.3. AUY-922 Blocks NM-Induced Pulmonary Fibrosis
2.4. AUY-922 Prevents NM-Induced Overexpression of Extracellular Matrix Proteins
2.5. AUY-922 Inhibits the Activation (Phosphorylation) of Pro-Fibrotic Biomarkers, ERK and HSP90
2.6. AUY-922 Protects against NM-Induced Lung Dysfunction
3. Discussion
4. Material and Methods
4.1. Materials
4.2. Animals and Treatment Groups
- Saline 30 days group: mice received 2 μL/g body weight saline intratracheally (i.t.) and were then treated with 0.1 mL saline intraperitoneally (i.p.), 2 times/week for 30 days (n = 12 mice). All analyses were performed at 30 days post i.t. saline exposure.
- Saline + AUY-922 30 days group: mice received 2 μL/g body weight saline i.t. and were then treated with 1 mg/kg AUY-922 i.p. for 30 days (n = 12 mice). All analyses were performed at 30 days post i.t. saline exposure.
- Saline 10 days group: mice received 2 μL/g body weight saline, i.t. and were treated with 0.1 mL saline (i.p.) 2 times per week for 10 days (n = 12 mice). All analyses were performed at 10 days post saline i.t. exposure.
- NM + Saline 10 days group: mice were exposed to 0.625 mg/kg body weight NM (i.t.) and were treated with 0.1 mL saline (i.p.) 2 times per week for 10 days (n = 12 mice). All analyses were performed at 10 days post NM exposure.
- NM + AUY-922 10 days group: mice were exposed to 0.625 mg/kg body weight NM (i.t.) and were treated with AUY-922 1mg/kg (i.p.) 2 times per week for 10 days (n = 12 mice). All analyses were performed at 10 days post NM exposure.
- NM + Saline 30 days group: mice were exposed to 0.625 mg/kg body weight NM (i.t.) and were treated with saline (i.p.) for 30 days (n = 12 mice). All analyses were performed at 30 days post NM exposure.
- NM + AUY 1 mg/kg 30 days group: mice were exposed to 0.625 mg/kg body weight NM (i.t.) and were treated with AUY-922 1 mg/kg (i.p.) 2 times/week for 30 days (n = 12 mice) All analyses were performed at 30 days post NM exposure.
- NM + AUY 2 mg/kg 30 days group: mice were exposed to 0.625 mg/kg body weight NM (i.t.) and were treated with AUY-922 2 mg/kg (i.p.) 3 times/week for 30 days (n = 12 mice) All analyses were performed at 30 days post NM exposure.
4.3. Lung Mechanics Measurements
4.4. Histopathology and Lung Injury Scoring
4.5. Bronchoalveolar Lavage Fluid (BALF) and White Blood Cell Count
4.6. Total Protein in BALF
4.7. Lung Tissue Collection
4.8. Western Blot Analysis
4.9. Immunoprecipitation Procedure
4.10. RNA Isolation and Quantitative Real-Time PCR (qPCR)
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goswami, D.G.; Kumar, D.; Tewari-Singh, N.; Orlicky, D.J.; Jain, A.K.; Kant, R.; Rancourt, R.C.; Dhar, D.; Inturi, S.; Agarwal, C.; et al. Topical nitrogen mustard exposure causes systemic toxic effects in mice. Exp. Toxicol. Pathol. 2014, 67, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Goswami, D.G.; Tewari-Singh, N.; Dhar, D.; Kumar, D.; Agarwal, C.; Ammar, D.A.; Kant, R.; Enzenauer, R.W.; Petrash, J.M.; Agarwal, R. Nitrogen Mustard-Induced Corneal Injury Involves DNA Damage and Pathways Related to Inflammation, Epithelial-Stromal Separation, and Neovascularization. Cornea 2016, 35, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Hefazi, M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam. Clin. Pharmacol. 2005, 19, 297–315. [Google Scholar] [CrossRef]
- Keyser, B.M.; Andres, D.K.; Holmes, W.W.; Paradiso, D.; Appell, A.; Letukas, V.A.; Benton, B.; Clark, O.E.; Gao, X.; Ray, P.; et al. Mustard Gas Inhalation Injury. Int. J. Toxicol. 2014, 33, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, R.; Sunil, V.R.; Venosa, A.; Verissimo, V.L.; Cervelli, J.A.; Vayas, K.N.; Hall, L.; Laskin, J.D.; Laskin, D.L. Attenuation of Nitrogen Mustard-Induced Pulmonary Injury and Fibrosis by Anti-Tumor Necrosis Factor-α Antibody. Toxicol. Sci. 2015, 148, 71–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, G.P. Studies related to the mechanisms of action of cytotoxic alkylating agents: A review. Cancer Res. 1962, 22, 651–688. [Google Scholar] [PubMed]
- Weinberger, B.; Laskin, J.D.; Sunil, V.R.; Sinko, P.J.; Heck, D.E.; Laskin, D.L. Sulfur mustard-induced pulmonary injury: Therapeutic approaches to mitigating toxicity. Pulm. Pharmacol. Ther. 2010, 24, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunak, Z.I.; Macit, E.; Yaren, H.; Yaman, H.; Cakir, E.; Aydin, I.; Türker, T.; Kurt, Y.G.; Ozcan, A.; Uysal, B.; et al. Protective Effects of Melatonin and S-Methylisothiourea on Mechlorethamine Induced Nephrotoxicity. J. Surg. Res. 2012, 175, e17–e23. [Google Scholar] [CrossRef] [PubMed]
- Cameli, P.; Carleo, A.; Bergantini, L.; Landi, C.; Prasse, A.; Bargagli, E. Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation. 2019, 43, 1–7. [Google Scholar] [CrossRef]
- Cameli, P.; Bargagli, E.; Bergantini, L.; Refini, R.M.; Pieroni, M.; Sestini, P.; Rottoli, P. Evaluation of multiple-flows exhaled nitric oxide in idiopathic and non-idiopathic interstitial lung disease. J. Breath Res. 2019, 13, 026008. [Google Scholar] [CrossRef]
- Razavi, S.-M.; Ghanei, M.; Salamati, P.; Safiabadi, M. Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq-Iran war: A review. Chin. J. Traumatol. 2013, 16, 163–168. [Google Scholar]
- Weinberger, B.; Malaviya, R.; Sunil, V.R.; Venosa, A.; Heck, D.E.; Laskin, J.D.; Laskin, D.L. Mustard vesicant-induced lung injury: Advances in therapy. Toxicol. Appl. Pharmacol. 2016, 305, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sontake, V.; Wang, Y.; Kasam, R.K.; Sinner, D.; Reddy, G.B.; Naren, A.P.; McCormack, F.X.; White, E.S.; Jegga, A.G.; Madala, S.K. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2017, 2, e91454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanneau, D.; Wettstein, G.; Bonniaud, P.; Garrido, C. Heat Shock Proteins: Cell Protection through Protein Triage. Sci. World J. 2010, 10, 1543–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryeziu, K.; Bruun, J.; Guren, T.K.; Sveen, A.; Lothe, A.R. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim. Biophys. Acta (BBA) 2019, 1871, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Sibinska, Z.; Tian, X.; Korfei, M.; Kojonazarov, B.; Kolb, J.; Klepetko, W.; Kosanovic, D.; Wygrecka, M.; Ghofrani, H.A.; Weissmann, N.; et al. Amplified canonical transforming growth factor-β signalling via heat shock protein 90 in pulmonary fibrosis. Eur. Respir. J. 2017, 49, 1501941. [Google Scholar] [CrossRef] [Green Version]
- Solopov, P.; Marinova, M.; Dimitropoulou, C.; Catravas, J. Heat Shock Protein (HSP) 90 Inhibitors Prevent the Development of Nitrogen Mustard-Induced Chronic Lung Injury and Pulmonary Fibrosis in Mice. In A16. ACHEMICAL THREATS AND INJURY: MECHANISMS AND TREATMENT; American Thoracic Society: New York, NY, USA, 2019; p. A1021. [Google Scholar] [CrossRef]
- Solopov, P.; Marinova, M.; Dimitropoulou, C.; Biancatelli, R.M.L.C.; Catravas, J.D. Development of chronic lung injury and pulmonary fibrosis in mice following acute exposure to nitrogen mustard. Inhal. Toxicol. 2020, 32, 141–154. [Google Scholar] [CrossRef]
- Global Study to Assess the Safety and Effectiveness of DU-176b vs. Standard Practice of Dosing with Warfarin in Patients with Atrial Fibrillation (EngageAFTIMI48). NCT. Available online: http://clinicaltrials.gov/ (accessed on 15 March 2012).
- Yuno, A.; Lee, M.-J.; Lee, S.; Tomita, Y.; Rekhtman, D.; Moore, B.; Trepel, J.B. Clinical Evaluation and Biomarker Profiling of Hsp90 Inhibitors; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; Volume 1709, pp. 423–441. [Google Scholar]
- Limjunyawong, N.; Mitzner, W.; Horton, M.R. A mouse model of chronic idiopathic pulmonary fibrosis. Physiol. Rep. 2014, 2, 00249. [Google Scholar] [CrossRef]
- Homer, R.J.; Elias, J.A.; Lee, C.G.; Herzog, E. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch. Pathol. Lab. Med. 2011, 135, 780–788. [Google Scholar]
- Izbicki, G.; Segel, M.; Christensen, T.G.; Conner, M.; Breuer, R. Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol. 2002, 83, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Scotton, C.J.; Chambers, R.C. Bleomycin revisited: Towards a more representative model of IPF? Am. J. Physiol. Cell. Mol. Physiol. 2010, 299, L439–L441. [Google Scholar] [CrossRef] [Green Version]
- Lilja, A.; Weeden, C.; McArthur, K.; Nguyen, T.; Donald, A.; Wong, Z.X.; Dousha, L.; Bozinovski, S.; Vlahos, R.; Burns, C.J.; et al. HSP90 Inhibition Suppresses Lipopolysaccharide-Induced Lung Inflammation In Vivo. PLoS ONE 2015, 10, e0114975. [Google Scholar] [CrossRef] [Green Version]
- García-Cardeña, G.; Fan, R.; Shah, V.; Sorrentino, R.; Cirino, G.; Papapetropoulos, A.; Sessa, W.C. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998, 392, 821–824. [Google Scholar] [CrossRef]
- Ou, J.; Ou, Z.; Ackerman, A.W.; Oldham, K.T.; Pritchard, A.K. Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity. Free. Radic. Boil. Med. 2003, 34, 269–276. [Google Scholar] [CrossRef]
- Antonov, A.; Snead, C.; Gorshkov, B.; Antonova, G.N.; Verin, A.D.; Catravas, J.D. Heat Shock Protein 90 Inhibitors Protect and Restore Pulmonary Endothelial Barrier Function. Am. J. Respir. Cell Mol. Boil. 2008, 39, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Antonov, A.S.; Antonova, G.N.; Fujii, M.; Dijke, P.T.; Handa, V.; Catravas, J.D.; Verin, A.D. Regulation of Endothelial Barrier Function by TGF-β type I Receptor ALK5: Potential Role of Contractile Mechanisms and Heat Shock Protein 90. J. Cell. Physiol. 2011, 227, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Senior, R.M.; Bielefeld, D.R.; Abensohn, M.K. The effects of proteolytic enzymes on the tensile strength of human lung. Am. Rev. Respir. Dis. 1975, 111, 184–188. [Google Scholar]
- Marinova, M.; Solopov, P.; Dimitropoulou, C.; Biancatelli, R.M.L.C.; Catravas, J.D. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal. Toxicol. 2019, 31, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Gauldie, J.; Kolb, M.; Ask, K.; Martin, G.; Bonniaud, P.; Warburton, D. Smad3 Signaling Involved in Pulmonary Fibrosis and Emphysema. Proc. Am. Thorac. Soc. 2006, 3, 696–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leask, A.; Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J. 2004, 18, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Jinnin, M. Mechanisms of skin fibrosis in systemic sclerosis. J. Dermatol. 2010, 37, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Liu, C.; Zhou, D.; Zhang, L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J. Histochem. Cytochem. 2016, 64, 157–167. [Google Scholar] [CrossRef]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; An, Y.S.; Kim, M.-R.; Kim, Y.-A.; Lee, J.K.; Hwang, C.S.; Chung, E.; Park, I.-C.; Yi, J.Y. Heat Shock Protein 90 Regulates Subcellular Localization of Smads in Mv1Lu Cells. J. Cell. Biochem. 2015, 117, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Kim, H.J.; Yu, M.R.; Kim, W.-Y.; Kim, J.; Ryu, J.H.; Kwon, S.; Jeon, J.S.; Han, D.C.; Ziyadeh, F. Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-β type II receptor. Lab. Investig. 2012, 92, 1583–1596. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; et al. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol. 2019, 371, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, R.; Chavez, T.; Maestro, D.; Palanca, A.; Bolado, P.; Madrazo, F.; Aires, A.; Cortajarena, A.; Villar, A.V. Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein. J. Mol. Cell. Cardiol. 2018, 123, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Decaris, M.L.; Gatmaitan, M.; FlorCruz, S.; Luo, F.; Li, K.; Holmes, W.E.; Hellerstein, M.K.; Turner, S.M.; Emson, C.L. Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis. Mol. Cell. Proteom. 2014, 13, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Felip, E.; Barlesi, F.; Besse, B.; Chu, Q.; Gandhi, L.; Kim, S.-W.; Carcereny, E.; Sequist, L.V.; Brunsvig, P.; Chouaid, C.; et al. Phase 2 Study of the HSP-90 Inhibitor AUY922 in Previously Treated and Molecularly Defined Patients with Advanced Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.-H.; Choi, M.-G.; Yoo, H.J.; Lee, S.J. Novel Heat Shock Protein 90 Inhibitor NVP-AUY922 Synergizes With the Histone Deacetylase Inhibitor PXD101 in Induction of Death of Anaplastic Thyroid Carcinoma Cells. J. Clin. Endocrinol. Metab. 2015, 100, E253–E261. [Google Scholar] [CrossRef] [Green Version]
- Mayor-López, L.; Tristante, E.; Carballo-Santana, M.; Carrasco-García, E.; Grasso, S.; García-Morales, P.; Saceda, M.; Lujan, J.; García-Solano, J.; Carballo, F.; et al. Comparative Study of 17-AAG and NVP-AUY922 in Pancreatic and Colorectal Cancer Cells: Are There Common Determinants of Sensitivity? Transl. Oncol. 2014, 7, 590–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchegger, K.; Silva, R.; López, J.; Ili, C.; Araya, J.C.; Leal, P.; Brebi, P.; Riquelme, I.; Roa, J. The ERK/MAPK pathway is overexpressed and activated in gallbladder cancer. Pathol. Res. Pract. 2017, 213, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Dou, F.; Yuan, L.-D.; Zhu, J.-J.; Wang, K.-Y. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism. Acta Biochim. Biophys. Sin. 2005, 37, 501–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foglia, B.; Cannito, S.; Bocca, C.; Parola, M.; Novo, E. ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis. Int. J. Mol. Sci. 2019, 20, 2700. [Google Scholar] [CrossRef] [Green Version]
- Cannito, S.; Novo, E.; Parola, M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv. Drug Deliv. Rev. 2017, 121, 57–84. [Google Scholar] [CrossRef] [PubMed]
- McGraw, M.D.; Dysart, M.M.; Hendry-Hofer, T.B.; Houin, P.R.; Rioux, J.S.; Garlick, R.B.; Loader, E.J.; Smith, R.; Paradiso, D.C.; Holmes, W.W.; et al. Bronchiolitis Obliterans and Pulmonary Fibrosis after Sulfur Mustard Inhalation in Rats. Am. J. Respir. Cell Mol. Boil. 2018, 58, 696–705. [Google Scholar] [CrossRef]
- Marinova, M.; Solopov, P.; Dimitropoulou, C.; Biancatelli, R.M.L.C.; Catravas, J.D. Post-treatment with a heat shock protein 90 inhibitor prevents chronic lung injury and pulmonary fibrosis, following acute exposure of mice to HCl. Exp. Lung Res. 2020, 46, 203–216. [Google Scholar] [CrossRef]
- Ashcroft, T.; Simpson, J.M.; Timbrell, V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 1988, 41, 467–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solopov, P.; Colunga Biancatelli, R.M.L.; Marinova, M.; Dimitropoulou, C.; Catravas, J.D. The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice. Int. J. Mol. Sci. 2020, 21, 4740. https://doi.org/10.3390/ijms21134740
Solopov P, Colunga Biancatelli RML, Marinova M, Dimitropoulou C, Catravas JD. The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice. International Journal of Molecular Sciences. 2020; 21(13):4740. https://doi.org/10.3390/ijms21134740
Chicago/Turabian StyleSolopov, Pavel, Ruben M. L. Colunga Biancatelli, Margarita Marinova, Christiana Dimitropoulou, and John D. Catravas. 2020. "The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice" International Journal of Molecular Sciences 21, no. 13: 4740. https://doi.org/10.3390/ijms21134740
APA StyleSolopov, P., Colunga Biancatelli, R. M. L., Marinova, M., Dimitropoulou, C., & Catravas, J. D. (2020). The HSP90 Inhibitor, AUY-922, Ameliorates the Development of Nitrogen Mustard-Induced Pulmonary Fibrosis and Lung Dysfunction in Mice. International Journal of Molecular Sciences, 21(13), 4740. https://doi.org/10.3390/ijms21134740