Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Results
2.1. Microscopy and Morphological Changes in IBMX-Treated MSCs
2.2. Cell Counts and Cytotoxicity Assay
2.3. Mass Spectrometry of Proteins from IBMX-Treated MSCs
2.4. Cytokine and Chemokine Expression Changes in MSCs Post IBMX Treatment
3. Discussion
3.1. Neurite Development and Protein Signalling Mechanisms
3.2. Protein–Protein Interaction Signalling Involved in Axon Development
3.3. Conclusions
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Neural Induction
4.3. Cell Harvesting and Sample Preparation
4.4. Cell Lysate Protein Extraction Sample Preparation
4.5. Liquid Chromatography-Tandem Mass Spectrometry
4.6. Mass Spectrometry and Protein Identification
4.7. Data Analysis and Programming
4.8. Cytokine and Chemokine Bioplex Analysis
4.9. Resazurin Toxicity Assay
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADSCs | Adipose-derived stem cells |
ALP | Alkaline phosphatase |
AVIL | Advillin |
bFGF | Basic fibroblast growth factor |
BHA | Butylated hydroxyanisole |
BIP | Endoplasmic reticulum chaperone BiP |
BME | Beta-mercaptoethanol |
CADH2 | Cadherin-2 |
cAMP | Cyclic adenosine monophosphate |
CK5P2 | CDK5 regulatory subunit-associated protein 2 |
CRK | Adapter molecule crk |
D-MEM | Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 |
DMSO | Dimethylsulfoxide |
ERK | Extracellular receptor kinase |
hADSCs | Human adipose-derived stem cells |
HDAC | Histone deacetylase |
HDAC2 | Histone deacetylase 2 |
HPRT | Hypoxanthine-guanine phosphoribosyltransferase |
IBMX | Isobuytlmethyl xanthine |
JAK | Janus kinase |
KNDC1 | Kinase non-catalytic C-lobe domain-containing protein 1 |
LC-MS/MS | Liquid chromatography tandem mass spectrometry |
MAPK | Mitogen-activated protein kinase |
MAPK1 | Mitogen-activated protein kinase 1 |
MSC | Mesenchymal stem cells |
NFL | Neurofilament light polypeptide |
NRP2 | Neuropilin-2 |
NSE | Neuron-specific enolase |
PACA | Pituitary adenylate cyclase-activating polypeptide |
PBS | Phosphate-buffered saline |
PI3K | Phosphatidylinositol 3-kinase |
PTK7 | Inactive tyrosine-protein kinase 7 |
RASH | GTPase Hras |
STAT1 | Signal transducer and activator of transcription 1-alpha/beta |
STAT6 | Signal transducer and activator of transcription 6 |
TOP2B | DNA topoisomerase 2-beta |
VA | Valproic acid |
VEGF | Vascular endothelial growth factor |
References
- Karanes, C.; Nelson, G.O.; Chitphakdithai, P.; Agura, E.; Ballen, K.K.; Bolan, C.D.; Porter, D.L.; Uberti, J.P.; King, R.J.; Confer, D.L. Twenty years of unrelated donor hematopoietic cell transplantation for adult recipients facilitated by the National Marrow Donor Program. Biol. Blood Marrow Transpl. 2008, 14, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells—Current trends and future prospective. Biosci. Rep. 2015, 35. [Google Scholar] [CrossRef] [PubMed]
- Gimble, J.; Guilak, F. Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy 2003, 5, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Cho, H.-H.; Cho, Y.-B.; Park, J.-S.; Jeong, H.-S. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 2010, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, N.; Lee, J.; Choe, E.K.; Kim, M.K.; Lee, J.; Byun, M.S.; Chon, M.-W.; Kim, S.W.; Lee, C.J.; et al. Small molecule-based lineage switch of human adipose-derived stem cells into neural stem cells and functional GABAergic neurons. Sci. Rep. 2017, 7, 10166. [Google Scholar] [CrossRef] [Green Version]
- Dang, B.; Chen, W.; He, W.; Chen, G. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction. Neural. Plast. 2017, 2017, 1582182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Tang, Y.; Vogel, L.C.; Devivo, M.J. Causes of spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2013, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Markus, H. Stroke: Causes and clinical features. Medicine 2012, 40, 484–489. [Google Scholar] [CrossRef]
- Huebner, E.A.; Strittmatter, S.M. Axon regeneration in the peripheral and central nervous systems. Results Probl. Cell Differ. 2009, 48, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, K.; Przyborski, S. The utility of stem cells for neural regeneration. Brain Neurosci. Adv. 2018, 2, 2398212818818071. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Chatterjee, A.; Bhide, R. Cognitive Impairment and Rehabilitation Strategies After Traumatic Brain Injury. Indian J. Psychol. Med. 2016, 38, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.M.; He, C. The glial scar in spinal cord injury and repair. Neurosci. Bull. 2013, 29, 421–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Wu, Z.B.; Zhuge, Q.; Zheng, W.; Shao, B.; Wang, B.; Sun, F.; Jin, K. Glial scar formation occurs in the human brain after ischemic stroke. Int. J. Med. Sci. 2014, 11, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Song, G.; Chuang, H.; Chiu, C.; Abdelmaksoud, A.; Ye, Y.; Zhao, L. Portrait of glial scar in neurological diseases. Int. J. Immunopathol. Pharm. 2018, 31, 2058738418801406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, T.G.; Puvanachandra, N.; Horner, C.H.; Polito, A.; Ostenfeld, T.; Svendsen, C.N.; Mucke, L.; Johnson, M.H.; Sofroniew, M.V. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999, 23, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, J.R.; Herrmann, J.E.; Woo, M.J.; Tansey, K.E.; Doan, N.B.; Sofroniew, M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 2143–2155. [Google Scholar] [CrossRef] [Green Version]
- Rolls, A.; Shechter, R.; Schwartz, M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 2009, 10, 235–241. [Google Scholar] [CrossRef]
- Silver, J.; Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef]
- Moeendarbary, E.; Weber, I.P.; Sheridan, G.K.; Koser, D.E.; Soleman, S.; Haenzi, B.; Bradbury, E.J.; Fawcett, J.; Franze, K. The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 2017, 8, 14787. [Google Scholar] [CrossRef]
- Sibson, N.R.; Lowe, J.P.; Blamire, A.M.; Martin, M.J.; Obrenovitch, T.P.; Anthony, D.C. Acute astrocyte activation in brain detected by MRI: New insights into T(1) hypointensity. J. Cereb. Blood Flow Metab. 2008, 28, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Efe, J.A.; Ding, S. The evolving biology of small molecules: Controlling cell fate and identity. Philos. Trans. R. Soc. Lond B Biol. Sci. 2011, 366, 2208–2221. [Google Scholar] [CrossRef] [Green Version]
- Woodbury, D.; Schwarz, E.J.; Prockop, D.J.; Black, I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000, 61, 364–370. [Google Scholar] [CrossRef]
- Safford, K.M.; Hicok, K.C.; Safford, S.D.; Halvorsen, Y.-D.C.; Wilkison, W.O.; Gimble, J.M.; Rice, H.E. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 2002, 294, 371–379. [Google Scholar] [CrossRef]
- Safford, K.M.; Safford, S.D.; Gimble, J.M.; Shetty, A.K.; Rice, H.E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 2004, 187, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Milthorpe, B.K.; Padula, M.P. Proteomic Analysis of Cyclic Ketamine Compounds Ability to Induce Neural Differentiation in Human Adult Mesenchymal Stem Cells. Int. J. Mol. Sci. 2019, 20, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.; Hubert, T.; Milthorpe, B.K. Valproic Acid Promotes Early Neural Differentiation in Adult Mesenchymal Stem Cells Through Protein Signalling Pathways. Cells 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashjian, P.H.; Elbarbary, A.S.; Edmonds, B.; DeUgarte, D.; Zhu, M.; Zuk, P.A.; Lorenz, H.P.; Benhaim, P.; Hedrick, M.H. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 2003, 111, 1922–1931. [Google Scholar] [CrossRef]
- Anghileri, E.; Marconi, S.; Pignatelli, A.; Cifelli, P.; Galie, M.; Sbarbati, A.; Krampera, M.; Belluzzi, O.; Bonetti, B. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008, 17, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Essayan, D.M. Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol. 2001, 108, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters-Golden, M.; Canetti, C.; Mancuso, P.; Coffey, M.J. Leukotrienes: Underappreciated mediators of innate immune responses. J. Immunol. 2005, 174, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Iacovitti, L.; Stull, N.D.; Jin, H. Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line. Brain Res. 2001, 912, 99–104. [Google Scholar] [CrossRef]
- Deng, W.; Obrocka, M.; Fischer, I.; Prockop, D.J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 2001, 282, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tio, M.; Tan, K.H.; Lee, W.; Wang, T.T.; Udolph, G. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS ONE 2010, 5, e9398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepski, G.; Jannes, C.E.; Nikkhah, G. cAMP promotes differentiation of rodent neuronal progenitor cells. Stem Cell Stud. 2011, 1, 9. [Google Scholar] [CrossRef]
- He, Z.; Yu, Q. Identification and characterization of functional modules reflecting transcriptome transition during human neuron maturation. BMC Genom. 2018, 19, 262. [Google Scholar] [CrossRef] [Green Version]
- Frank, C.L.; Tsai, L.H. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity. Neuron 2009, 62, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Merot, Y.; Retaux, S.; Heng, J.I. Molecular mechanisms of projection neuron production and maturation in the developing cerebral cortex. Semin. Cell Dev. Biol. 2009, 20, 726–734. [Google Scholar] [CrossRef]
- Heidemann, S.R. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. Int. Rev. Cytol. 1996, 165, 235–296. [Google Scholar] [CrossRef]
- Morrison, E.E.; Moncur, P.M.; Askham, J.M. EB1 identifies sites of microtubule polymerisation during neurite development. Brain Res. Mol. Brain Res. 2002, 98, 145–152. [Google Scholar] [CrossRef]
- Tanaka, S.; Hattori, S.; Kurata, T.; Nagashima, K.; Fukui, Y.; Nakamura, S.; Matsuda, M. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol. Cell Biol. 1993, 13, 4409–4415. [Google Scholar] [CrossRef] [Green Version]
- Park, T.J.; Curran, T. Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 13551–13562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuki, T.; Pramatarova, A.; Howell, B.W. Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. J. Cell Sci. 2008, 121, 1869–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellano, E.; Molina-Arcas, M.; Krygowska, A.A.; East, P.; Warne, P.; Nicol, A.; Downward, J. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression. Nat. Commun. 2016, 7, 11245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Sui, H.-J.; Dong, Y.; Ding, Q.; Qu, W.-H.; Yu, S.-X.; Jin, Y.-X. Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3β signaling pathways. Acta Pharmacol. Sin. 2012, 33, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Oda, A.; Wakao, H.; Fujihara, M.; Ozaki, K.; Komatsu, N.; Tanaka, S.; Ikeda, H.; Miyajima, A.; Ikebuchi, K. Thrombopoietin and interleukin-2 induce association of CRK with STAT5. Biochem. Biophys. Res. Commun. 2000, 278, 299–305. [Google Scholar] [CrossRef]
- Byts, N.; Samoylenko, A.; Fasshauer, T.; Ivanisevic, M.; Hennighausen, L.; Ehrenreich, H.; Sirén, A.L. Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ. 2008, 15, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Haugen, P.K.; Letourneau, P.C. Interleukin-2 enhances chick and rat sympathetic, but not sensory, neurite outgrowth. J. Neurosci. Res. 1990, 25, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Mao, X.O.; Greenberg, D.A. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J. Neurobiol. 2006, 66, 236–242. [Google Scholar] [CrossRef]
- Schafer, K.H.; Mestres, P.; Marz, P.; Rose-John, S. The IL-6/sIL-6R Fusion Protein Hyper-IL-6 Promotes Neurite Outgrowth and Neuron Survival in Cultured Enteric Neurons. J. Interferon Cytokine Res. 1999, 19, 527–532. [Google Scholar] [CrossRef]
- Yamada, S.; Uchimura, E.; Ueda, T.; Nomura, T.; Fujita, S.; Matsumoto, K.; Funeriu, D.P.; Miyake, M.; Miyake, J. Identification of twinfilin-2 as a factor involved in neurite outgrowth by RNAi-based screen. Biochem. Biophys. Res. Commun. 2007, 363, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Guibinga, G.-H.; Hsu, S.; Friedmann, T. Deficiency of the Housekeeping Gene Hypoxanthine–Guanine Phosphoribosyltransferase (HPRT) Dysregulates Neurogenesis. Mol. Ther. 2010, 18, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Heng, X.; Jin, G.; Zhang, X.; Yang, D.; Zhu, M.; Fu, S.; Li, X.; Le, W. Nurr1 regulates Top IIβ and functions in axon genesis of mesencephalic dopaminergic neurons. Mol. Neurodegener. 2012, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaim, M.; Isik, S. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression. Stem Cell Res. 2018, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Lahiri, D.K. Cdk5 activity in the brain—Multiple paths of regulation. J. Cell Sci. 2014, 127, 2391–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debanne, D.; Campanac, E.; Bialowas, A.; Carlier, E.; Alcaraz, G. Axon physiology. Physiol. Rev. 2011, 91, 555–602. [Google Scholar] [CrossRef] [Green Version]
- Tamagnone, L.; Artigiani, S.; Chen, H.; He, Z.; Ming, G.I.; Song, H.; Chedotal, A.; Winberg, M.L.; Goodman, C.S.; Poo, M.; et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999, 99, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Giger, R.J.; Cloutier, J.F.; Sahay, A.; Prinjha, R.K.; Levengood, D.V.; Moore, S.E.; Pickering, S.; Simmons, D.; Rastan, S.; Walsh, F.S.; et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 2000, 25, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Gunput, R.A.; Pasterkamp, R.J. Semaphorin signaling: Progress made and promises ahead. Trends Biochem. Sci. 2008, 33, 161–170. [Google Scholar] [CrossRef]
- Winberg, M.L.; Noordermeer, J.N.; Tamagnone, L.; Comoglio, P.M.; Spriggs, M.K.; Tessier-Lavigne, M.; Goodman, C.S. Plexin A Is a Neuronal Semaphorin Receptor that Controls Axon Guidance. Cell 1998, 95, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Nasarre, P.; Gemmill, R.M.; Drabkin, H.A. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Oncotargets Ther. 2014, 7, 1663–1687. [Google Scholar] [CrossRef] [Green Version]
- Fivaz, M.; Bandara, S.; Inoue, T.; Meyer, T. Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr. Biol. 2008, 18, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 2010, 218142. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Shimazu, A.; Miyazaki, K.; Pan, H.; Koike, C.; Yoshida, E.; Takagishi, K.; Kato, Y. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 2001, 288, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Tropel, P.; Platet, N.; Platel, J.C.; Noel, D.; Albrieux, M.; Benabid, A.L.; Berger, F. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24, 2868–2876. [Google Scholar] [CrossRef]
- Nakano, R.; Edamura, K.; Nakayama, T.; Teshima, K.; Asano, K.; Narita, T.; Okabayashi, K.; Sugiya, H. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J. Vet. Med. Sci. 2015, 77, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Trzaska, K.A.; King, C.C.; Li, K.Y.; Kuzhikandathil, E.V.; Nowycky, M.C.; Ye, J.H.; Rameshwar, P. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J. Neurochem. 2009, 110, 1058–1069. [Google Scholar] [CrossRef]
- Nandy, S.B.; Mohanty, S.; Singh, M.; Behari, M.; Airan, B. Fibroblast Growth Factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons. J. Biomed. Sci. 2014, 21, 83. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xia, Y.; Lu, S.Q.; Soong, T.W.; Feng, Z.W. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J. Biol. Chem. 2008, 283, 5287–5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Lee, A.W. A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. J. Cell Biol. 2005, 170, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, H.; Xu, X.; Shi, H.; Yu, X.; Wang, X.; Yan, Y.; Fu, X.; Hu, H.; Li, X.; et al. bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol. Lett. 2012, 212, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.A.; Friedrich, V.L., Jr.; Bosco, P.; Kang, C.; Gourov, A.; Tu, P.H.; Lee, V.M.; Lazzarini, R.A. Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J. Cell Biol. 1998, 141, 727–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriz, J.; Zhu, Q.; Julien, J.P.; Padjen, A.L. Electrophysiological properties of axons in mice lacking neurofilament subunit genes: Disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res. 2000, 885, 32–44. [Google Scholar] [CrossRef]
- Ohara, O.; Gahara, Y.; Miyake, T.; Teraoka, H.; Kitamura, T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 1993, 121, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Milthorpe, B.K.; Herbert, B.R.; Padula, M.P. Proteomic Analysis of Human Adipose Derived Stem Cells during Small Molecule Chemical Stimulated Pre-neuronal Differentiation. Int. J. Stem Cells 2017. [Google Scholar] [CrossRef] [Green Version]
- Taverner, T.; Karpievitch, Y.V.; Polpitiya, A.D.; Brown, J.N.; Dabney, A.R.; Anderson, G.A.; Smith, R.D. DanteR: An extensible R-based tool for quantitative analysis of -omics data. Bioinformatics 2012, 28, 2402–2406. [Google Scholar] [CrossRef]
Protein Name | Controls | 6 h | 12 h | 24 h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FBS | DMEM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM | |
60S ribosomal protein L27 | 1 | 0 | 2.74 | 4.03 | 2.96 | 3.87 | 9.41 | 5.82 | 1.92 | 3.73 | 6.85 | 8.17 | 7.06 | 1.8 |
Actin cytoplasmic 2 | 1 | 0.56 | 1.5 | 2.4 | 2.85 | 3.85 | 3.39 | 3.49 | 1.18 | 2.03 | 2.47 | 2.82 | 2.07 | 2.56 |
Alpha-actinin-1 | 1 | 1.63 | 7.52 | 13.23 | 15.81 | 11.59 | 13.35 | 13.27 | 5.33 | 6.04 | 3.98 | 7.36 | 8.54 | 8.42 |
Annexin A11 | 1 | 1.71 | 2.76 | 3.67 | 4.16 | 4.17 | 3.22 | 3.5 | 2.22 | 2.52 | 3.33 | 3.53 | 4.39 | 3.57 |
Annexin A6 | 1 | 0.59 | 4.87 | 10.98 | 7.18 | 10.95 | 5.84 | 8.98 | 4.61 | 4.5 | 7.64 | 6.88 | 3.62 | 6.46 |
Arginine and glutamate-rich protein 1 | 1 | 0.18 | 1.83 | 2.8 | 3.35 | 7.05 | 8.72 | 4.6 | 2.02 | 2.72 | 11.89 | 5.45 | 2.76 | 3.4 |
Calmodulin-like protein 3 | 1 | 0.79 | 3.6 | 6 | 6.58 | 9.68 | 14.65 | 5.64 | 4.63 | 7.64 | 13.29 | 18.13 | 14.24 | 6.66 |
Cation-dependent mannose-6-phosphate receptor | 1 | 0 | 7.98 | 15.85 | 19.73 | 36.43 | 47.85 | 20.66 | 10.19 | 18.4 | 13 | 42.04 | 23.26 | 22 |
Chondroadherin-like protein (Fragment) | 1 | 1.36 | 3.12 | 11.94 | 12.25 | 14.82 | 12.12 | 11.51 | 0.96 | 2 | 5.36 | 2.64 | 2.23 | 3.19 |
Collagen alpha-1 (XXIV) chain | 1 | 0 | 2.02 | 6.81 | 8.26 | 7.18 | 15.14 | 2.51 | 0.97 | 3.69 | 23.32 | 9.39 | 7.28 | 3.26 |
DNA-directed RNA polymerase mitochondrial | 1 | 1.55 | 4.29 | 5.48 | 6.29 | 9.69 | 8.54 | 3.79 | 2.58 | 4.69 | 4.92 | 6.04 | 4.45 | 4.4 |
Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit STT3A | 1 | 2 | 3.11 | 4.34 | 3.87 | 3.2 | 4.53 | 2.97 | 2.66 | 2.45 | 2.07 | 2.54 | 3.07 | 5.14 |
E3 SUMO-protein ligase RanBP2 | 1 | 1.97 | 2.43 | 3.35 | 6.07 | 4.71 | 9.47 | 3.23 | 3.47 | 4.08 | 3.02 | 13.41 | 5.18 | 5.18 |
EF-hand and coiled-coil domain-containing protein 1 | 1 | 1.02 | 1.9 | 3.69 | 3.54 | 3.82 | 3.09 | 7.06 | 2.15 | 2.23 | 1.48 | 2.34 | 1.78 | 2.09 |
Glucosidase 2 subunit beta | 1 | 0.55 | 1.3 | 2.08 | 2.8 | 3.67 | 3.79 | 3.22 | 2.02 | 2.56 | 2.92 | 4.23 | 3.27 | 4.07 |
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 | 1 | 0 | 1.67 | 5.64 | 6.34 | 5.95 | 6.3 | 6.64 | 3.13 | 2.98 | 2.85 | 2.4 | 6.53 | 4.44 |
Heat shock protein 105 kDa | 1 | 1.53 | 0.45 | 7.05 | 5.55 | 2.88 | 2.96 | 2.51 | 3.1 | 3.29 | 3.27 | 2.35 | 5.63 | 0.58 |
Histone deacetylase 2 | 1 | 1.3 | 2.81 | 6.61 | 4.47 | 5.33 | 1.23 | 4.93 | 0.86 | 4.78 | 12.24 | 4.97 | 7.47 | 17.55 |
Inactive tyrosine-protein kinase 7 | 1 | 1.03 | 2.42 | 6.16 | 5.42 | 5.45 | 5.02 | 2.12 | 1.17 | 1.89 | 1.47 | 1.95 | 1.37 | 2.31 |
Kinase non-catalytic C-lobe domain-containing protein 1 | 1 | 1.84 | 3.43 | 4.16 | 8.12 | 10.73 | 11.48 | 4.2 | 2.92 | 3.99 | 1.86 | 6.06 | 4.34 | 5.94 |
Mitochondrial 10-formyltetrahydrofolate dehydrogenase | 1 | 1.62 | 2.52 | 7.29 | 3.88 | 3.52 | 2.71 | 1.25 | 1.89 | 4.5 | 1.86 | 8.62 | 5.59 | 6.7 |
Myosin light chain 6B | 1 | 0.67 | 4.57 | 8.82 | 9.47 | 18.1 | 10.31 | 10.15 | 4.16 | 6.84 | 11.38 | 12.03 | 5.13 | 4.06 |
Phosphatidylinositol 4 5-bisphosphate 3-kinase catalytic subunit gamma isoform | 1 | 1.02 | 8.18 | 23.29 | 12.35 | 20.99 | 7.28 | 16.49 | 7.26 | 10.67 | 5.89 | 8.09 | 4.52 | 5.37 |
Phosphoglycerate kinase 1 | 1 | 1.77 | 2.33 | 7.89 | 3.51 | 5.14 | 3.37 | 4.63 | 1.51 | 1.76 | 1.09 | 1.88 | 1.63 | 1.89 |
Polypyrimidine tract-binding protein 1 | 1 | 0 | 2.33 | 12.65 | 5.91 | 10.62 | 10.74 | 4.75 | 0.84 | 1.35 | 2.05 | 2.49 | 0.95 | 4.22 |
PRA1 family protein 3 | 1 | 1.06 | 2.12 | 6.38 | 5.21 | 5.08 | 4.43 | 11.63 | 2.74 | 2.32 | 2.36 | 3.69 | 3.67 | 1.74 |
Probable cysteine—tRNA ligase mitochondrial | 1 | 0.53 | 2.51 | 4.4 | 8.58 | 5.45 | 6.28 | 3.4 | 1.19 | 1.56 | 12.14 | 3.94 | 4.84 | 2.22 |
Protein disulfide-isomerase TMX3 | 1 | 1.84 | 3.31 | 3.2 | 3.59 | 4.4 | 4.97 | 1.97 | 2.01 | 2.87 | 0.46 | 4.65 | 4.35 | 5.48 |
Ras GTPase-activating protein-binding protein 1 | 1 | 0.51 | 1.24 | 3.37 | 3.36 | 7.93 | 3.58 | 2.48 | 2.04 | 2.14 | 10.88 | 6.03 | 9.61 | 5.76 |
Signal peptidase complex catalytic subunit SEC11 | 1 | 1.51 | 2.58 | 4.18 | 4.97 | 2.98 | 1.02 | 4 | 1.9 | 3.79 | 3.16 | 1.9 | 2.25 | 4.61 |
Splicing factor 3A subunit 3 | 1 | 1.97 | 2.17 | 3.71 | 3.19 | 3.16 | 6.27 | 2.8 | 2.54 | 3.71 | 3.33 | 5.71 | 5.72 | 5.2 |
Tectonin beta-propeller repeat-containing protein 2 | 1 | 1.33 | 14.08 | 7.44 | 10.52 | 4.96 | 13.46 | 3.05 | 3.24 | 2.87 | 4.45 | 2.35 | 3.35 | 4.31 |
Thy-1 membrane glycoprotein (Fragment) | 1 | 1.44 | 1.86 | 3.69 | 4.4 | 6.75 | 10.35 | 4.83 | 3.35 | 5.05 | 4.08 | 11.87 | 7.24 | 4.6 |
Tropomyosin alpha-1 chain | 1 | 1.06 | 1.66 | 2.26 | 2.61 | 5.92 | 3.99 | 3.05 | 2.92 | 3.7 | 3.87 | 6.11 | 4.75 | 4.91 |
V-type proton ATPase subunit | 1 | 0 | 26.55 | 42.08 | 35.48 | 14.46 | 19.29 | 49.37 | 20.8 | 34.02 | 16.25 | 49.05 | 20.67 | 37.65 |
Name | Accession | Gene | Go Biological Process |
---|---|---|---|
Adapter molecule crk | P46108 | CRK | Cellular response to nerve growth factor stimulus, cerebellar neuron development, cerebral cortex development, dendrite development establishment of cell polarity, hippocampus development, negative regulation of cell motility |
Kinase non-catalytic C-lobe domain-containing protein 1 | Q76NI1 | KNDC1 | Cerebellar granule cell differentiation, regulation of dendrite development, regulation of dendrite morphogenesis |
Endoplasmic reticulum chaperone BiP | P11021 | BIP | Cerebellar Purkinje cell layer development, cerebellum structural organisation, negative regulation of apoptotic process, neuron apoptotic process, neuron differentiation, positive regulation of cell migration, positive regulation of neuron projection development |
Inactive tyrosine-protein kinase 7 | Q13308 | PTK7 | Actin cytoskeleton reorganisation, establishment of planar polarity, planar cell polarity pathway involved in neural tube closure, positive regulation of canonical Wnt signalling pathway, positive regulation of neuron projection development |
Histone deacetylase 2 | Q92769 | HDAC2 | Cellular response to dopamine, dendrite development, negative regulation of apoptotic process, negative regulation of dendritic spine development, negative regulation of neuron projection development, positive regulation of cell population proliferation |
Neurofilament light polypeptide | P07196 | NFL | Cerebral cortex development, hippocampus development, intermediate filament organisation, intermediate filament polymerisation or depolymerisation, microtubule cytoskeleton organisation, negative regulation of neuron apoptotic process, neurofilament bundle assembly, neurofilament cytoskeleton organisation, neuron projection morphogenesis, peripheral nervous system axon regeneration, positive regulation of axonogenesis, regulation of axon diameter, spinal cord development, synapse maturation |
Neuropilin-2 | O60462 | NRP2 | Axon extension involved in axon guidance, axon guidance, dorsal root ganglion morphogenesis, nerve development, neural crest cell migration involved in autonomic nervous system development, regulation of postsynapse organisation, semaphorin-plexin signalling pathway involved in neuron projection guidance, sensory neuron axon guidance, sympathetic ganglion development, sympathetic neuron projection extension, sympathetic neuron projection guidance |
CDK5 regulatory subunit-associated protein 2 | Q96SN8 | CK5P2 | Brain development, microtubule bundle formation, microtubule cytoskeleton organisation, microtubule organising centre organisation, negative regulation of centriole replication, negative regulation of neuron differentiation, neurogenesis, positive regulation of microtubule polymerisation, regulation of neuron differentiation |
Hypoxanthine-guanine phosphoribosyltransferase | P00492 | HPRT | Central nervous system neuron development, cerebral cortex neuron differentiation, dendrite morphogenesis, dopamine metabolic process, positive regulation of dopamine metabolic process, striatum development |
Pituitary adenylate cyclase-activating polypeptide | P18509 | PACA | Negative regulation of cell cycle, negative regulation of glial cell proliferation, neuron projection development, neuropeptide signalling pathway, pituitary gland development, positive regulation of cell population proliferation, positive regulation of neuron projection development, regulation of oligodendrocyte progenitor proliferation, regulation of postsynaptic membrane potential |
Cadherin-2 | P19022 | CADH2 | Brain morphogenesis, cell migration, cell morphogenesis, cerebral cortex development, glial cell differentiation, negative regulation of canonical Wnt signaling pathway, neuroepithelial cell differentiation, neuroligin clustering involved in postsynaptic membrane assembly, neuronal stem cell population maintenance, positive regulation of synaptic vesicle clustering, radial glial cell differentiation, regulation of axonogenesis, regulation of oligodendrocyte progenitor proliferation, regulation of synaptic transmission, glutamatergic, synapse assembly |
GTPase Hras | P01112 | RASH | Cell cycle arrest, cell population proliferation, negative regulation of cell population proliferation, negative regulation of gene expression, negative regulation of neuron apoptotic process, positive regulation of actin cytoskeleton reorganisation, positive regulation of cell migration, positive regulation of cell population proliferation, regulation of long-term neuronal synaptic plasticity, regulation of neurotransmitter receptor localisation to postsynaptic specialisation membrane |
DNA topoisomerase 2-beta | Q02880 | TOP2B | Axonogenesis, forebrain development, neuron migration |
Controls | 6 h | 12 h | 24 h | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proteins with Fold Change Relative to Control | FBS | DMEM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM | 0.25 mM | 0.5 mM | 1 mM | 2.5 mM |
Adapter molecule crk | 1 | 1.06 | 1.61 | 2.24 | 3.19 | 2.56 | 2.61 | 0.89 | 1.14 | 1.17 | 1.19 | 1.25 | 2.09 | 2.94 |
Kinase non-catalytic C-lobe domain-containing protein 1 | 1 | 1.84 | 3.43 | 4.16 | 8.12 | 10.73 | 11.48 | 4.2 | 2.92 | 3.99 | 1.86 | 6.06 | 4.34 | 5.94 |
Endoplasmic reticulum chaperone BiP | 1 | 0.76 | 1.09 | 1.95 | 1.63 | 2.37 | 2.02 | 2.52 | 1.61 | 2 | 2.57 | 2.83 | 1.89 | 1.91 |
Inactive tyrosine-protein kinase 7 | 1 | 1.03 | 2.42 | 6.16 | 5.42 | 5.45 | 5.02 | 2.12 | 1.17 | 1.89 | 1.47 | 1.95 | 1.37 | 2.31 |
Histone deacetylase 2 | 1 | 1.3 | 2.81 | 6.61 | 4.47 | 5.33 | 1.23 | 4.93 | 0.86 | 4.78 | 12.24 | 4.97 | 7.47 | 17.55 |
No. of proteins above twofold increase | 0 | 0 | 3 | 4 | 4 | 5 | 4 | 4 | 1 | 3 | 2 | 3 | 3 | 4 |
No. of proteins above fivefold increase | 0 | 0 | 0 | 2 | 2 | 3 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 |
Uniquely expressed in IBMX-treated cells | ||||||||||||||
Neurofilament light polypeptide | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ |
Neuropilin-2 | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ |
CDK5 regulatory subunit-associated protein 2 | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
Hypoxanthine-guanine phosphoribosyltransferase | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
Pituitary adenylate cyclase-activating polypeptide | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
Cadherin-2 | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ |
GTPase Hras | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
DNA topoisomerase 2-beta | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
No. of proteins uniquely expressed in IBMX-treated cells | 6 | 6 | 6 | 5 | 3 | 5 | 5 | 7 | 6 | 6 | 5 | 4 | ||
Total number of significant upregulated proteins post IBMX treatment | 9 | 13 | 12 | 13 | 9 | 9 | 6 | 10 | 9 | 10 | 9 | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo, J.; Milthorpe, B.K.; Santos, J. Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 4867. https://doi.org/10.3390/ijms21144867
Fajardo J, Milthorpe BK, Santos J. Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2020; 21(14):4867. https://doi.org/10.3390/ijms21144867
Chicago/Turabian StyleFajardo, Jerome, Bruce K. Milthorpe, and Jerran Santos. 2020. "Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells" International Journal of Molecular Sciences 21, no. 14: 4867. https://doi.org/10.3390/ijms21144867
APA StyleFajardo, J., Milthorpe, B. K., & Santos, J. (2020). Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 21(14), 4867. https://doi.org/10.3390/ijms21144867