C-Type Lectins in Veterinary Species: Recent Advancements and Applications
Abstract
:1. Introduction
2. Protective Role of Veterinary Relevant CTLs
3. Detrimental Role of Veterinary Relevant CTLs
3.1. Pathological Inflammation
3.2. Exploitation of CTLs by Pathogens
4. Harnessing the Power of CTLs
4.1. General Aspects
4.2. Prophylaxis
4.3. Therapeutic Applications
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cummings, R.D. Stuck on sugars—how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 2019, 36, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Van Kooyk, Y.; Rabinovich, A.G. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 2008, 9, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, H.; Toegel, S.; Caballero, G.G.; Manning, J.C.; Ledeen, R.W.; Gabius, H.-J. Galectins: Their network and roles in immunity/tumor growth control. Histochem. Cell Biol. 2016, 147, 239–256. [Google Scholar] [CrossRef]
- Macauley, M.S.; Crocker, P.R.; Paulson, J.C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 2014, 14, 653–666. [Google Scholar] [CrossRef] [Green Version]
- Mayer, S.; Raulf, M.-K.; Lepenies, B. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 2016, 147, 223–237. [Google Scholar] [CrossRef]
- Wang, X.-W.; Vasta, G.R.; Wang, J.-X. The functional relevance of shrimp C-type lectins in host-pathogen interactions. Dev. Com. Immunol. 2020, 109, 103708. [Google Scholar] [CrossRef]
- Xia, X.; You, M.; Rao, X.-J.; Yu, X.-Q. Insect C-type lectins in innate immunity. Dev. Comp. Immunol. 2018, 83, 70–79. [Google Scholar] [CrossRef]
- Speakman, E.A.; Dambuza, I.M.; Salazar, F.; Brown, G.D. T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends Immunol. 2020, 41, 61–76. [Google Scholar] [CrossRef]
- Plantinga, T.; Van Der Velden, W.J.F.M.; Ferwerda, B.; Van Spriel, A.B.; Adema, G.; Feuth, T.; Donnelly, J.P.; Brown, G.D.; Kullberg, B.-J.; Blijlevens, N.M.A.; et al. Early Stop Polymorphism in Human DECTIN-1 is Associated with Increased Candida Colonization in Hematopoietic Stem Cell Transplant Recipients. Clin. Infect. Dis. 2009, 49, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.; Di Ianni, M.; Bozza, S.; Giovannini, G.; Zagarella, S.; Zelante, T.; D’Angelo, C.; Pierini, A.; Pitzurra, L.; Falzetti, F.; et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010, 116, 5394–5402. [Google Scholar] [CrossRef]
- Del Fresno, C.; Saz-Leal, P.; Enamorado, M.; Wculek, S.K.; Martínez-Cano, S.; Blanco-Menéndez, N.; Schulz, O.; Gallizioli, M.; Miró-Mur, F.; Cano, E.; et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 2018, 362, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Tang, N.; Guo, H.; Zhang, J. C-Type Lectin Receptor Dectin-1 Suppresses the Development of Experimental Autoimmune Encephalomyelitis. J. Immunol. 2020, 204 (Suppl. 1), 150.19. [Google Scholar]
- Sancho, D.; Sousa, E.C.R. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 2012, 30, 491–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Vallejo, J.-J.; Van Kooyk, Y. Endogenous ligands for C-type lectin receptors: The true regulators of immune homeostasis. Immunol. Rev. 2009, 230, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.P.; Lepenies, B. Bacterial glycans and their interactions with lectins in the innate immune system. Biochem. Soc. Trans. 2019, 47, 1569–1579. [Google Scholar] [CrossRef]
- Monteiro, J.G.T.; Lepenies, B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, A.; Carrero, J.C.; Rodriguez-Sosa, M. Parasitic Infections: A Role for C-Type Lectins Receptors. BioMed Res. Int. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Kimura, Y.; Inoue, A.; Hangai, S.; Saijo, S.; Negishi, H.; Nishio, J.; Yamasaki, S.; Iwakura, Y.; Yanai, H.; Taniguchi, T. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc. Natl. Acad. Sci. USA 2016, 113, 14097–14102. [Google Scholar] [CrossRef] [Green Version]
- Dambuza, I.M.; Brown, G.D. C-type lectins in immunity: Recent developments. Curr. Opin. Immunol. 2014, 32, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Willment, J.A.; Whitehead, L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018, 18, 374–389. [Google Scholar] [CrossRef]
- Ostrop, J.; Lang, R. Contact, Collaboration, and Conflict: Signal Integration of Syk-Coupled C-Type Lectin Receptors. J. Immunol. 2017, 198, 1403–1414. [Google Scholar] [CrossRef] [Green Version]
- Del Fresno, C.; Iborra, S.; Saz-Leal, P.; Martínez-López, M.; Sancho, D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front. Immunol. 2018, 9, 804. [Google Scholar] [CrossRef]
- Redelinghuys, P.; Whitehead, L.; Augello, A.; Drummond, R.; Levesque, J.-M.; Vautier, S.; Reid, D.M.; Kerscher, B.; Taylor, A.J.; Nigrovic, A.P.; et al. MICL controls inflammation in rheumatoid arthritis. Ann. Rheum. Dis. 2015, 75, 1386–1391. [Google Scholar] [CrossRef] [Green Version]
- Bermejo-Jambrina, M.; Eder, J.; Helgers, L.C.; Hertoghs, N.; Nijmeijer, B.M.; Stunnenberg, M.; Geijtenbeek, T.B.H. C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Front. Immunol. 2018, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, P.; Bunnell, S.C.; Stadecker, M.J. The C-type Lectin Receptor-Driven, Th17 Cell-Mediated Severe Pathology in Schistosomiasis: Not All Immune Responses to Helminth Parasites Are Th2 Dominated. Front. Immunol. 2019, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Raulf, M.-K.; Johannssen, T.; Matthiesen, S.; Neumann, K.; Hachenberg, S.; Mayer-Lambertz, S.; Steinbeis, F.; Hegermann, J.; Seeberger, P.H.; Baumgärtner, W.; et al. The C-type Lectin Receptor CLEC12A Recognizes Plasmodial Hemozoin and Contributes to Cerebral Malaria Development. Cell Rep. 2019, 28, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Maglinao, M.; Klopfleisch, R.; Seeberger, P.H.; Lepenies, B. The C-Type Lectin Receptor DCIR Is Crucial for the Development of Experimental Cerebral Malaria. J. Immunol. 2013, 191, 2551–2559. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Huang, W.; Deng, Q.; Wu, M.; Jiang, H.; Lin, X.; Sun, Y.; Huang, X.; Yuan, J. Inhibition of TREM-1 and Dectin-1 Alleviates the Severity of Fungal Keratitis by Modulating Innate Immune Responses. PLoS ONE 2016, 11, e0150114. [Google Scholar] [CrossRef]
- Chiffoleau, E. C-Type Lectin-Like Receptors as Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front. Immunol. 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Yao, Y.; Zhang, S.; Su, C.; Zhang, Y. C-type lectins facilitate tumor metastasis. Oncol. Lett. 2016, 13, 13–21. [Google Scholar] [CrossRef]
- Maglinao, M.; Eriksson, M.; Schlegel, M.K.; Zimmermann, S.; Johannssen, T.; Götze, S.; Seeberger, P.H.; Lepenies, B. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J. Control. Release 2014, 175, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Streng-Ouwehand, I.; Litjens, M.; Weelij, D.R.; García-Vallejo, J.-J.; Van Vliet, S.J.; Saeland, E.; Van Kooyk, Y. Characterization of murine MGL1 and MGL2 C-type lectins: Distinct glycan specificities and tumor binding properties. Mol. Immunol. 2009, 46, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Omahdi, Z.; Yamasaki, S. Direct Binding Analysis Between C-Type Lectins and Glycans Using Immunoglobulin Receptor Fusion Proteins. In Methods in Molecular Biology; Springer Science and Business Media LLC Humana: New York, NY, USA, 2020; pp. 119–128. [Google Scholar]
- Andreasen, A.; Skovgaard, K.; Klaver, E.; Van Die, I.; Mejer, H.; Thamsborg, S.M.; Kringel, H. Comparison of innate and Th1-type host immune responses in Oesophagostomum dentatum and Trichuris suis infections in pigs. Parasite Immunol. 2015, 38, 53–63. [Google Scholar] [CrossRef]
- Klaver, E.; Kuijk, L.M.; Laan, L.C.; Kringel, H.; Van Vliet, S.J.; Bouma, G.; Cummings, R.D.; Kraal, G.; Van Die, I. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int. J. Parasitol. 2013, 43, 191–200. [Google Scholar] [CrossRef]
- Mayer, S.; Moeller, R.; Monteiro, J.G.T.; Ellrott, K.; Josenhans, C.; Lepenies, B. C-Type Lectin Receptor (CLR)–Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front. Immunol. 2018, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Miyake, Y.; Oh-Hora, M.; Yamasaki, S. C-Type Lectin Receptor MCL Facilitates Mincle Expression and Signaling through Complex Formation. J. Immunol. 2015, 194, 5366–5374. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Itoh, F.; Yoshida, S.; Saijo, S.; Matsuzawa, T.; Gonoi, T.; Saito, T.; Okawa, Y.; Shibata, N.; Miyamoto, T.; et al. Identification of Distinct Ligands for the C-type Lectin Receptors Mincle and Dectin-2 in the Pathogenic Fungus Malassezia. Cell Host Microbe 2013, 13, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Van Liempt, E.; Van Vliet, S.J.; Engering, A.; García-Vallejo, J.-J.; Bank, C.M.; Sanchez-Hernandez, M.; Van Kooyk, Y.; Van Die, I. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 2007, 44, 2605–2615. [Google Scholar] [CrossRef]
- Preite, N.W.; Feriotti, C.; De Lima, D.S.; Da Silva, B.B.; Condino-Neto, A.; Pontillo, A.; Calich, V.L.G.; Loures, F. The Syk-Coupled C-Type Lectin Receptors Dectin-2 and Dectin-3 Are Involved in Paracoccidioides brasiliensis Recognition by Human Plasmacytoid Dendritic Cells. Front. Immunol. 2018, 9, 464. [Google Scholar] [CrossRef]
- Schick, J.; Etschel, P.; Bailo, R.; Ott, L.; Bhatt, A.; Lepenies, B.; Kirschning, C.; Burkovski, A.; Lang, R. Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids. Infect. Immun. 2017, 85, e00075-17. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, E.; Ishikawa, T.; Morita, Y.S.; Toyonaga, K.; Yamada, H.; Takeuchi, O.; Kinoshita, T.; Akira, S.; Yoshikai, Y.; Yamasaki, S. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J. Exp. Med. 2009, 206, 2879–2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, K.; Castineiras-Vilarino, M.; Höckendorf, U.; Hannesschläger, N.; Lemeer, S.; Kupka, D.; Meyermann, S.; Lech, M.; Anders, H.-J.; Kuster, B.; et al. Clec12a Is an Inhibitory Receptor for Uric Acid Crystals that Regulates Inflammation in Response to Cell Death. Immunity 2014, 40, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Kiyotake, R.; Oh-Hora, M.; Ishikawa, E.; Miyamoto, T.; Ishibashi, T.; Yamasaki, S. Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. J. Biol. Chem. 2015, 290, 25322–25332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyonaga, K.; Torigoe, S.; Motomura, Y.; Kamichi, T.; Hayashi, J.; Morita, Y.; Noguchi, N.; Chuma, Y.; Kiyohara, H.; Matsuo, K.; et al. C-Type Lectin Receptor DCAR Recognizes Mycobacterial Phosphatidyl-Inositol Mannosides to Promote a Th1 Response during Infection. Immunity 2016, 45, 1245–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, R.; Lionakis, M.S. Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity. Front. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, G.J.; Marakalala, M.J.; Hoving, J.C.; van Laarhoven, A.; Drummond, R.A.; Kerscher, B.; Keeton, R.; van de Vosse, E.; Platinga, T.S.; Ottenhoff, T.H.M.; et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 2015, 17, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Lin, G.; Langdon, W.Y.; Tao, L.; Zhang, J. Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front. Immunol. 2018, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Pelegrín, E.; Toki, D.; Poderoso, T.; Revilla, C.; Ezquerra, A.; Uenishi, H.; de la Riva, P.M.; Álvarez, B.; Domínguez, J. Porcine CLEC12B is expressed on alveolar macrophages and blood dendritic cells. Dev. Comp. Immunol. 2020, 111, 103767. [Google Scholar] [CrossRef]
- Baert, K.; Sonck, E.; Goddeeris, B.; Devriendt, B.; Cox, E. Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells. Dev. Comp. Immunol. 2015, 48, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Zoccola, E.; Kellie, S.; Barnes, A. Immune transcriptome reveals the mincle C-type lectin receptor acts as a partial replacement for TLR4 in lipopolysaccharide-mediated inflammatory response in barramundi (Lates calcarifer). Mol. Immunol. 2017, 83, 33–45. [Google Scholar] [CrossRef]
- Nerren, J.R.; Kogut, M.H. The selective Dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2009, 127, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Jo, H.; Shin, S.H.; Kim, S.-M.; Kim, B.; Shim, H.S.; Park, J.-H. Mincle and STING-Stimulating Adjuvants Elicit Robust Cellular Immunity and Drive Long-Lasting Memory Responses in a Foot-and-Mouth Disease Vaccine. Front. Immunol. 2019, 10, 2509. [Google Scholar] [CrossRef]
- Jégouzo, S.A.F.; Feinberg, H.; Morrison, A.G.; Holder, A.; May, A.; Huang, Z.; Jiang, L.; Lasanajak, Y.; Smith, D.F.; Werling, D.; et al. CD23 is a glycan-binding receptor in some mammalian species. J. Biol. Chem. 2019, 294, 14845–14859. [Google Scholar] [CrossRef] [Green Version]
- Hanske, J.; Schulze, J.; Aretz, J.; McBride, R.; Loll, B.; Schmidt, H.; Knirel, Y.; Rabsch, W.; Wahl, M.C.; Paulson, J.C.; et al. Bacterial Polysaccharide Specificity of the Pattern Recognition Receptor Langerin Is Highly Species-dependent. J. Biol. Chem. 2016, 292, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.B.; Torigoe, S.; Yamasaki, S.; Williams, S.J. Mycobacterium tuberculosis β-gentiobiosyl diacylglycerides signal through the pattern recognition receptor Mincle: Total synthesis and structure activity relationships. Chem. Commun. 2015, 51, 15027–15030. [Google Scholar] [CrossRef]
- Drickamer, K.; Taylor, M.E. Recent insights into structures and functions of C-type lectins in the immune system. Curr. Opin. Struct. Biol. 2015, 34, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Morita, D.; Fujiwara, N.; Mori, D.; Nakamura, T.; Harashima, H.; Yamasaki, S.; Sugita, M. Glycerol Monomycolate Is a Novel Ligand for the Human, but Not Mouse Macrophage Inducible C-type Lectin, Mincle. J. Biol. Chem. 2014, 289, 15405–15412. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ao, D.; Ni, J.; Chen, N.; Meurens, F.; Zhu, J. The signaling relations between three adaptors of porcine C-type lectin receptor pathway. Dev. Comp. Immunol. 2020, 104, 103555. [Google Scholar] [CrossRef]
- Lindenwald, D.L.; Monteiro, J.T.; Rautenschlein, S.; Meens, J.; Jung, K.; Becker, S.C.; Lepenies, B. Ovine C-type lectin receptor hFc-fusion protein library—A novel platform to screen for host-pathogen interactions. Vet. Immunol. Immunopathol. 2020, 224, 110047. [Google Scholar] [CrossRef]
- Jégouzo, S.A.F.; Nelson, C.; Hardwick, T.; Wong, S.T.A.; Lau, N.K.K.; Neoh, G.K.E.; Castellanos-Rueda, R.; Huang, Z.; Mignot, B.; Hirdaramani, A.; et al. Mammalian lectin arrays for screening host-microbe interactions. J. Biol. Chem. 2020, 295, 4541–4555. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef] [Green Version]
- Gopi, B.; Singh, R.V.; Kumar, S.; Kumar, S.; Chauhan, A.; Kumar, A.; Singh, S.V. Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. J. Genet. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Baker, L.A.; Kirkpatrick, B.; Rosa, G.J.M.; Gianola, D.; Valente, B.; Sumner, J.P.; Baltzer, W.; Hao, Z.; Binversie, E.E.; Volstad, N.; et al. Genome-wide association analysis in dogs implicates 99 loci as risk variants for anterior cruciate ligament rupture. PLoS ONE 2017, 12, e0173810. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Verschoor, C.; Schenkel, F.; You, Q.; Kelton, D.; Karrow, N.A. Bovine CLEC7A genetic variants and their association with seropositivity in Johne’s disease ELISA. Gene 2014, 537, 302–307. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Singh, R.V.; Chauhan, A.; Kumar, A.; Bharati, J.; Singh, S. Association of Bovine CLEC7A gene polymorphism with host susceptibility to paratuberculosis disease in Indian cattle. Res. Vet. Sci. 2019, 123, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, H.; Toki, D.; Okumura, N.; Takenouchi, T.; Kitani, H.; Uenishi, H. Polymorphisms of the immune-modulating receptor dectin-1 in pigs: Their functional influence and distribution in pig populations. Immunogenetics 2016, 68, 275–284. [Google Scholar] [CrossRef]
- Ainslie-Garcia, M.H.; Farzan, A.; Jafarikia, M.; Lillie, B.N. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet. Microbiol. 2018, 219, 171–177. [Google Scholar] [CrossRef]
- Ulrich-Lynge, S.L.; Juul-Madsen, H.R.; Kjærup, R.B.; Okimoto, R.; Abrahamsen, M.S.; Maurischat, S.; Sørensen, P.; Dalgaard, T.S. Broilers with low serum Mannose-binding Lectin show increased fecal shedding of Salmonella enterica serovar Montevideo. Poult. Sci. 2016, 95, 1779–1786. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, Z.; Yan, G.; Wang, D.; Ban, Q.; Yu, P.; Zhang, W.; Luo, Y. Polymorphisms in mannose-binding lectin (MBL) gene and their association with MBL protein levels in serum in the Hu sheep. Vet. Immunol. Immunopathol. 2011, 140, 297–302. [Google Scholar] [CrossRef]
- Johansson, P.; Wang, T.; Collet, B.; Corripio-Miyar, Y.; Monte, M.; Secombes, C.J.; Zou, J. Identification and expression modulation of a C-type lectin domain family 4 homologue that is highly expressed in monocytes/macrophages in rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 2016, 54, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shi, Y.; Hu, S.; Wu, T.; Zhao, Z. Characterization and Functional Analysis of Two Transmembrane C-Type Lectins in Obscure Puffer (Takifugu obscurus). Front. Immunol. 2020, 11, 436. [Google Scholar] [CrossRef]
- Petit, J.; Bailey, E.C.; Wheeler, R.T.; de Oliveira, C.A.F.; Forlenza, M.; Wiegertjes, G.F. Studies Into β-Glucan Recognition in Fish. Suggests a Key Role for the C-Type Lectin Pathway. Front. Immunol. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Goodridge, H.S.; Wolf, A.J.; Underhill, D.M. Beta-glucan recognition by the innate immune system. Immunol. Rev. 2009, 230, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Kiron, V.; Kulkarni, A.; Dahle, D.; Vasanth, G.; Lokesh, J.; Elvebo, O. Recognition of purified beta 1,3/1,6 glucan and molecular signalling in the intestine of Atlantic salmon. Dev. Comp. Immunol. 2016, 56, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimara, N.; Chanyalew, M.; Aseffa, A.; Van Zandbergen, G.; Lepenies, B.; Schmid, M.; Weiss, R.; Rascle, A.; Wege, A.K.; Jantsch, J.; et al. Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Front. Immunol. 2018, 9, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima-Junior, D.S.; Mineo, T.W.P.; Calich, V.L.G.; Zamboni, D.S. Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production to Trigger Inflammasome Assembly and Restriction of Parasite Replication. J. Immunol. 2017, 199, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Petitdidier, E.; Pagniez, J.; Papierok, G.; Vincendeau, P.; Lemesre, J.-L.; Bras-Gonçalves, R. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs. PLoS Negl. Trop. Dis. 2016, 10, e0004614. [Google Scholar] [CrossRef] [PubMed]
- Olías-Molero, A.I.; Corral, M.J.; Jiménez-Antón, M.D.; Alunda, J.M. Early antibody response and clinical outcome in experimental canine leishmaniasis. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J. Assessment of Vaccine-Induced Immunity Against Canine Visceral Leishmaniasis. Front. Vet. Sci. 2019, 6, 168. [Google Scholar] [CrossRef]
- Sparks, A.M.; Watt, K.; Sinclair, R.; Pilkington, J.G.; Pemberton, J.M.; McNeilly, T.N.; Nussey, D.H.; Johnston, E.S. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet. 2019, 15, e1008461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Jørgensen, S.F.; Maggadottir, S.M.; Bakay, M.; Warnatz, K.; Glessner, J.T.; Pandey, R.; Salzer, U.; Schmidt, R.E.; Pérez, E.; et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Robledo, D.; Gutiérrez, A.P.; Barría, A.; Yáñez, J.M.; Houston, R.D. Gene Expression Response to Sea Lice in Atlantic Salmon Skin: RNA Sequencing Comparison Between Resistant and Susceptible Animals. Front. Genet. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, B.J.G.; Koczka, K.W.; Yasuike, M.; Jantzen, S.G.; Yazawa, R.; Koop, B.F.; Jones, S. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC Genom. 2014, 15, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelli, R.; De Koster, J.; Roberts, J.N.; De Souza, J.; Lock, A.L.; Raphael, W.; Agnew, D.; Contreras, G.A. Impact of uterine macrophage phenotype on placental retention in dairy cows. Theriogenology 2019, 127, 145–152. [Google Scholar] [CrossRef]
- Cvitas, I.; Oberhänsli, S.; Leeb, T.; Dettwiler, M.; Müller, E.; Bruggman, R.; Marti, E.I. Investigating the epithelial barrier and immune signatures in the pathogenesis of equine insect bite hypersensitivity. PLoS ONE 2020, 15, e0232189. [Google Scholar] [CrossRef]
- Leal, S.M., Jr.; Sun, Y.; Pearlman, E. An Essential Role for Dectin 1 in the Pathogenesis of Aspergillus fumigatus Keratitis. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2400. [Google Scholar]
- Li, K.; Neumann, K.; Duhan, V.; Namineni, S.; Hansen, A.L.; Wartewig, T.; Kurgyis, Z.; Holm, C.K.; Heikenwalder, M.; Lang, K.S.; et al. The uric acid crystal receptor Clec12A potentiates type I interferon responses. Proc. Natl. Acad. Sci. USA 2019, 116, 18544–18549. [Google Scholar] [CrossRef] [Green Version]
- Lozach, P.-Y.; Kühbacher, A.; Meier, R.; Mancini, R.; Bitto, D.; Bouloy, M.; Helenius, A. DC-SIGN as a Receptor for Phleboviruses. Cell Host Microbe 2011, 10, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Tekes, G.; Thiel, H.J. Chapter Six–Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis. In Advanced Virus Research; Ziebuhr, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 96, pp. 193–218. [Google Scholar]
- Regan, A.D.; Ousterout, D.G.; Whittaker, G.R. Feline Lectin Activity Is Critical for the Cellular Entry of Feline Infectious Peritonitis Virus. J. Virol. 2010, 84, 7917–7921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Buckles, E.; Whittaker, G.R. Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet. Microbiol. 2012, 157, 285–293. [Google Scholar] [CrossRef]
- Yang, K.; He, Y.; Park, C.G.; Kang, Y.S.; Zhang, P.; Han, Y.; Cui, Y.; Bulgheresi, S.; Anisimov, A.P.; Dentovskaya, S.V.; et al. Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Front. Immunol. 2019, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Njiri, O.A.; Zhang, X.; Zhang, Y.; Wu, B.; Jiang, L.; Li, Q.; Liu, W.; Chen, T. CD209 C-Type Lectins Promote Host Invasion, Dissemination, and Infection of Toxoplasma gondii. Front. Immunol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Kalay, H.; Noya, V.; Brossard, N.; Giacomini, C.; Van Kooyk, Y.; García-Vallejo, J.J.; Freire, T. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy. Sci. Rep. 2017, 7, 46748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.; Reichel, M.P.; Ellis, J. Neospora abortions in dairy cattle: Diagnosis, mode of transmission and control. Vet. Parasitol. 2005, 128, 231–241. [Google Scholar] [CrossRef]
- Da Silva, M.V.; França, F.B.F.; Mota, C.M.; Junior, A.G.D.M.; Ramos, E.L.P.; Santiago, F.M.; Mineo, J.R.; Mineo, T.W.P. Dectin-1 Compromises Innate Responses and Host Resistance against Neospora caninum Infection. Front. Immunol. 2017, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Loukas, A.; Doedens, A.; Hintz, M.; Maizels, R.M. Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands. Parasitology 2000, 121, 545–554. [Google Scholar] [CrossRef]
- Loukas, A.; Mullin, N.; Tetteh, K.K.; Moens, L.; Maizels, R.M. A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Curr. Biol. 1999, 9, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Van Die, I.; Cummings, R.D. Glycan gimmickry by parasitic helminths: A strategy for modulating the host immune response? Glycobiology 2009, 20, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Hokke, C.H.; van Diepen, A. Helminth glycomics—glycan repertoires and host-parasite interactions. Mol. Biochem. Parasitol. 2017, 215, 47–57. [Google Scholar] [CrossRef]
- Parra-Sánchez, H.; Bustamante-Córdova, L.; Reséndiz, M.; Mata-Haro, V.; Pinelli-Saavedra, A.; Hernández, J. Analysis of Swine Conventional Dendritic Cells, DEC205+CD172a+/-CADM1+, from Blood and Spleen in Response to PRRSV and PEDV. Viruses 2019, 11, 1001. [Google Scholar] [CrossRef] [Green Version]
- Poole, J.; Day, C.J.; Von Itzstein, M.; Paton, J.C.; Jennings, M.P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Genet. 2018, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shu, J.; Li, Z. Lectin microarrays for glycoproteomics: An overview of their use and potential. Expert Rev. Proteom. 2020, 17, 27–39. [Google Scholar] [CrossRef]
- Schoenen, H.; Bodendorfer, B.; Hitchens, K.; Manzanero, S.; Werninghaus, K.; Nimmerjahn, F.; Agger, E.M.; Stenger, S.; Andersen, P.; Ruland, J.; et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol. 2010, 184, 2756–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decout, A.; Silva-Gomes, S.; Drocourt, D.; Barbe, S.; André, I.; Cueto, F.J.; Lioux, T.; Sancho, D.; Pérouzel, E.; Vercellone, A.; et al. Rational design of adjuvants targeting the C-type lectin Mincle. Proc. Natl. Acad. Sci. USA 2017, 114, 2675–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.; Schoenen, H.; Desel, C. Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: Findings, implications and open questions. Immunobiology 2011, 216, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Andrea, A.; Mikkelsen, H.; Woodworth, J.S.; Andersen, P.; Jungersen, G.; Aagaard, C. Targeting the Mincle and TLR3 receptor using the dual agonist cationic adjuvant formulation 9 (CAF09) induces humoral and polyfunctional memory T cell responses in calves. PLoS ONE 2018, 13, e0201253. [Google Scholar] [CrossRef]
- Van Dissel, J.T.; Joosten, S.A.; Hoff, S.T.; Soonawala, D.; Prins, C.; Hokey, D.; O’Dee, D.M.; Graves, A.J.; Thierry-Carstensen, B.; Andreasen, L.V.; et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 2014, 32, 7098–7107. [Google Scholar] [CrossRef] [Green Version]
- Martel, C.J.-M.; Agger, E.M.; Poulsen, J.J.; Jensen, T.H.; Andresen, L.; Christensen, D.; Nielsen, L.P.; Blixenkrone-Møller, M.; Andersen, P.; Aasted, B. CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets. PLoS ONE 2011, 6, e22891. [Google Scholar] [CrossRef]
- Villumsen, K.R.; Kania, P.W.; Christensen, D.; Koppang, E.O.; Bojesen, A.M. Injection Vaccines Formulated with Nucleotide, Liposomal or Mineral Oil Adjuvants Induce Distinct Differences in Immunogenicity in Rainbow Trout. Vaccines 2020, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Ryter, K.T.; Ettenger, G.; Rasheed, O.K.; Buhl, C.; Child, R.; Miller, S.M.; Holley, D.; Smith, A.J.; Evans, J.T. Aryl Trehalose Derivatives as Vaccine Adjuvants for Mycobacterium tuberculosis. J. Med. Chem. 2019, 63, 309–320. [Google Scholar] [CrossRef]
- Álvarez, B.; Nieto-Pelegrín, E.; De La Riva, P.M.; Toki, D.; Poderoso, T.; Revilla, C.; Uenishi, H.; Ezquerra, A.; Domínguez, J. Characterization of the Porcine CLEC12A and Analysis of Its Expression on Blood Dendritic Cell Subsets. Front. Immunol. 2020, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.T.; Guldbrandtsen, B.; Christensen, D.; Pitcovski, J.; Kjærup, R.B.; Dalgaard, T.S. Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4+ T Cell Recall Response to Infectious Bronchitis Virus. Vaccines 2020, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Jáuregui-Zúñiga, D.; Pedraza, M.; Espino-Solis, G.P.; Quintero-Hernández, V.; Olvera-Rodríguez, A.; Díaz-Salinas, M.A.; López, S.; Possani, L.D. Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Res. Vet. Sci. 2017, 111, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Jáuregui-Zúñiga, D.; Pedraza, M.; Merino-Guzman, R.; Possani, L.D. Construction and expression of a single-chain variable fragment antibody against chicken DEC 205 for targeting the bacterial expressed hemagglutinin-neuraminidase of Newcastle disease virus. Vet. Immunol. Immunopathol. 2019, 212, 9–14. [Google Scholar] [CrossRef]
- Larsen, F.T.; Bed’Hom, B.; Guldbrandtsen, B.; Dalgaard, T.S. Identification and tissue-expression profiling of novel chicken c-type lectin-like domain containing proteins as potential targets for carbohydrate-based vaccine strategies. Mol. Immunol. 2019, 114, 216–225. [Google Scholar] [CrossRef]
- Goldman, R.; Jaffe, C.L. Administration of β-glucan following Leishmania major infection suppresses disease progression in mice. Parasite Immunol. 1991, 13, 137–145. [Google Scholar] [CrossRef]
- Holbrook, T.W.; Cook, A.J. Non-specific and specific stimulation of resistance against Leishmania donovani in C57BL/6 mice. Ann. Clin. Lab. Sci. 1983, 13, 411–417. [Google Scholar]
- Alanazi, A.D.; Puschendorf, R.; Alyousif, M.S.; Al-Khalifa, M.S.; Alharbi, S.A.; Al-Shehri, Z.S.; Said, A.E.; Alanazi, I.O.; Al-Mohammed, H.I.; Alraey, Y.A. Molecular Detection of Leishmania spp. in Skin and Blood of Stray Dogs from Endemic Areas of Cutaneous Leishmaniasis in Saudi Arabia. Iran. J. Parasitol. 2019, 14, 231–239. [Google Scholar] [CrossRef]
- Pereira, A.; Parreira, R.; Cristóvão, J.M.; Castelli, G.; Bruno, F.; Vitale, F.; Campino, L.; Maia, C. Phylogenetic insights on Leishmania detected in cats as revealed by nucleotide sequence analysis of multiple genetic markers. Infect. Genet. Evol. 2019, 77, 104069. [Google Scholar] [CrossRef]
- Medkour, H.; Laidoudi, Y.; Marié, J.-L.; Fenollar, F.; Davoust, B.; Mediannikov, O. Molecular investigation of vector-borne pathogens in red foxes (Vulpes vulpes) from southern France. J. Wildl. Dis. 2020. [Google Scholar] [CrossRef]
- Bar Khan, M.; Khan, S.; Rafiq, K.; Khan, S.N.; Attaullah, S.; Ali, I. Molecular identification of Toxoplasma gondii in domesticated and broiler chickens (Gallus domesticus) that possibly augment the pool of human toxoplasmosis. PLoS ONE 2020, 15, e0232026. [Google Scholar] [CrossRef] [Green Version]
- Harnett, W.; Harnett, M.M. Helminth-derived immunomodulators: Can understanding the worm produce the pill? Nat. Rev. Immunol. 2010, 10, 278–284. [Google Scholar] [CrossRef] [PubMed]
- McGreal, E.P.; Rosas, M.; Brown, G.D.; Zamze, S.; Wong, S.Y.; Gordon, S.; Martinez-Pomares, L.; Taylor, P.R. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006, 16, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinberg, H.; Jégouzo, S.A.F.; Rex, M.J.; Drickamer, K.; Weis, W.I.; Taylor, M.E. Mechanism of pathogen recognition by human dectin-2. J. Biol. Chem. 2017, 292, 13402–13414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soria, I.; Alvarez, J.; Manzano, A.I.; López-Relaño, J.; Cases, B.; Mas-Fontao, A.; Cañada, F.J.; Fernández-Caldas, E.; Casanovas, M.; Jiménez-Barbero, J.; et al. Mite allergoids coupled to nonoxidized mannan from Saccharomyces cerevisae efficiently target canine dendritic cells for novel allergy immunotherapy in veterinary medicine. Vet. Immunol. Immunopathol. 2017, 190, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Roperto, S.; Russo, V.; Esposito, I.; Ceccarelli, D.M.; Paciello, O.; Avallone, L.; Capparelli, R.; Roperto, F. Mincle, an Innate Immune Receptor, Is Expressed in Urothelial Cancer Cells of Papillomavirus-Associated Urothelial Tumors of Cattle. PLoS ONE 2015, 10, e0141624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cash, H.L.; Whitham, C.V.; Behrendt, C.L.; Hooper, L.V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin. Science 2006, 313, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Woo, V.; Eshleman, E.M.; Rice, T.; Whitt, J.; Vallance, B.A.; Alenghat, T. Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression. Front. Immunol. 2019, 10, 928. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-H.; Liu, L.; Hou, Y.-Y.; Shen, S.-N.; Wang, T.-T. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol. Rep. 2019, 7, 312–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Chen, X.-L.; Ye, Z.-Y. The Effects of Lentinan on the Expression Patterns of β-Catenin, Bcl-2, and Bax in Murine Bone Marrow Cells Are Associated with Enhancing Dectin-1. Int. J. Med. Mushrooms 2019, 21, 1043–1050. [Google Scholar] [CrossRef]
- Bao, H.; Ran, P.; Zhu, M.; Sun, L.; Li, B.; Hou, Y.; Nie, J.; Shan, L.; Li, H.; Zheng, S.; et al. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates the Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake. Sci. Rep. 2016, 6, 28395. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Sun, L.; Zhu, Y.; Ran, P.; Hu, W.; Zhu, K.; Li, B.; Hou, Y.; Nie, J.; Gao, T.; et al. Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal Dectin-1/AMPA receptor signaling pathway. Behav. Brain Res. 2017, 317, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Bosi, A.; Banfi, D.; Bistoletti, M.; Giaroni, C.; Baj, A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int. J. Tryptophan Res. 2020, 13, 1178646920928984. [Google Scholar] [CrossRef] [PubMed]
- Orlando, J.M. Behavioral Nutraceuticals and Diets. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 473–495. [Google Scholar] [CrossRef] [PubMed]
- Ballou, M.A.; Davis, E.M.; Kasl, B.A. Nutraceuticals: An. Alternative Strategy for the Use of Antimicrobials. Vet. Clin. N. Am. Food. Anim. Pract. 2019, 35, 507–534. [Google Scholar] [CrossRef]
- Lai, Y.; Luo, M.; Zhu, F. Dietary Bacillus amyloliquefaciens enhance survival of white spot syndrome virus infected crayfish. Fish Shellfish. Immunol. 2020, 102, 161–168. [Google Scholar] [CrossRef]
- Anwar, H.; Suchodolski, J.S.; Ullah, M.I.; Hussain, G.; Shabbir, M.Z.; Mustafa, I.; Sohail, M.U. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), Supplementation Alters Gut Microbiome and Corrects Dyslipidemia in Rats. Int. J. Med. Mushrooms 2019, 21, 79–88. [Google Scholar] [CrossRef]
- Pietrzak, E.; Mazurkiewicz, J.; Slawinska, A. Innate Immune Responses of Skin Mucosa in Common Carp (Cyprinus Carpio) Fed a Diet Supplemented with Galactooligosaccharides. Animals 2020, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Kroll, F.; Putarov, T.; Zaine, L.; Venturini, K.; Aoki, C.; Santos, J.; Pedrinelli, V.; Vendramini, T.; Brunetto, M.A.; Carciofi, A. Active fractions of mannoproteins derived from yeast cell wall stimulate innate and acquired immunity of adult and elderly dogs. Anim. Feed. Sci. Technol. 2020, 261, 114392. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, T.; Wang, Y.; Chen, Y.; Cheng, W. Expression of C-type lectin receptors and Toll-like receptors in decidua of patients with unexplained recurrent spontaneous abortion. Reprod. Fertil. Dev. 2017, 29, 1613. [Google Scholar] [CrossRef]
- Lim, R.; Lappas, M. Expression and function of macrophage-inducible C-type lectin (Mincle) in inflammation driven parturition in fetal membranes and myometrium. Clin. Exp. Immunol. 2019, 197, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, M.C.; Song, G.; Kochan, K.J.; Riggs, P.; Simmons, R.M.; Elsik, C.G.; Adelson, D.L.; Bazer, F.W.; Zhou, H.; Spencer, T. Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol. Genom. 2009, 39, 85–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C-Type Lectin | Main Expression | Ligands | Recognized Pathogens (Examples) |
---|---|---|---|
Dectin-1 | Monocytes, Macrophages, Dendritic cells, NK cells, | (1→3)-β-D-glucans | C. albicans, A. fumigatus, C. neoformans, Mycobacterium spp. |
Dectin-2 | Monocytes, Macrophages, Dendritic cells, NK cells, Endothelial cells, | high-mannose oligosaccharides | C. albicans, A. fumigatus, M. tuberculosis, S. mansoni |
Mincle | Monocytes, Macrophages, Dendritic cells, | mycobacterial trehalose 6,6’-dimycolate (TDM), alpha-mannose residues, DAMPs | Mycobacterium spp., Malassezia spp. |
DC-SIGN | Dendritic cells | high-mannose and fucose-containingoligosaccharides | HIV-1, Dengue virus, Measles virus, SARS coronavirus |
DCIR | Monocytes, Macrophages | Mannose, fucose | HIV-1 |
MICL | Macrophages, Monocytes, Granulocytes, | DAMPs, urate crystals, hemozoin | Unknown |
MGL | Monocytes, Dendritic cells | terminal galactose and N-acetylgalactosamine | Influenza virus |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindenwald, D.L.; Lepenies, B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int. J. Mol. Sci. 2020, 21, 5122. https://doi.org/10.3390/ijms21145122
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. International Journal of Molecular Sciences. 2020; 21(14):5122. https://doi.org/10.3390/ijms21145122
Chicago/Turabian StyleLindenwald, Dimitri Leonid, and Bernd Lepenies. 2020. "C-Type Lectins in Veterinary Species: Recent Advancements and Applications" International Journal of Molecular Sciences 21, no. 14: 5122. https://doi.org/10.3390/ijms21145122
APA StyleLindenwald, D. L., & Lepenies, B. (2020). C-Type Lectins in Veterinary Species: Recent Advancements and Applications. International Journal of Molecular Sciences, 21(14), 5122. https://doi.org/10.3390/ijms21145122