Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers
Abstract
:1. Introduction
2. Results
2.1. Morbidity of FHN and Feed Conversion
2.2. Changes in ECM Homeostasis Factors
2.3. Bone Biochemistry and Bone Metabolism Indicants
2.4. Pathological Section and Bone Parameters
2.5. Expression of Homeostasis Relative Genes
3. Discussion
4. Materials and Methods
4.1. Animal Treatment and Sample Collection
4.2. ELISA and Biochemical Analysis
4.3. Histopathological Analysis
4.4. Bone Parameters Detection
4.5. RNA Extraction and Real-Time Quantitative PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FHN | femoral head necrosis |
BW | body weight |
MP | methylprednisolone |
ECM | extracellular matrix |
HIFs | hypoxia-inducible factors |
IL-1β | interleukin-1β |
TNF-α | tumor necrosis factor α |
CDMP | cartilage morphogenetic protein |
BMP | bone morphogenetic protein |
IGF-1 | insulin-like growth factor 1 |
OA | osteoarthritis |
pVHL | von Hippel–Lindau tumor suppressor protein |
VEGF | vascular endothelial growth factor |
CTX-I | cross-linked carboxy-terminal telopeptide of type I collagen |
HE | hematoxylin and eosin |
BMD | bone mineral density |
MMP | matrix proteinase |
ALP | alkaline phosphatase |
References
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Dinev, I.; Kanakov, D.; Kalkanov, I.; Nikolov, S.; Denev, S. Comparative pathomorphologic studies on the incidence of fractures associated with leg skeletal pathology in commercial broiler chickens. Avian Dis. 2019, 63, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.E. Skeletal deformities and their causes: Introduction. Poult. Sci. 2000, 79, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.J. Production and growth-related disorders and other metabolic diseases of poultry—A review. Vet. J. 2005, 169, 350–369. [Google Scholar] [CrossRef]
- Li, P.F.; Zhou, Z.L.; Shi, C.Y.; Hou, J.F. Downregulation of basic fibroblast growth factor is associated with femoral head necrosis in broilers. Poult. Sci. 2015, 94, 1052–1059. [Google Scholar] [CrossRef]
- Raehtz, S.; Hargis, B.M.; Kuttappan, V.A.; Pamukcu, R.; Bielke, L.R.; McCabe, L.R. high molecular weight polymer promotes bone health and prevents bone loss under salmonella challenge in broiler chickens. Front. Physiol. 2018, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Packialakshmi, B.; Rath, N.C.; Huff, W.E.; Huff, G.R. Poultry femoral head separation and necrosis: A review. Avian Dis. 2015, 59, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Dinev, I. Clinical and morphological investigations on the prevalence of lameness associated with femoral head necrosis in broilers. Br. Poult. Sci. 2009, 50, 284–290. [Google Scholar] [CrossRef]
- McNamee, P.T.; McCullagh, J.J.; Thorp, B.H.; Ball, H.J.; Graham, D.; McCullough, S.J.; McConaghy, D.; Smyth, J.A. Study of leg weakness in two commercial broiler flocks. Vet. Rec. 1998, 143, 131–135. [Google Scholar] [CrossRef]
- McNamee, P.T.; McCullagh, J.J.; Rodgers, J.D.; Thorp, B.H.; Ball, H.J.; Connor, T.J.; McConaghy, D.; Smyth, J.A. Development of an experimental model of bacterial chondronecrosis with osteomyelitis in broilers following exposure to Staphylococcus aureus by aerosol, and inoculation with chicken anaemia and infectious bursal disease viruses. Avian Pathol. 1999, 28, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Mont, M.A.; Hungerford, D.S. Non-traumatic avascular necrosis of the femoral head. Bone Jt. Surg. Am. 1995, 77, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Drescher, W.; Bunger, M.H.; Weigert, K.; Bunger, C.; Hansen, E.S. Methylprednisolone enhances contraction of porcine femoral head epiphyseal arteries. Clin. Orthop. Relat. Res. 2004, 423, 112–117. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Toney, C.B.; Seamon, J.; Cui, Q. Blood supply to the chicken femoral head. Comp. Med. 2010, 60, 295–299. [Google Scholar] [PubMed]
- Brewer, H.J.; Fairwell, T.; LaRue, A.; Ronan, R.; Houser, A.; Bronzert, T.J. The amino acid sequence of human APOA-I.; an apolipoprotein isolated from high density lipoproteins. Biochem. Biophys. Res. Commun. 1978, 80, 623–630. [Google Scholar] [CrossRef]
- Yamamoto, T.; Irisa, T.; Sugioka, Y.; Sueishi, K. Effects of pulse methylprednisolone on bone and marrow tissues. Corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheumatol. 1997, 11, 2055–2064. [Google Scholar] [CrossRef]
- Kang, P.; Gao, H.; Pei, F.; Shen, B.; Yang, J.; Zhou, Z. Effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Int. J. Exp. Pathol. 2010, 3, 235–243. [Google Scholar] [CrossRef]
- Pengde, K.; Fuxing, P.; Bin, S.; Jing, Y.; Jingqiu, C. Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Jt. Bone Spine 2008, 75, 696–701. [Google Scholar] [CrossRef]
- Boss, J.H.; Misselevich, I. Osteonecrosis of the femoral head of laboratory animals: The lessons learned from a comparative study of osteonecrosis in man and experimental animals. Vet. Pathol. 2003, 40, 345–354. [Google Scholar] [CrossRef]
- Kerachian, M.A.; Seguin, C.; Harvey, E.J. Glucocorticoids in osteonecrosis of the femoral head: A new understanding of the mechanisms of action. J. Steroid Biochem. Mol. Biol. 2009, 114, 121–128. [Google Scholar] [CrossRef]
- Packialakshmi, B.; Liyanage, R.; Lay, J.J.; Okimoto, R.; Rath, N. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens. Biomark. Insights 2015, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, S.; Pang, K.; Zhou, Z. Endoplasmic reticulum stress affected chondrocyte apoptosis in femoral head necrosis induced by glucocorticoid in broilers. Poult. Sci. 2019, 98, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Demoor, M.; Ollitrault, D.; Gomez-Leduc, T.; Bouyoucef, M.; Hervieu, M.; Fabre, H.; Lafont, J.; Denoix, J.M.; Audigié, F.; Mallein-Gerin, F.; et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim. Biophys. Acta 2014, 1840, 2414–2440. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Huang, J.; Guo, W.; Chen, J.; Zhang, L.; Zhao, B.; Peng, J.; Wang, A.; Wang, Y.; et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed. Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velusami, C.C.; Richard, E.J.; Bethapudi, B. Polar extract of Curcuma longa protects cartilage homeostasis: Possible mechanism of action. Inflammopharmacology 2018, 26, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Tanaka, T. Aging and homeostasis. Aging of articular cartilage and chondrocytes. Clin. Calcium 2017, 27, 933–939. [Google Scholar]
- Miyaki, S.; Lotz, M.K. Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr. Opin. Rheumatol. 2018, 30, 129–135. [Google Scholar] [CrossRef]
- Sandell, L.J.; Aigner, T. Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 2001, 3, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Sophia, F.A.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Reddi, A.H. Cartilage morphogenetic proteins: Role in joint development, homoeostasis, and regeneration. Ann. Rheum. Dis. 2003, 62, i73–i78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuki, S.; Hanson, S.R.; Miyaki, S.; Grogan, S.P.; Kinoshita, M.; Asahara, H.; Wong, A.H.; Lotz, M.K. Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 10202–10207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.; Paschos, N.K.; Hu, J.C.; Athanasiou, K. Articular cartilage tissue engineering: The role of signaling molecules. Cell. Mol. Life Sci. 2016, 73, 1173–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, G.; Castrogiovanni, P.; Trovato, F.M.; Weinberg, A.M.; Al-Wasiyah, M.K.; Alqahtani, M.H.; Mobasheri, A. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int. J. Mol. Sci. 2015, 16, 20560–20575. [Google Scholar] [CrossRef] [Green Version]
- Carames, B.; Taniguchi, N.; Otsuki, S.; Blanco, F.J.; Lotz, M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010, 62, 791–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfander, D.; Swoboda, B.; Cramer, T. The role of HIF-1alpha in maintaining cartilage homeostasis and during the pathogenesis of osteoarthritis. Arthritis Res. Ther. 2006, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Rehman, M.U.; Qiu, G.; Luo, H.; Iqbal, M.K.; Zhang, H.; Mehmood, K.; Li, J. Tibial dyschondroplasia is closely related to suppression of expression of hypoxia-inducible factors 1alpha, 2alpha, and 3alpha in chickens. Vet. Sci. 2018, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Yudoh, K.; Nakamura, H.; Masuko-Hongo, K.; Kato, T.; Nishioka, K. Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1 alpha in articular chondrocytes: Involvement of HIF-1 alpha in the pathogenesis of osteoarthritis. Arthritis Res. Ther. 2005, 7, R904–R914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, R.H.; Lolkema, M.P.; Snijckers, C.M.; Luo, H.; Iqbal, M.K.; Zhang, H.; Mehmood, K.; Li, J. Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene 2006, 25, 3065–3070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, H.; Yao, Y.; Learman, B.S.; Kurozumi, K.; Ishida, J.; Ramakrishnan, S.K.; Overmyer, K.A.; Xue, X.; Cawthorn, W.P.; Reid, M.A.; et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1alpha regulates cell proliferation, migration and invasion. Sci. Rep. 2016, 6, 21520. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, S.; Nishitani, Y.; Nagoya, S.; Kaya, M.; Yamashita, T.; Matsumoto, H. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology (Oxfd.) 2009, 48, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Q.; Wang, G.J.; Su, C.C.; Balian, G. The Otto Aufranc Award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis. Clin. Orthop. Relat. Res. 1997, 344, 8–19. [Google Scholar] [CrossRef]
- Wang, G.J.; Cui, Q.; Balian, G. The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis. Clin. Orthop. Relat. Res. 2000, 370, 295–310. [Google Scholar] [CrossRef]
- Erken, H.Y.; Ofluoglu, O.; Aktas, M.; Topal, C.; Yildiz, M. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: Experimental study in chicken. Int. Orthop. 2012, 36, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Ian, R. BSAVA Small Animal Formulary, 7th ed.; British Small Animal Veterinary Association: Gloucester, UK, 2011; pp. 225–226. [Google Scholar]
- Jim, E.; Mark, G. Veterinary Pharmacology and Therapeutics, 9th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 786–787. [Google Scholar]
- Zhu, Y.Q.; Wang, Z.Y.; Zhang, S.; Ning, D.H. Regulatory factors in the articular cartilage repair of knee osteoarthritis. Chin. J. Tissue Eng. Res. 2017, 21, 5873–5878. [Google Scholar]
- Pacifici, R.; Rifas, L.; Teitelbaum, S.; Slatopolsky, E.; McCracken, R.; Bergfeld, M.; Lee, W.; Avioli, L.V.; Peck, W.A. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc. Natl. Acad. Sci. USA 1987, 84, 4616–4620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, X.; Wang, S.; Zhao, J.; Xu, L.; Zhu, C.; Zeng, D.; Chen, J.; Zhang, Z.; Kaplan, D.L.; et al. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 2011, 32, 9415–9424. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, H.; Moreira-Gonçalves, D.; Coriolano, H.J.; Duarte, J.A. Bone quality: The determinants of bone strength and fragility. Sports Med. 2014, 44, 37–53. [Google Scholar] [CrossRef]
- Manolagas, S.C.; Weinstein, R.S. New developments in the pathogenesis and treatment of steroid-induced osteoporosis. Bone Miner. Res. 1999, 14, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.G.; Tong, H.J.; Liu, H.Q.; Zhang, X.L. Effects of IL-1β and TNF-α on degradation of extracellular matrix of articular chondrocytes and related mechanism. J. Shanghai Jiaotong Univ. 2010, 30, 1084–1089. [Google Scholar]
- Fang, B.; Wang, D.; Zheng, J.; Wei, Q.; Zhan, D.; Liu, Y.; Yang, X.; Wang, H.; Li, G.; He, W.; et al. Involvement of tumor necrosis factor alpha in steroid-associated osteonecrosis of the femoral head: Friend or foe? Stem Cell Res. Ther. 2019, 10, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfander, D.; Cramer, T.; Schipani, E.; Johnson, R.S. HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes. Cell Sci. 2003, 116, 1819–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derfoul, A.; Perkins, G.L.; Hall, D.J.; Tuan, R.S. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 2006, 24, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Kestin, S.C.; Knowles, T.G.; Tinch, A.E.; Gregory, N.G. Prevalence of leg weakness in broiler chickens and its relationship with genotype. Vet. Rec. 1992, 131, 190–194. [Google Scholar] [CrossRef]
- Sakthivelan, S.M.; Sudhakar, R.G. Effect of ochratoxin a on body weight, feed intake and feed conversion in broiler chicken. Vet. Med. Int. 2010, 2010, 590432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gait Scoring (0–5) | 42 Day | 56 Day | ||||
---|---|---|---|---|---|---|
Group C (n = 14) | Group L (n = 14) | Group H (n = 14) | Group C (n = 8) | Group L (n = 8) | Group H (n = 8) | |
0 | 2 | 1 | 0 | 1 | 0 | 0 |
1 | 5 | 3 | 2 | 2 | 1 | 0 |
2 | 6 | 6 | 5 | 4 | 3 | 2 |
3 | 1 | 4 | 5 | 1 | 3 | 4 |
4 | 0 | 0 | 2 | 0 | 1 | 1 |
5 | 0 | 0 | 0 | 0 | 0 | 1 |
Item | 42 Day | 56 Day | |||||
---|---|---|---|---|---|---|---|
Group C (n = 6) | Group L (n = 6) | Group H (n = 6) | Group C (n = 8) | Group L (n = 8) | Group H (n = 8) | ||
FHN evaluation score (0–2) | 0 | 8 | 9 | 7 | 12 | 9 | 11 |
1 | 3 | 3 | 2 | 4 | 7 | 2 | |
2 | 1 | 0 | 3 | 0 | 0 | 3 | |
Morbidity Score 1 to 2 (%) | 33.33 | 25.00 | 41.67 | 25.00 | 43.75 | 31.25 | |
Total disease score | 5 | 3 | 8 | 4 | 7 | 8 | |
Amount | 12 | 12 | 12 | 16 | 16 | 16 |
Item | Group C | Group L | Group H | |
---|---|---|---|---|
Body weight (kg) | 42 day | 2.13 ± 0.08 a | 1.81 ± 0.12 b | 1.63 ± 0.14 b |
56 day | 2.64 ± 0.12 a | 2.36 ± 0.09 b | 2.58 ± 0.10 a | |
Liver weight (g) | 42 day | 44.66 ± 2.04 a | 35.61 ± 3.15b | 35.53 ± 2.42 b |
56 day | 36.80 ± 1.51 | 36.02 ± 0.90 | 37.79 ± 2.74 | |
Liver index (%) | 42 day | 20.03 ± 0.51 | 19.59 ± 0.43 | 20.54 ± 1.07 |
56 day | 14.03 ± 0.47 b | 16.03 ± 0.78 a | 14.60 ± 0.65 ab |
Item | Group C | Group L | Group H | |
---|---|---|---|---|
Creatinine (umol/L) | 42 day | 22.83 ± 1.51 | 20.20 ± 0.80 | 23.83 ± 2.82 |
56 day | 21.75 ± 0.86 | 21.00 ± 0.80 | 21.56 ± 1.25 | |
ALP (U/L) | 42 day | 2733.00 ± 215.33 | 2987.60 ± 862.03 | 3867.00 ± 687.64 |
56 day | 3466.88 ± 668.62 | 3267.13 ± 322.33 | 5032.33 ± 813.02 | |
Ca (mmol/L) | 42 day | 2.68 ± 0.05 | 2.67 ± 0.08 | 2.68 ± 0.10 |
56 day | 2.58 ± 0.05 b | 2.98 ± 0.08 a | 2.58 ± 0.03 b | |
P (mg/dL) | 42 day | 2.14 ± 0.09 a | 1.82 ± 0.05 b | 1.99 ± 0.07 ab |
56 day | 2.13 ± 0.06 | 2.09 ± 0.09 | 2.17 ± 0.07 |
Item | Group C | Group L | Group H | |
---|---|---|---|---|
BALP (pg/mL) | 42 day | 304.89 ± 6.51 | 292.95 ± 16.23 | 304.64 ± 6.44 |
56 day | 462.17 ± 15.13 a | 230.87 ± 4.55 b | 254.99 ± 9.18 b | |
OT (ug/L) | 42 day | 18.75 ± 0.41 | 18.75 ± 0.56 | 19.55 ± 0.35 |
56 day | 24.17 ± 0.47 a | 18.50 ± 0.83 b | 19.79 ± 0.53 b | |
TRACP5b (ng/L) | 42 day | 1366.11 ± 6.24 b | 1439.23 ± 22.08 a | 1312.06 ± 21.70 c |
56 day | 916.57 ± 51.62 b | 1463.11 ± 52.03 a | 1329.64 ± 39.81 a | |
CTX-I (ng/mL) | 42 day | 207.16 ± 4.57 b | 252.91 ± 13.26 a | 212.78 ± 3.16 b |
56 day | 186.16 ± 3.50 b | 262.17 ± 3.81 a | 249.83 ± 13.84 a |
Group | Density (g/cm2) | Length (cm) | Index (g/kg) | Diameter (mm) | |
---|---|---|---|---|---|
Humerus | Group C | 0.26 ± 0.04 | 6.95 ± 0.09 a | 2.65 ± 0.05 | 0.85 ± 0.02 a |
Group L | 0.20 ± 0.01 | 6.19 ± 0.13 b | 2.37 ± 0.18 | 0.73 ± 0.01 b | |
Group H | 0.23±0.03 | 6.26 ± 0.14 b | 2.53 ± 0.05 | 0.75 ± 0.03 b | |
Femur | Group C | 0.20 ± 0.01 | 8.53 ± 0.11 a | 5.08 ± 0.14 a | 1.02 ± 0.02 a |
Group L | 0.20 ± 0.01 | 7.26 ± 0.16 b | 4.60 ±0.15 b | 0.89 ± 0.02 b | |
Group H | 0.19 ± 0.01 | 7.37 ± 0.19 b | 5.13 ± 0.16 a | 0.94 ± 0.02 b | |
Tibia | Group C | 0.23 ± 0.01a | 11.30 ± 0.12 a | 7.57 ± 0.16 a | 0.95 ± 0.01 a |
Group L | 0.22 ± 0.01 ab | 9.81 ± 0.11 b | 6.78 ± 0.24 b | 0.77 ± 0.02 b | |
Group H | 0.20 ± 0.01 b | 9.88 ± 0.29 b | 7.42 ± 0.31 ab | 0.82 ± 0.02 b |
Group | Density (g/cm2) | Length (cm) | Index (g/kg) | Diameter (mm) | |
---|---|---|---|---|---|
Humerus | Group C | 0.23 ± 0.00 | 7.87 ± 0.18 a | 2.70 ± 0.19 | 0.91 ± 0.02 a |
Group L | 0.22 ± 0.00 | 7.33 ± 0.09 b | 2.56 ± 0.11 | 0.82 ± 0.02 b | |
Group H | 0.22 ± 0.01 | 7.41 ± 0.11 b | 2.42 ± 0.10 | 0.84 ± 0.02 b | |
Femur | Group C | 0.20 ± 0.01 | 9.28 ± 0.20 a | 5.97 ± 0.24 a | 1.04 ± 0.04 b |
Group L | 0.19 ± 0.01 | 8.39 ± 0.09 b | 4.85 ± 0.09 b | 0.99 ± 0.02 b | |
Group H | 0.20 ± 0.00 | 8.90 ± 0.14 a | 5.55 ± 0.12 a | 1.11 ± 0.03 a | |
Tibia | Group C | 0.24 ± 0.00 | 12.53 ± 0.25 a | 8.18 ± 0.29 a | 1.00 ± 0.03 a |
Group L | 0.22 ± 0.01 | 11.51 ± 0.18 b | 7.29 ± 0.13b | 0.88 ± 0.02 b | |
Group H | 0.23 ± 0.00 | 11.90 ± 0.15 b | 7.99 ± 0.23 a | 0.97 ± 0.02 a |
Ingredient | Starter (from 1 to 21 d) | Grower (from 22 to 56 d) |
---|---|---|
Corn | 57.00 | 62.00 |
Soybean meal | 32.60 | 28.00 |
Corn gluten meal | 3.00 | 2.00 |
Soybean oil | 3.00 | 4.00 |
CaHPO4 | 2.00 | 1.60 |
Limestone | 1.23 | 1.30 |
L-Lysine | 0.32 | 0.31 |
NaCl | 0.30 | 0.30 |
DL-Methionine | 0.15 | 0.11 |
Premix * | 0.40 | 0.38 |
Total | 100.00 | 100.00 |
Ca level | 1.00 | 0.93 |
Available P level | 0.46 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wang, S.; Zhou, Z. Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers. Int. J. Mol. Sci. 2020, 21, 4841. https://doi.org/10.3390/ijms21144841
Yu Y, Wang S, Zhou Z. Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers. International Journal of Molecular Sciences. 2020; 21(14):4841. https://doi.org/10.3390/ijms21144841
Chicago/Turabian StyleYu, Yaling, Shujie Wang, and Zhenlei Zhou. 2020. "Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers" International Journal of Molecular Sciences 21, no. 14: 4841. https://doi.org/10.3390/ijms21144841
APA StyleYu, Y., Wang, S., & Zhou, Z. (2020). Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers. International Journal of Molecular Sciences, 21(14), 4841. https://doi.org/10.3390/ijms21144841