As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater
Abstract
:1. Introduction
2. Results
2.1. Study Population Characterization
2.2. Arsenic in Drinking Groundwater and Lifetime Average Daily Dose
2.3. Genotype Analyses
2.4. Total Urinary and Arsenic Species
2.5. Univariate Analyses of Polymorphisms and Covariates on Urinary Arsenic Metabolites
2.6. Multivariate Analyses of Polymorphisms and Covariates on Urinary Arsenic Metabolites
3. Discussion
4. Materials and Methods
4.1. Subject of Study and Sample
4.2. Sample Collections
4.2.1. Groundwater Collection
4.2.2. Urine Collection
4.2.3. Blood Samples Collection
4.3. Groundwater Quality and Arsenic Determination
4.4. Exposure/Risk Assessment
4.5. Instrumental Analysis for Urinary Arsenic Speciation
4.6. Quality Assurance/Quality Control.
4.7. Genotyping Polymorphisms
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caceres, D.D.; Pino, P.; Montesinos, N.; Atalah, E.; Amigo, H.; Loomis, D. Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ. Res. 2005, 98, 151–159. [Google Scholar] [CrossRef]
- Caceres, D.D.; Werlinger, F.; Orellana, M.; Jara, M.; Rocha, R.; Alvarado, S.; Quiñones, L. Polymorphism of Glutathione S-Transferase (GST) variants and its effect on distribution of urinary arsenic species in people exposed to low inorganic arsenic in tap water: An exploratory study. Arch. Environ. Occup. Health 2010, 65, 140–147. [Google Scholar] [CrossRef]
- Sun, H.J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.P.; Ma, L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some drinking-water disinfectants and contaminants, including arsenic, IARC. Monogr. Eval. Carcinog. Risks Hum. 2004, 84, 1–477. [Google Scholar]
- WHO (World Health Organization). Arsenic in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality; WHO Press, World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Engström, K.S.; Broberg, K.; Concha, G.; Nermell, B.; Warholm, M.; Vahter, M. Genetic Polymorphisms Influencing Arsenic Metabolism: Evidence from Argentina. Environ. Health Perspect. 2007, 115, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Roman-Ross, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; Lopez, D.; Armienta, M.A.; Guilherme, L.R.; et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, F.; Sánchez-Rodas, D.; Cáceres, D.; Martínez, M.; Quiñones, L.; Johnson-Restrepo, B. Arsenic exposure, profiles of urinary arsenic species, and polymorphism effects of glutathione-s-transferase and metallothioneins. Chemosphere 2018, 212, 927–936. [Google Scholar] [CrossRef]
- Alonso, D.L.; Latorre, S.; Castillo, E.; Brandao, P.F. Environmental occurrence of arsenic in Colombia: A review. Environ. Pollut. 2014, 186, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.C.; Caldeira, A.; Silva, C.; Chakmeng, J. Arsenic contamination assessment in Brazil—Past, present and future concerns: A historical and critical review. Sci. Total Environ. 2020, 730, 138217. [Google Scholar] [CrossRef] [PubMed]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181, 211–217. [Google Scholar] [CrossRef]
- Tseng, C.H. Arsenic methylation, urinary arsenic metabolites and human diseases: Current perspective. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 2007, 25, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Naranmandura, H.; Suzuki, N.; Suzuki, K.T. Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 2006, 19, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Kobayashi, Y.; Cui, X.; Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Agusa, T.; Fujihara, J.; Takeshita, H.; Iwata, H. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int. J. Mol. Sci. 2011, 12, 2351–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovreglio, P.; D’Errico, M.N.; Gilberti, M.E.; Drago, I.; Basso, A.; Apostoli, P.; Soleo, L. The influence of diet on intra and inter-individual variability of urinary excretion of arsenic species in Italian healthy individuals. Chemosphere 2012, 86, 898–905. [Google Scholar] [CrossRef] [PubMed]
- De Chaudhuri, S.; Ghosh, P.; Sarma, N.; Majumdar, P.; Sau, T.J.; Basu, S.; Roychoudhury, S.; Ray, K.; Giri, A.K. Genetic variants associated with arsenic susceptibility: Study of purine nucleoside phosphorylase, arsenic (+ 3) methyltransferase, and glutathione S-transferase omega genes. Environ. Health Perspect. 2008. [Google Scholar] [CrossRef] [Green Version]
- Janasik, B.; Reszka, E.; Stanislawska, M.; Wieczorek, E.; Fendler, W.; Wasowicz, W. Biological monitoring and the influence of genetic polymorphism of As3MT and GSTs on distribution of urinary arsenic species in occupational exposure workers. Int. Arch. Occup. Environ. Health 2015, 88, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, R.; Shao, K.; Thomas, D.; Sams, R.; Cowden, J. AS3MT, GSTO, and PNP polymorphisms: Impact on arsenic methylation and implications for disease susceptibility. Environ. Res. 2014, 132, 156–167. [Google Scholar] [CrossRef]
- Yu, L.; Kalla, K.; Guthrie, E.; Vidrine, A.; Klimecki, W.T. Genetic variation in genes associated with arsenic metabolism: Glutathione S-transferase omega 1–1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans. Environ. Health Perspect. 2003, 111, 1421–1427. [Google Scholar] [CrossRef]
- Shockley, K.R.; Witmer, D.; Burgess-Herbert, S.L.; Paigen, B.; Churchill, G.A. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol. Genom. 2009, 39, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Engström, K.; Vahter, M.; Mlakar, S.J.; Concha, G.; Nermell, B.; Ragib, R.; Cardozo, A.; Broberg, K. Polymorphisms in arsenic (+ III oxidation state) methyltransferaze (As3MT) predict gene expression of As3MT as well as arsenic metabolism. Environ. Health Perspect. 2011, 119, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuliga, M.; Chouchane, S.; Snow, E. Upregulation of Glutathione-Related Genes and Enzyme Activities in Cultured Human Cells by Sublethal Concentrations of Inorganic Arsenic. Toxicol. Sci. 2002, 70, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiñones, L.; Lee, K.; Varela, F.N.; Escala, M.; García, K.; Godoy, L.; Castro, A.; Soto, J.; Saavedra, I.; Caceres, D. Cancer pharmacogenetics: Study of genetically determined variations on cancer susceptibility due to xenobiotic exposure. Rev. Med. Chil. 2006, 134, 499–515. [Google Scholar] [CrossRef] [Green Version]
- McClintock, T.R.; Chen, Y.; Bundschuh, J.; Oliver, J.T.; Navoni, J.; Olmos, V.; Lepori, E.V.; Ahsan, H.; Parvez, F. Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Sci. Total Environ. 2012, 1, 76–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmuck, E.M.; Board, P.G.; Whitbread, A.K.; Tetlow, N.; Cavanaugh, J.A.; Blackburn, A.C.; Masoumi, A. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: Implications for arsenic metabolism and the age-at-onset of Alzheimer’s and Parkinson’s diseases. Pharm. Genom. 2005, 15, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.M.; Haimeur, A.; Waalkes, M.P. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). J. Biol. Chem. 2004, 279, 32700–32708. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Zhou, S.; Chen, X.; Chan, S.Y.; Chan, E.; Ng, K.; Duan, W.; Huang, M. Relationship between genotype and enzyme activity of S-transferases M1 and P1 in Chinese. Eur. J. Pharm. Sci. 2006, 28, 77–85. [Google Scholar] [CrossRef]
- Agusa, T.; Iwata, H.; Fujihara, J.; Kunito, T.; Takeshita, H.; Trang, P.T.; Viet, P.H.; Tanabe, S.; Minh, T.B. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol. Appl. Pharmacol. 2010, 242, 352–362. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Tue, N.M.; Lan, V.T.; Fujihara, J.; Takeshita, H.; Minh, T.B.; Trang, P.T.; Takahashi, S.; Hung, V.P.; et al. Individual variations in arsenic metabolism in Vietnamese: The association with arsenic exposure and GSTP1 genetic polymorphism. Metallomics 2012, 4, 9–100. [Google Scholar] [CrossRef]
- Marcos, R.; Martinez, V.; Hernández, A.; Creus, A.; Sekaran, C.; Tokunaga, H.; Quinteros, D. Metabolic profile in workers occupationally exposed to arsenic: Role of GST polymorphisms. J. Occup. Environ. Med. 2006, 48, 334–341. [Google Scholar] [CrossRef]
- Wood, T.; Salavagionne, O.; Mukherjee, B.; Wang, L.; Klumpp, A.; Thomae, B.; Eckloff, B.; Schaid, D.; Wieben, E.; Weinshilboum, R. Human arsenic methyltransferase (As3MT) Pharmacogenetics. Gene resequencing and functional genomics studies. J. Biol. Chem. 2006, 281, 7364–7373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, R.L.; Su, C.T.; Shiue, H.S.; Chen, W.J.; Huang, S.R.; Lin, Y.C.; Lin, M.I.; Mu, S.C.; Chen, R.J.; Hsueh, Y.M. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan. Toxicol. Appl. Pharmacol. 2017, 15, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chen, W.J.; Huang, C.Y.; Shiue, H.S.; Su, C.T.; Ao, P.L.; Pu, Y.S.; Hsueh, Y.M. Polymorphisms of Arsenic (+3 Oxidation State) Methyltransferase and Arsenic Methylation Capacity Affect the Risk of Bladder Cancer. Toxicol. Sci. 2018, 164, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Y.; Lin, Y.C.; Shiue, H.S.; Chen, W.J.; Su, C.T.; Pu, Y.S.; Ao, P.L.; Hsueh, Y.M. Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma. Toxicol. Lett. 2018, 295, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rubio, P.; Klimentidis, Y.C.; Cantu-Soto, E.; Meza-Montenegro, M.; Billheimer, D.; Lu, Z.; Chen, Z.; Klimecki, W.T. Indigenous American ancestry is associated with arsenic methylation efficiency in an admixed population of northwest Mexico. J. Toxicol. Environ. Health A 2012, 75, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Wu, J.; Li, Y.; Liu, Y.; Gao, Y.; Yao, F.; Qiu, C.; Song, L.; Wu, Y.; Liao, Y.; et al. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms. Toxicol. Appl. Pharm. 2014, 274, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lin, P.I.; Mostofa, G.; Quamruzzaman, Q.; Rahman, M.; Rahman, M.L.; Su, L.; Hsueh, Y.-M.; Weisskopf, M.; Coull, B.; et al. Determinants of arsenic methylation efficiency and urinary arsenic level in pregnant women in Bangladesh. Environ. Health 2019, 18, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.S.; Kalman, D.A.; Moore, L.E.; Kosnett, M.J.; Arroyo, A.P.; Beeris, M.; Mazumder, D.N.; Hernandez, A.L.; Smith, A.H. Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ. Health Perspect. 2002, 110, 729–733. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guo, X.; He, P.; Nie, J.; Yan, X.; Zhu, J.; Zhang, L.; Mao, G.; Wu, H.; Liu, Z.; et al. Interactive influence of N6AMT1 and As3MT genetic variations on arsenic metabolism in the population of inner Mongolia, China. Toxicol. Sci. 2017, 155, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Vahter, M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol. Lett. 2000, 112, 209–217. [Google Scholar] [CrossRef]
- Loffredo, C.A.; Aposhian, H.V.; Cebrian, M.E.; Yamauchi, H.; Silbergeld, E.K. Variability in human metabolism of arsenic. Environ. Res. 2003, 92, 85–91. [Google Scholar] [CrossRef]
- Mandal, B.K.; Ogra, Y.; Susuki, K.T. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic affected areas in West Bengal India. Chem. Res. Toxicol. 2001, 14, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.M.; Hsu, M.K.; Chiou, H.Y.; Yang, M.H.; Huang, C.C.; Chen, C.J. Urinary arsenic speciation in subjects with or without restriction from seafood dietary intake. Toxicol. Lett. 2002, 133, 83–91. [Google Scholar] [CrossRef]
- Middleton, D.R.; Watts, M.J.; Hamilton, E.M.; Ander, E.L.; Close, R.M.; Exley, K.S.; Crabbe, H.; Leonardi, G.S.; Fletcher, T.; Polya, D.A. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Sci. Rep. 2016, 6, 25656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahter, M.; Concha, G.; Nermell, B.; Nilsson, R.; Dulout, F.; Natarajan, A.T. A unique metabolism of inorganic arsenic in native Andean women. Eur. J. Pharm. 1995, 293, 455–462. [Google Scholar] [CrossRef]
- Concha, G.; Nermell, B.; Vahter, M. Spatial and temporal variations in arsenic exposure via drinking-water in northern Argentina. J. Health Popul. Nutr. 2006, 24, 317–326. [Google Scholar] [PubMed]
- Ramprasath, T.; Murugan, P.S.; Prabakaran, A.D.; Gomathi, P.; Rathinavel, A.; Selvam, G.S. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem. Biophys. Res. Commun. 2011, 407, 49–53. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Ekström, E.C.; Nermell, B.; Rahman, M.; Lonnerdal, B.; Persson, L.A.; Vahter, M. Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ. Res. 2008, 106, 110–120. [Google Scholar] [CrossRef]
- Li, L.; Ekström, E.C.; Goessler, W.; Lönnerdal, B.; Nermell, B.; Yunus, M.; Rahman, A.; El Arifeen, S.; Persson, L.A.; Vahter, M. Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environ. Health Perspect. 2008, 116, 315–321. [Google Scholar] [CrossRef]
- George, C.M.; Sima, L.; Arias, M.H.; Mihalic, J.; Cabrera, L.Z.; Danz, D.; Checkley, W.; Gilman, R.H. Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bull. World Health Organ. 2014, 92, 565–572. [Google Scholar] [CrossRef]
- Rasool, A.; Farooqi, A.; Masood, S.; Hussain, K. Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Hum. Ecol. Risk Assess 2016, 22, 187–202. [Google Scholar] [CrossRef]
- Tseng, C.H. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharm. 2009, 235, 338–350. [Google Scholar] [CrossRef]
- Yoshida, T.; Yamauchi, H.; Sun, G.F. Chronic health effects in people exposed to arsenic via the drinking water: Dose–response relationships in review. Toxicol. Appl. Pharm. 2004, 198, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Akhtar, E.; Roy, A.; von Ehrenstein, O.S.; Vahter, M.; Wagatsuma, Y.; Raqib, R. Arsenic exposure alters lunch function and airway inflammation in children: A cohort study in rural Bangladesh. Environ. Int. 2017, 101, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Chakraborty, R.; Bundschuh, J.; Bhattacharya, P.; Parvez, F. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Sci. Total Environ. 2020, 25, 136071. [Google Scholar] [CrossRef]
- Navas, A.A.; Sharrett, A.R.; Silbergeld, E.K.; Schwartz, B.S.; Nachman, K.E.; Burke, T.A.; Guallar, E. Arsenic exposure and cardiovascular disease: A systematic review of the epidemiologic evidence. Am. J. Epidemiol. 2005, 162, 1037–1049. [Google Scholar] [CrossRef]
- Abhyankar, L.N.; Jones, M.R.; Guallar, E.; Navas, A.A. Arsenic Exposure and Hypertension: A Systematic Review. Environ. Health Perspect. 2001, 120, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, P.; Banerjee, M.; Giri, K. Role of genomic instability in arsenic-induced carcinogenicity: A review. Environ. Int. 2013, 53, 29–40. [Google Scholar] [CrossRef]
- Chung, C.J.; Huang, C.J.; Pu, Y.S.; Su, C.T.; Huang, Y.K.; Chen, Y.T.; Hsueh, Y.M. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol. Appl. Pharm. 2008, 226, 14–21. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Zheng, Q.; Zheng, Y.; Wang, H.; Xu, Y.; Li, X.; Sun, G. Joint effects of urinary arsenic methylation capacity with potential modifiers on arsenicosis: A cross-sectional study from an endemic arsenism area in Huhhot Basin, northern China. Environ. Res. 2014, 132, 281–289. [Google Scholar] [CrossRef]
- Grashow, R.; Zhang, J.; Fangm, S.C.; Weisskopf, M.G.; Christiani, D.C.; Kile, M.L.; Cavallari, J.M. Inverse association between toenail arsenic and body mass index in a population of welders. Environ. Res. 2014, 131, 131–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Saunders, R.J.; Drobná, Z.; Walton, F.S.; Xun, P.; Thomas, D.J.; Stýblo, M. Methylation of arsenic by recombinant human wild-type arsenic (+3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione. Toxicol. Appl. Pharm. 2012, 264, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormachea, M.; Wern, H.; Johnsson, F.; Bhattacharya, P.; Sracek, O.; Thunvik, R.; Quintanilla, J.; Bundschuh, J. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. J. Hazard Mater. 2013, 262, 924–940. [Google Scholar] [CrossRef]
- Brinkman, G.L.; Coates, O. The effect of bronchitis, smoking and occupation in ventilation. Am. Rev. Respir. Dis. 1963, 87, 684–693. [Google Scholar] [CrossRef] [PubMed]
- NCCMH (National Collaborating Centre for Mental Health) UK. Alcohol-Use Disorders: Diagnosis, Assessment and Management of Harmful Drinking and Alcohol Dependence. Leicester (UK): British Psychological Society 2011; (NICE Clinical Guidelines, No. 115.) 2, Alcohol Dependence and Harmful Alcohol Use. Available online: https://www.ncbi.nlm.nih.gov/books/NBK65500/ (accessed on 27 May 2020).
- US-EPA (U. S. Environmental Protection Agency). Integrated Risk Information System. Arsenic, Inorganic. 2011, CASRN 7440–38-2. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=278 (accessed on 23 June 2020).
- Sánchez-Rodas, D.; Oliveira, V.; Gómez, J.L. Development of a rapid method for arsenic speciation in chicken meat. Anal. Bioanal. Chem. 2006, 385, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.L.; Goessler, W.; Grander, M.; Nermell, B.; Vahter, M. Evaluation of the three most commonly used analytical methods for determination of inorganic arsenic and its metabolites in urine. Toxicol. Lett. 2007, 168, 310–318. [Google Scholar] [CrossRef]
- Roco, A.; Quiñones, L.; Agúndez, J.; García-Martín, E.; Squicciarini, V.; Miranda, C.; Garay, J.; Farfán, N.; Caceres, D.D.; Varela, N.; et al. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: Comparison with Caucasian and Asian populations. Front. Genet. 2012, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Glickman, M.; Rao, S.; Schultz, M. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 2 May 2020).
- Engström, K.; Nermell, B.; Concha, G.; Strömberg, U.; Vahter, M.; Broberg, K. Arsenic metabolism is influenced by polymorphism in genes involved in one-carbon metabolism and reduction reactions. Mutat. Res. 2009, 667, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Recio, R.; González, T.; Olivas, E.; Clark, R.; Gandolfi, J.; Ramirez, M. Association between polymorphisms in arsenic metabolism genes and urinary arsenic methylation profiles in girls and boys chronically exposed to arsenic. Environ. Mol. Mutagen. 2016, 57, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Meza, M.M.; Kopplin, M.J.; Burgess, J.L.; Gandolfi, A.J. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico. Environ. Res. 2004, 96, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Marchiset, N.; Savanovitch, C.; Sauvant, P. What is the best biomarker to assess arsenic exposure via drinking water? Environ. Int. 2012, 39. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.L.; Kumar, R.; Goessler, W.; Thirumaran, R.; Gurzau, E.; Koppova, K.; Rudnai, P.; Leonardi, G.; Fletcher, T.; Vahter, M. Metabolism of low-dose inorganic arsenic in a central European population: Influence of sex and genetic polymorphisms. Environ. Health Perspect. 2007, 115, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, E.G.; Kile, M.; Hoffman, E.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Hsueh, Y.; Christiani, D.C. GSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh. Biomarkers 2012, 17, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.; Xamena, N.; Sekaran, C.; Tokunaga, H.; Sampayo-Reyes, A.; Quinteros, D.; Creus, A.; Marcos, R. High arsenic metabolic efficiency in AS3MT287Thr allele carriers. Pharm. Genom. 2008, 18, 349–355. [Google Scholar] [CrossRef]
- Lesseur, C.; Diamond, D.G.; Andrew, A.S.; Ekstrom, R.M.; Li, Z.; Kelsey, K.T.; Marsit, C.J.; Karagas, M.R. A case-control study of polymorphisms in xenobiotic and arsenic metabolism Genes and arsenic-related bladder cancer in New Hampshire. Toxicol. Lett. 2012, 210, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | High Exposure | Low Exposure | Total | p-Value |
---|---|---|---|---|
No. Subjects, n (%) | 50 (33.1) | 101 (66.9) | 151 (100) | |
Male, n (% Col.) a | 15 (30) | 28 (27.7) | 43 (28.5) | 0.77 * |
Female, n (% Col.) | 35 (70) | 73 (72.3) | 108 (71.5) | |
Age years, mean ± SD b | 44.8 ± 14.1 | 40.3 ± 13.3 | 41.8 ± 13.6 | 0.02¤ |
BMI c, kg/m2, mean ± SD | 22.1 ± 3.5 | 26 ± 4.1 | 24.7 ± 4.3 | <0.001¤ |
Water total arsenic, µg/L, median (IQR) d | 35.5 (31.7, 37.3) | 10 (10,10) | 33.3 (30.9,36.7) | <0.001 † |
No. of wells in each place, mean | 22 | 1 | 23 | |
Residence years, median (IQR) | 17.9 (14.2,20.6) | 15.9 (14.2,20.6) | 16.9 | 0.32 † |
Urinary TuAs e, µg/g creatinine, median (IQR) | 4.2 (3.1,7.8) | 3.6 (2.7,7.0) | 4.0 (2.7,7.0) | 0.07 † |
Urinary InAs f, µg/L, median (IQR) | 0.80 (0.25,1.33) | 0.80 (0.50,1.25) | 0.80 (0.5,1.3) | 0.97 † |
Urinary MMA g, µg/L, median (IQR) | 0.80 (0.40,1.5) | 0.60 (0.30,1.0) | 0.60 (0.30,1.3) | 0.08 † |
Urinary DMA h, µg/L, median (IQR) | 2.1 (1.4,3.1) | 1.5 (1.1,2.7) | 1.7 (1.1,2.8) | 0.03 † |
Cigarette smoking, n (% Col.) | ||||
Smoker | 3 (6.0) | 12 (11.9) | 15 (9.9) | 0.25 * |
Non-smoker | 47 (94) | 89 (88.1) | 136 (90.1) | |
Shellfish consumption, n (% Col.) | ||||
≥2 per week | 4 (8.0) | 12 (11.9) | 16 (10.6) | 0.46 * |
<2 per week | 46 (92) | 89 (88.1) | 135 (89.4) | |
Water consumption, n (% Col.) | ||||
≥2 L per day | 46 (92) | 94 (93) | 140 (92.7) | 0.70 * |
<2 L per day | 4 (8.0) | 7 (6.9) | 11 (7.3) | |
Alcohol consumption, n (% Col.) | ||||
≥5 glass weekend | 8 (16.0) | 29 (28.7) | 114 (75.5) | 0.08 * |
None | 42 (84) | 72 (71.3) | 37 (24.5) | |
Genotypes | ||||
GSTT1, n (% Col.) | ||||
Null | 11 (22) | 22 (21.8) | 33 (21.9) | 0.97 * |
Active | 39 (78) | 79 (78.2) | 118 (78.2) | |
GSTM1, n (% Col.) | ||||
Null | 18 (36) | 29 (28.7) | 47 (31.1) | 0.36 * |
Active | 32 (64) | 72 (71.3) | 104 (68.9) | |
GSTP1-rs1695, n (% Col.) | ||||
AG + GG | 26 (52) | 62 (61.4) | 88 (58.3) | 0.27 * |
AA (wild-type) | 24 (48) | 39 (38.6) | 63 (41.7) | |
GSTO2-rs156697, n (% Col.) | ||||
TC + CC | 18 (36) | 31 (30.7) | 49 (32.5) | 0.51 * |
TT (wild-type) | 32 (64) | 70 (69.3) | 102 (67.5) | |
AS3MT-rs3740400, n (% Col.) | ||||
TG + GG | 29 (58) | 60 (59.4) | 89 (58.9) | 0.86 * |
TT (wild-type) | 21 (42) | 41 (40.6) | 62 (41.1) |
Urinary Arsenic Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotypes | InAs b | MMA c | DMA d | |||||||
n | β | SE a | p-Value | β | SE | p-Value | β | SE | p-Value | |
GSTT1 | ||||||||||
Null | 33 | 0.34 | 0.29 | 0.04 * | 0.45 | 0.17 | 0.01 * | 0.47 | 0.16 | 0.004 * |
Active | 118 | ref. | ref. | ref. | ||||||
GSTM1 | ||||||||||
Null | 47 | 0.24 | 0.16 | 0.13 | 0.17 | 0.16 | 0.27 | 0.39 | 0.15 | 0.009 * |
Active | 104 | ref. | ref. | ref. | ||||||
GSTP1 (rs1695) | ||||||||||
AG + GG | 83 | 0.46 | 0.15 | 0.002 * | 0.08 | 0.15 | 0.58 | 0.02 | 0.14 | 0.86 |
AA (wild-type) | 68 | ref. | ref. | ref. | ||||||
GSTO2 (rs156697) | ||||||||||
TC + CC | 49 | 0.03 | 0.15 | 0.84 | −0.07 | 0.16 | 0.61 | −0.47 | 0.15 | 0.001 * |
TT (wild-type) | 102 | ref. | ref. | ref. | ||||||
As3MT(rs374040) | ||||||||||
TG + GG | 89 | −0.58 | 0.15 | <0.001 * | −0.24 | 0.15 | 0.11 | −0.63 | 0.14 | <0.001 * |
TT (wild-type) | 62 | ref. | ref. | ref. |
Urinary Arsenic Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Covariates | InAs b | MMA c | DMA d | |||||||
n | β | SE a | p-Value | ß | SE | p-Value | β | SE | p-Value | |
TAs in water (µg/L), median (range) | 26.1 (10,39.4) | −0.09 | 0.77 | 0.24 | −0.03 | 0.52 | 0.55 | 0.12 | 0.09 | 0.18 |
LADD (µg/kg-bw/d), median (range) | 0.23 (0.09,0.34) | −10.3 | 7.9 | 0.19 | 0.64 | 7.5 | 0.93 | 9.6 | 9.5 | 0.31 |
Urinary TuAs e (µg/g creat.), median (range) | 4.0 (2.7,7.0) | −0.03 | 12.5 | 0.84 | 0.18 | 0.08 | 0.03* | −0.15 | 0.15 | 0.29 |
Age (years), mean ± SD f | 41.8 ± 13.6 | −0.12 | 0.08 | 0.10 | −0.05 | 0.05 | 0.32 | 0.18 | 0.09 | 0.04* |
BMI g, kg/m2, mean ± SD | 24.7 ± 4.3 | −11 | 0.24 | 0.64 | −0.14 | 16.4 | 0.39 | 0.25 | 0.28 | 0.37 |
Sex | ||||||||||
Female | 43 | −1.44 | 2.3 | 0.53 | −0.98 | 1.6 | 0.53 | 2.41 | 2.7 | 0.37 |
Male | 108 | ref. | ref. | ref. | ||||||
Smoking Habit | ||||||||||
Yes | 15 | −1.56 | 3.5 | 0.65 | −2.92 | 2.4 | 0.22 | 4.5 | 4.1 | 0.27 |
No | 136 | ref. | ref. | ref. | ||||||
Alcohol consumption | ||||||||||
≥5 glass per week | 37 | −0.23 | 2.4 | 0.92 | −1.73 | 1.6 | 0.29 | 1.95 | 2.8 | 0.49 |
No consumption | 114 | ref. | ref. | ref. | ||||||
Water consumption | ||||||||||
≥2 L per day | 140 | 1.06 | 3.9 | 0.79 | 0.64 | 2.7 | 0.81 | −1.72 | 4.7 | 0.72 |
<2 L per day | 11 | ref. | ref. | ref. | ||||||
Shellfish and/or fish | ||||||||||
≥2x per week | 16 | −4.2 | 3.6 | 0.24 | 1.19 | 2.4 | 0.63 | 3.03 | 4.2 | 0.47 |
<2x per week | 135 | ref. | ref. | ref. |
Urinary Arsenic Species | β | SE a | p Value | R2 | p > chi 2 |
---|---|---|---|---|---|
MMA b (cat. 0 = normal, 1 = high) | 0.40 | <0.001 * | |||
As3MT c (TG + GG vs. TT) | 15.8 | 5.9 | 0.007 * | ||
GSTM1 d (Active vs. null) | 3.4 | 0.90 | 0.01 * | ||
Age e (cat. 0 = 18–59, 1 = >60) | 0.86 | 0.69 | 0.21 | ||
BMI f (cat. 0 = low, 1 = high) | −1.2 | 0.39 | 0.04 * | ||
Alcohol consumption (0 = no, 1 = yes) | 1.6 | 1.3 | 0.22 | ||
LADD g (cat. 0 = low, 1 = high) | 2.9 | 0.9 | 0.001 * | ||
As3MT-GSTM1 (interaction 1) | 2.3 | 0.95 | 0.01 * | ||
As3MT-Age (interaction 2) | −3.9 | 1.4 | 0.006 * | ||
As3MT-BMI (interaction 3) | −1.9 | 1.6 | 0.23 | ||
As3MT-Alcohol (interaction 4) | 4.7 | 2.0 | 0.01 * | ||
DMA h (cat. 0 = normal, 1 = low) | 0.20 | <0.001 * | |||
GSTO2 i (TC + CC vs TT) | 2.7 | 1.03 | 0.009 * | ||
GSTP1 j (AG + GG vs. AA) | 1.1 | 0.53 | 0.05 | ||
GSTM1 d (Active vs. null) | −1.07 | 0.49 | 0.03 * | ||
Age e (cat. 0 = 18–59, 1 = >60) | −1.39 | 0.73 | 0.05 | ||
LADD g (cat. 0 = low, 1 = high) | −0.56 | 0.62 | 0.36 | ||
GSTO2-GSTP1 (interaction 1) | −2.3 | 1.06 | 0.03 * | ||
GSTO2-GSTM1 (interaction 2) | 1.92 | 1.08 | 0.07 | ||
GSTO2-LADD (interaction 3) | −2.1 | 1.02 | 0.04 * | ||
GSTP1-LADD (interaction 4) | 2.1 | 0.99 | 0.03 * | ||
InAs k (cat. 0 = normal, 1 = high) | 0.09 | 0.04 * | |||
GSTP1 j (AG + GG vs. AA) | 0.74 | 0.38 | 0.05 | ||
GSTT1 l (Active vs. null) | 0.54 | 0.40 | 0.17 | ||
As3MT c (TG + GG vs. TT) | −1.6 | 1.1 | 0.14 | ||
LADD g (cat. 0 = low, 1 = high) | −0.54 | 0.41 | 0.19 | ||
GSTP1-GSTT1 (interaction 1) | 1.5 | 1.2 | 0.21 | ||
As3MT-LADD (interaction 2) | −0.93 | 0.54 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martínez, F.; Sánchez-Rodas, D.; Varela, N.M.; Sandoval, C.A.; Quiñones, L.A.; Johnson-Restrepo, B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. Int. J. Mol. Sci. 2020, 21, 4832. https://doi.org/10.3390/ijms21144832
González-Martínez F, Sánchez-Rodas D, Varela NM, Sandoval CA, Quiñones LA, Johnson-Restrepo B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. International Journal of Molecular Sciences. 2020; 21(14):4832. https://doi.org/10.3390/ijms21144832
Chicago/Turabian StyleGonzález-Martínez, Farith, Daniel Sánchez-Rodas, Nelson M. Varela, Christopher A. Sandoval, Luis A. Quiñones, and Boris Johnson-Restrepo. 2020. "As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater" International Journal of Molecular Sciences 21, no. 14: 4832. https://doi.org/10.3390/ijms21144832
APA StyleGonzález-Martínez, F., Sánchez-Rodas, D., Varela, N. M., Sandoval, C. A., Quiñones, L. A., & Johnson-Restrepo, B. (2020). As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. International Journal of Molecular Sciences, 21(14), 4832. https://doi.org/10.3390/ijms21144832