Lipid Biomarkers as Predictors of Diastolic Dysfunction in Diabetes with Poor Glycemic Control
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Uncontrolled T1DM Population
2.2. Cardiovascular Complications Associated with T1DM
2.3. Prediction of Ventricular Diastolic Dysfunction in T1DM Patients
3. Discussion
4. Material and Methods
4.1. Study Population
4.2. Anthropometric, Plasma, and Urine Parameters
4.3. Echocardiographic Studies
4.4. Statistical Analysis
5. Conclusions
6. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forlenza, G.P.; Rewers, M. The epidemic of type 1 diabetes: What is it telling us? Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.L.; Maahs, D.M.; Garvey, K.C.; Hood, K.K.; Laffel, L.M.; Weinzimer, S.A.; Wolfsdorf, J.I.; Schatz, D. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association. Diabetes Care 2018, 41, 2026–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, D.; Lung, T.W.C.; Rawshani, A.; Palmer, A.J.; Svensson, A.M.; Eliasson, B.; Clarke, P. Recent trends in life expectancy for people with type 1 diabetes in Sweden. Diabetologia 2016, 59, 1167–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margeirsdottir, H.D.; Larsen, J.R.; Brunborg, C.; Overby, N.C.; Dahl-Jørgensen, K. Norwegian Study Group for Childhood Diabetes. High prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes: A population-based study. Diabetologia 2008, 51, 554–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: A cohort study using the general practice research database. Diabetes Care 2006, 29, 798–804. [Google Scholar] [CrossRef] [Green Version]
- De Ferranti, S.D.; De Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J.; et al. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014, 130, 1110–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, T.; Yuda, S.; Kouzu, H.; Miura, T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail. Rev. 2013, 18, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Beato-Víbora, P.I.; Tormo-García, M.Á. Glycemic control and insulin requirements in type 1 diabetic patients depending on the clinical characteristics at diabetes onset. Endocr. Res. 2014, 39, 86–90. [Google Scholar] [CrossRef]
- Maric-Bilkan, C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin. Sci. 2017, 131, 833–846. [Google Scholar] [CrossRef]
- Nieuwesteeg, A.; Pouwer, F.; van der Kamp, R.; van Bakel, H.; Aanstoot, H.J.; Hartman, E. Quality of life of children with type 1 diabetes: A systematic review. Curr. Diabetes Rev. 2012, 8, 434–443. [Google Scholar] [CrossRef]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61, 2461–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosson, S.; Kevorkian, J.P. Left ventricular diastolic dysfunction: An early sign of diabetic cardiomyopathy? Diabetes Metab. 2003, 29, 455–466. [Google Scholar] [CrossRef]
- Mátyás, C.; Kovács, A.; Németh, B.T.; Oláh, A.; Braun, S.; Tokodi, M.; Barta, B.A.; Benke, K.; Ruppert, M.; Lakatos, B.K.; et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovasc. Diabetol. 2018, 17, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galderisi, M. Diastolic dysfunction and diabetic cardiomyopathy: Evaluation by Doppler echocardiography. J. Am. Coll. Cardiol. 2006, 48, 1548–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suran, D.; Sinkovic, A.; Naji, F. Tissue Doppler imaging is a sensitive echocardiographic technique to detect subclinical systolic and diastolic dysfunction of both ventricles in type 1 diabetes mellitus. BMC Cardiovasc. Disord. 2016, 16, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgino, F.; Leonardini, A.; Laviola, L. Cardiovascular disease and glycemic control in type 2 diabetes: Now that the dust is settling from large clinical trials. Ann. N. Y. Acad. Sci. 2013, 1281, 36–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamoon, H.; Duffy, H.; Fleischer, N.; Engel, S.S.; Saenger, P.; Strelzyn, M.; Litwak, M.; Wylierosett, J.; Farkash, A.; Geiger, D.; et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- Niechciał, E.; Acerini, C.L.; Chiesa, S.T.; Stevens, T.; Neil Dalton, R.; Daneman, D.; Deanfield, J.E.; Jones, T.W.; Mahmud, F.H.; Marshall, S.M.; et al. Medication Adherence during Adjunct Therapy with Statins and ACE Inhibitors in Adolescents With Type 1 Diabetes. Diabetes Care 2020. [Google Scholar] [CrossRef]
- American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S163–S182. [Google Scholar] [CrossRef] [Green Version]
- Daniels, M.; Dubose, S.N.; Maahs, D.M.; Beck, R.W.; Fox, L.A.; Gubitosi-Klug, R.; Laffel, L.M.; Miller, K.M.; Speer, H.; Tamborlane, W.V.; et al. Factors associated with microalbuminuria in 7549 children and adolescents with type 1 diabetes in the T1D Exchange clinic registry. Diabetes Care 2013, 36, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [PubMed]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Jung, J.H.; Park, M.J.; Kim, S.H. Risk assessment of metabolic syndrome in adolescents using the triglyceride/high-density lipoprotein cholesterol ratio and the total cholesterol/high-density lipoprotein cholesterol ratio. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.Y.; Kang, Y.S.; Kwon, E.B.; Yoo, E.G. The triglyceride-to-high density lipoprotein cholesterol ratio in overweight Korean children and adolescents. Ann. Pediatric Endocrinol. Metab. 2017, 22, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murguía-Romero, M.; Jiménez-Flores, J.R.; Sigrist-Flores, S.C.; Espinoza-Camacho, M.A.; Jiménez-Morales, M.; Piña, E.; Méndez-Cruz, A.R.; Villalobos-Molina, R.; Reaven, G.M. Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J. Lipid Res. 2013, 54, 2795–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128, S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Gourgari, E.; Dabelea, D.; Rother, K. Modifiable Risk Factors for Cardiovascular Disease in Children with Type 1 Diabetes: Can Early Intervention Prevent Future Cardiovascular Events? Curr. Diabetes Rep. 2017, 17, 134. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670186/ (accessed on 18 February 2020). [CrossRef] [Green Version]
- Choi, S.H.; Eun, L.Y.; Kim, N.K.; Jung, J.W.; Choi, J.Y. Myocardial Tissue Doppler Velocity in Child Growth. J. Cardiovasc. Ultrasound 2016, 24, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.V.; Abbasi, S.A.; Neilan, T.G.; Hulten, E.; Coelho-Filho, O.; Hoppin, A.; Levitsky, L.; de Ferranti, S.; Rhodes, E.T.; Traum, A.; et al. Myocardial Tissue Remodeling in Adolescent Obesity. J. Am. Heart Assoc. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Brunvand, L.; Fugelseth, D.; Stensaeth, K.H.; Dahl-Jørgensen, K.; Margeirsdottir, H.D. Early reduced myocardial diastolic function in children and adolescents with type 1 diabetes mellitus a population-based study. BMC Cardiovasc. Disord. 2016, 16, 103. [Google Scholar] [CrossRef] [Green Version]
- Rafeiyian, S.; Looti-Shahrokh, B.; Motamedi, M.R.; Karkhaneh-Yousefi, Z.; Mojtahedzadeh, S.; Kouhi, A. Pulse tissue Doppler analysis of tricuspid annular motion in Iranian children. Int. J. Cardiovasc. Imaging 2006, 22, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Mackey, E.R.; O’Brecht, L.; Holmes, C.S.; Jacobs, M.; Streisand, R. Teens with Type 1 Diabetes: How Does Their Nutrition Measure Up? J. Diabetes Res. 2018, 2018, 5094569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol. 2008, 79, 1527–1534. [Google Scholar] [CrossRef]
- The DCCT Research Group. Lipid and lipoprotein levels in patients with IDDM diabetes control and complication. Diabetes Care 1992, 15, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Harding, S.A.; Sommerfield, A.J.; Sarma, J.; Twomey, P.J.; Newby, D.E.; Frier, B.M.; Fox, K.A.A. Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis 2004, 176, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Satchell, S.C. Microalbuminuria: Causes and implications. Pediatric Nephrol. 2011, 26, 1957–1965. [Google Scholar] [CrossRef] [Green Version]
- Steinke, J.M.; Sinaiko, A.R.; Kramer, M.S.; Suissa, S.; Chavers, B.M.; Mauer, M. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 2005, 54, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.T.; Sogaard, P.; Andersen, H.U.; Bech, J.; Hansen, T.F.; Galatius, S.; Jørgensen, P.G.; Biering-Sørensen, T.; Møgelvang, R.; Rossing, P.; et al. Prevalence of systolic and diastolic dysfunction in patients with type 1 diabetes without known heart disease: The Thousand & 1 Study. Diabetologia 2014, 57, 672–680. [Google Scholar]
- Lorenzo-Almorós, A.; Tuñón, J.; Orejas, M.; Cortés, M.; Egido, J.L.Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol. 2017, 16, 28. [Google Scholar] [CrossRef] [Green Version]
- Lemmer Hunsinger, C.E.; Engel, M.E.; Stanfliet, J.C.; Mayosi, B.M. Reference intervals for the echocardiographic measurements of the right heart in children and adolescents: A systematic review. Cardiovasc. Ultrasound 2014, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Vazeou, A.; Papadopoulou, A.; Miha, M.; Drakatos, A.; Georgacopoulos, D. Cardiovascular impairment in children, adolescents, and young adults with type 1 diabetes mellitus (T1DM). Eur. J. Pediatric 2008, 167, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Toedebusch, R.; Belenchia, A.; Pulakat, L. Diabetic Cardiomyopathy: Impact of Biological Sex on Disease Development and Molecular Signatures. Front. Physiol. 2018, 9, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, I.; Frangogiannis, N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 2016, 90, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxley, R.R.; Peters, S.A.E.; Mishra, G.D.; Woodward, M. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 198–206. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Eliasson, B.; Svensson, A.M.; Miftaraj, M.; McGuire, D.K.; Sattar, N.; Rosengren, A.; Gudbjörnsdottir, S. Range of Risk Factor Levels: Control, Mortality, and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation 2017, 135, 1522–1531. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Toeller, M.; Ferriss, B.; Reboldi, P.; Michel, G.; Manes, C.; Fuller, J.H. Risk factors for coronary heart disease in type 1 diabetic patients in Europe: The EURODIAB Prospective Complications Study. Diabetes Care 2004, 27, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Matarese, A.; Santulli, G. Diabetes, body fat, skeletal muscle, and hypertension: The ominous chiasmus? J. Clin. Hypertens. 2019, 21, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Maahs, D.M.; Dabelea, D.; D’Agostino, R.B.; Andrews, J.S.; Shah, A.S.; Crimmins, N.; Mayer-Davis, E.J.; Marcovina, S.; Imperatore, G.; Wadwa, R.P.; et al. Glucose control predicts 2-year change in lipid profile in youth with type 1 diabetes. J. Pediatric 2013, 162, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Valabhji, J.; Donovan, J.; McColl, A.J.; Schachter, M.; Richmond, W.; Elkeles, R.S. Rates of cholesterol esterification and esterified cholesterol net mass transfer between high-density lipoproteins and apolipoprotein B-containing lipoproteins in Type 1 diabetes. Diabet. Med. 2002, 19, 424–428. [Google Scholar] [CrossRef]
- Asleh, R.; Miller-Lotan, R.; Aviram, M.; Hayek, T.; Yulish, M.; Levy, J.E.; Miller, B.; Blum, S.; Milman, U.; Shapira, C.; et al. Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ. Res. 2006, 99, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.; Wägner, A.M.; Carreras, G.; Giménez, G.; Sánchez-Quesada, J.L.; Rigla, M.; Gómez-Gerique, J.A.; Pou, J.M.; De Leiva, A. Prevalence and phenotypic distribution of dyslipidemia in type 1 diabetes mellitus: Effect of glycemic control. Arch. Intern. Med. 2000, 160, 2756–2762. [Google Scholar] [CrossRef] [Green Version]
- Soutelo, J.; Graffigna, M.; Honfi, M.; Migliano, M.; Aranguren, M.; Proietti, A.; Musso, C.; Berg, G. Triglycerides/HDL-cholesterol ratio: In adolescents without cardiovascular risk factors. Arch. Latinoam. Nutr. 2012, 62, 167–171. [Google Scholar]
- Wilkins, J.T.; Ning, H.; Stone, N.J.; Criqui, M.H.; Zhao, L.; Greenland, P.; Lloyd-Jones, D.M. Coronary Heart Disease Risks Associated with High Levels of HDL Cholesterol. J. Am. Heart Assoc. 2014, 3. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187512/ (accessed on 21 March 2020). [CrossRef] [PubMed] [Green Version]
- Fryirs, M.A.; Barter, P.J.; Appavoo, M.; Tuch, B.E.; Tabet, F.; Heather, A.K.; Rye, K.A. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1642–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, C.L.; Tybjærg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. HDL Cholesterol and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes 2015, 64, 3328–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Femlak, M.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Rysz, J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis. 2017, 16, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heier, M.; Borja, M.S.; Brunborg, C.; Seljeflot, I.; Margeirsdottir, H.D.; Hanssen, K.F.; Dahl-Jørgensen, K.; Oda, M.N. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc. Diabetol. 2017, 16, 85. [Google Scholar] [CrossRef] [Green Version]
- Tabara, Y.; Arai, H.; Hirao, Y.; Takahashi, Y.; Setoh, K.; Kawaguchi, T.; Kosugi, S.; Ito, Y.; Nakayama, T.; Matsuda, F. Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study. Diabetes Res. Clin. Pract. 2017, 127, 123–131. [Google Scholar] [CrossRef]
- Oda, M.N. High-density lipoprotein cholesterol: Origins and the path ahead. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 133–141. [Google Scholar] [CrossRef]
- El-Ruby, M.; Ghalli, I.; Salah, N.; Hussien, F.; Erfan, M.; El-Ruby, M.; Mazen, I.; Sabry, M.; El-am Knack Razik, M.; Saad, M.; et al. Egyptian Growth Curves 2002 for Infants, Children and Adolescents; Sartorio, A., Buckler, J.M.H., Marazzi, N., Eds.; Crescere nel Mondo. Ferring Publisher: Milan, Italy, 2008. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Cheitlin, M.D.; Armstrong, W.F.; Aurigemma, G.P.; Beller, G.A.; Bierman, F.Z.; Davis, J.L.; Douglas, P.S.; Faxon, D.P.; Gillam, L.D.; Kimball, T.R.; et al. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J. Am. Soc. Echocardiogr. 2003, 16, 1091–1110. [Google Scholar] [PubMed]
- Majonga, E.D.; Rehman, A.M.; McHugh, G.; Mujuru, H.A.; Nathoo, K.; Patel, M.S.; Munyati, S.; Odland, J.O.; Kranzer, K.; Kaski, J.P.; et al. Echocardiographic reference ranges in older children and adolescents in sub-Saharan Africa. Int. J. Cardiol. 2017, 248, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Biltagi, M.A.; Tolba, O.A.; Mawlana, W.; Abd El Hamed, A.; Ghazy, M. Resistin and right ventricular function in children with recently diagnosed type-1 diabetes mellitus: A case control study. J. Pediatric Endocrinol. Metab. 2015, 28, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
T1DM Males (n = 30) | T1DM Females (n = 48) | p Value | Reference Ranges | |||
---|---|---|---|---|---|---|
Healthy | Borderline | Abnormal | ||||
Age (years) | 14.99 ± 2.59 | 14.19 ± 2.29 | 0.15 | - | - | - |
T1DM onset (age) | 7.5 (4.13) | 6.0 (3.88) | 0.35 | - | - | - |
Duration of T1DM (years) | 6.0 (3.13) | 6.0 (3.75) | 0.73 | - | - | - |
HbA1c (%) Last year 3 years-average | 9.58 ± 2.14 8.98 ± 1.48 | 10.12 ± 2.49 9.55 ± 1.74 | 0.33 0.13 | <7.5 | 7.5–8.0 | ≥8.0 [19] |
FBG (mg/dL) Last year | 127.0 (64.25) | 138.0 (39.75) | 0.70 | <100 | ≥100–126 | ≥126 [26] |
A/C ratio (mg/g) Last year 3 years-average | 23.0 (55.75) 16.0 (27.0) | 20.0 (22.25) 20.5 (15.98) | 0.13 0.28 | <30 | 30–299 | ≥300 [20] |
Micro-albuminuria (%) Last year 3 years-average | 33.33 33.33 | 22.90 27.10 | 0.31 0.55 | - | - | - |
Macro-albuminuria (%) Last year 3 years-average | 3.3 0 | 2.1 0 | 0.73 - | - | - | - |
TC (mg/dL) Last year 3 years-average | 163.5 (64.25) 169.5 (50.25) | 172.0 (36.5) 171.0 (39.25) | 0.16 0.24 | <170 | 170–199 | ≥200 [21] |
LDL (mg/dL) Last year 3 years-average | 98.32 ± 26.73 96.0 (39.75) | 106.54 ± 26.77 101.0 (24.5) | 0.19 0.07 | <110 | 110–129 | ≥130 [21] |
HDL (mg/dL) Last year 3 years-average | 43.5 (18.75) 49.0 (11.25) | 50.0 (17.0) 49.0 (14.5) | 0.21 0.61 | >45 | 40–45 | ≤40 [21] |
TGs (mg/dL) Last year 3 years-average | 83.5 (37.0) 80.0 (28.25) | 90.0 (33.5) 86.0 (29.75) | 0.81 0.35 | <90 | 90–129 | ≥130 [21] |
TC/HDL ratio Last year 3 years-average | 3.44 (1.49) 3.39 ± 0.86 | 3.46 (1.28) 3.57 ± 0.96 | 0.70 0.40 | <3.8 | - | >3.8 [23] |
TG/HDL ratio Last year 3 years-average | 1.71 (1.08) 1.72 ± 0.63 | 1.67 (1.0) 1.84 ± 0.76 | 0.86 0.47 | <2.05 | - | >2.05 [24] |
BMI (kg/m2) | 20.61 ± 2.64 | 21.25 ± 3.69 | 0.40 | - | - | ≥85th perc. [22] |
BMI-SDS | 0.51 ± 0.95 | 0.59 ± 1.06 | 0.73 | - | - | - |
Height-SDS | −0.80 ± 1.25 | −0.77 ± 1.16 | 0.89 | - | - | - |
WC (cm) | 71.06 ± 6.86 | 71.77 ± 8.93 | 0.71 | - | - | ≥90th perc. [22] |
T1DM Males (n = 30) | T1DM Females (n = 48) | p Value | Reference Ranges | |||
---|---|---|---|---|---|---|
Healthy | Borderline | Abnormal | ||||
SBP (mm Hg) | 119.16 ± 8.59 | 112.16 ± 9.32 | 0.001 | <120 | 120–129 | ≥130 [19] |
DBP (mm Hg) | 76.06 ± 7.66 | 76.08 ± 8.86 | 0.99 | <80 | - | ≥80 [19] |
2D-Echo/Doppler | ||||||
FS (%) | 43.0 (7.0) | 39.0 (8.0) | 0.03 | >38 | - | <38 [28] |
EF (%) | 77.5 (12.25) | 73.0 (14.75) | 0.03 | >68 | - | <68 [28] |
LVEDVI (mL/m2) | 71.0 (6.25) | 72.0 (4.75) | 0.58 | <77 | - | >77 [29] |
TDI | ||||||
LV—E/e’ ratio | 10.0 (6.25) | 8.0 (7.75) | 0.50 | <6.94 | - | >6.94 [28] |
RV—e’/a’ ratio | 1.55 (0.90) | 1.75 (0.90) | 0.91 | >1.28 | - | <1.28 [31] |
T1DM Males (n = 30) | T1DM Females (n = 48) | |||||
---|---|---|---|---|---|---|
Non-Diastolic Dysfunction (n = 10) | Diastolic Dysfunction (n = 20) | p Value | Non-Diastolic Dysfunction (n = 24) | Diastolic Dysfunction (n = 24) | p Value | |
Age (years) | 16.09 ± 2.70 | 14.45 ± 2.42 | 0.10 | 14.75 ± 2.45 | 13.63 ± 2.01 | 0.09 |
T1DM onset (age) | 9.0 (2.75) | 5.5(5.38) | 0.10 | 5.75 (4.38) | 6.0 (4.0) | 0.65 |
Duration of T1DM (years) | 6.50 (2.50) | 6.00 (3.38) | 0.61 | 6.25 (5.50) | 6.00 (3.00) | 0.66 |
HbA1c (%) Last year 3 years-average | 9.82 ± 2.61 9.2 ± 1.82 | 9.46 ± 1.94 8.87 ± 1.33 | 0.67 0.58 | 9.53 ± 2.72 9.24 ± 1.80 | 10.71 ± 2.14 9.87 ± 1.676 | 0.10 0.21 |
FBG (mg/dL) Last year | 153.5 (84.5) | 124.5 (51.5) | 0.24 | 134.0 (34.0) | 139.5 (63.5) | 0.59 |
A/C ratio (mg/g) Last year 3 years-average | 21.0 (77.0) 15.0 (13.50) | 26.5 (45.85) 18.0 (40.5) | 0.55 0.44 | 18.0 (16.50) 17.5 (11.25) | 21.5 (37.25) 24.5 (18.75) | 0.24 0.06 |
Micro-albuminuria (%) Last year 3 years-average | 30 10 | 70 90 | 0.72 0.05 | 27.3 30.8 | 72.7 69.2 | 0.86 0.10 |
Macro-albuminuria (%) Last year 3 years-average | 0 0 | 100 0 | 0.72 - | 0 0 | 100 0 | 0.31 - |
TC (mg/dL) Last year 3 years-average | 146.0 (78.5) 139.5(69.25) | 169.0 (50.75) 171.5 (41.0) | 0.24 0.23 | 169.0 (50.0) 161.5 (48.0) | 172.0 (45.75) 173 (29.5) | 0.29 0.18 |
LDL (mg/dL) Last year 3 years-average | 87.5 ± 21.71 79.0 (35.75) | 103.74 ± 27.84 100.0 (53.25) | 0.11 0.07 | 102.45 ± 28.75 100 (39.75) | 110.62 ± 24.56 104.5 (19.0) | 0.29 0.17 |
HDL (mg/dL) Last year 3 years-average | 43.0 (16.0)48.0 (16.50) | 45.0 (24.25)50.0 (9.5) | 0.470.32 | 57.5 (18.5)54.0 (15.25) | 45.5 (14.75)46.0 (15.25) | 0.020.02 |
TGs (mg/dL) Last year 3 years-average | 83.0 (40.0) 73.50 (21.50) | 85.0 (38.25) 84.5 (38.5) | 0.81 0.28 | 84.0 (41.5) 79.0 (30.0) | 90.0 (31.25) 87.0 (29.5) | 0.26 0.06 |
TC/HDL ratio Last year 3 years-average | 3.22 (2.01) 3.46 ±1.18 | 3.44 (1.13) 3.36 ± 0.69 | 0.84 0.78 | 3.12 (1.24) 3.22 ± 0.78 | 3.79 (1.42) 3.93 ± 1.01 | 0.01 0.01 |
TG/HDL ratio Last year 3 years-average | 1.74 (1.62) 1.73 ± 0.64 | 1.71 (0.83) 1.71 ± 0.64 | 0.81 0.93 | 1.47 (0.95) 1.58 ± 0.71 | 2.03 (0.91) 2.09 ± 0.74 | 0.02 0.02 |
BMI (Kg/m2) | 20.79 ± 1.98 | 20.52 ± 2.96 | 0.79 | 21.58 ± 3.32 | 20.92 ± 4.08 | 0.53 |
BMI-SDS | 0.40 ± 0.74 | 0.57 ± 1.05 | 0.65 | 0.60 ± 1.01 | 0.58 ± 1.14 | 0.95 |
Height-SDS | −1.13± 1.53 | −0.64 ± 1.09 | 0.32 | −0.64 ± 1.09 | −0.90 ± 1.23 | 0.44 |
WC (cm) | 71.1±3.6 | 71.05 ± 8.11 | 0.98 | 72.41 ± 7.90 | 71.12 ± 9.99 | 0.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khedr, D.; Hafez, M.; Lumpuy-Castillo, J.; Emam, S.; Abdel-Massih, A.; Elmougy, F.; Elkaffas, R.; Mahillo-Fernández, I.; Lorenzo, O.; Musa, N. Lipid Biomarkers as Predictors of Diastolic Dysfunction in Diabetes with Poor Glycemic Control. Int. J. Mol. Sci. 2020, 21, 5079. https://doi.org/10.3390/ijms21145079
Khedr D, Hafez M, Lumpuy-Castillo J, Emam S, Abdel-Massih A, Elmougy F, Elkaffas R, Mahillo-Fernández I, Lorenzo O, Musa N. Lipid Biomarkers as Predictors of Diastolic Dysfunction in Diabetes with Poor Glycemic Control. International Journal of Molecular Sciences. 2020; 21(14):5079. https://doi.org/10.3390/ijms21145079
Chicago/Turabian StyleKhedr, Dina, Mona Hafez, Jairo Lumpuy-Castillo, Soha Emam, Antoine Abdel-Massih, Fatma Elmougy, Rasha Elkaffas, Ignacio Mahillo-Fernández, Oscar Lorenzo, and Noha Musa. 2020. "Lipid Biomarkers as Predictors of Diastolic Dysfunction in Diabetes with Poor Glycemic Control" International Journal of Molecular Sciences 21, no. 14: 5079. https://doi.org/10.3390/ijms21145079
APA StyleKhedr, D., Hafez, M., Lumpuy-Castillo, J., Emam, S., Abdel-Massih, A., Elmougy, F., Elkaffas, R., Mahillo-Fernández, I., Lorenzo, O., & Musa, N. (2020). Lipid Biomarkers as Predictors of Diastolic Dysfunction in Diabetes with Poor Glycemic Control. International Journal of Molecular Sciences, 21(14), 5079. https://doi.org/10.3390/ijms21145079