Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology
Abstract
:1. Introduction
2. Results
2.1. Ca-Mediated Force and Ca Sensitivity in Single Fibers from R349P Desminopathy SOL and EDL Muscles at Different Ages
2.2. Steady-State RLT Curves Demonstrate a Decreased Axial Compliance in R349P Desmin Knock-in Single Fibers
2.3. Axial Viscosity Is Unaltered by the R349P Mutation in Single EDL and SOL Fibers
2.4. Fast Phase of Unloaded Speed of Shortening Is Accelerated Particularly in Aged Het R349P Desmin Single Fibers and Even Speeds up with Age
3. Discussion
3.1. Mutant R349P Desmin Does Not Affect Single Fiber Active Biomechanics in Either Fast- or Slow-Twitch Muscles, While Age Weakened Fibers of Wt Animals
3.2. Passive Axial Biomechanics Is Shifted Towards a Pre-Aged Stiffer Phenotype in Single Fast-Twitch Fibers by R349P Desmin
3.3. Unloaded Speed of Shortening Suggests Faster Contractions of R349P Desmin Knock-in Single Fibers
4. Materials and Methods
4.1. Mouse Model—R349P Desmin Knock-in Mouse
4.2. Chemical Solutions
4.3. Preparation of Single Muscle Fibers
4.4. Assessment of Active and Passive Biomechanics in Single Muscle Fibers in an Automated MyoRobot Environment
- Caffeine-induced, Ca-mediated force generation: After fiber permeabilization, the fiber was shortly dipped into HR to wash off remaining saponin and to buffer internal Ca. Subsequently, it was translocated to LR for 60 s, after which the SR was loaded in LS for 60 s. The caffeine-induced force transient was triggered by exposure to RS for 60 s, while maximum force was induced via HA solution for 5 s (see Figure 1).
- Ca sensitivity of the contractile apparatus, pCa–force curves: The fiber was sequentially exposed to solutions of increasing Ca ion concentrations (decreasing pCa values (−log[Ca])) for a duration of 20 s (see Figure 2).
- Unloaded speed of shortening (slack test): The muscle fiber was held at resting length L and transferred to HA solution, resulting in maximum isometric contraction. Upon achieving steady-state force, the VC pin moved at maximum speed towards the FT, slacking the fiber by a defined percentage of L (5%, 10%, 20%, 30%, 40%, 50%, or 55%) as force dropped to 0 mN. While taking up the slack, force re-established in the presence of saturating Ca. Once the next force plateau was reached, the fiber was washed in HR to remove excessive Ca and to relax the myofibrils before moving on to the next consecutive slack length. For this recording, sampling rate was set to 2 kHz (see Figure 3).
- Passive stiffness—RLT curves: To assess passive axial stiffness, the muscle fiber was kept in LR solution to avoid active contraction. The fiber was continuously stretched at a slow speed (0.44 m/s) to 140% of L (L∼1950 m) by moving the actuator pin away from the FT pin. Restoration force was continuously recorded. To every 10% stretch bin, a linear fit was applied to calculate the fiber’s compliance, reflected by the inverse of that slope, and thus the inverse of stiffness (see Figure 4).
- Visco-elastic passive behavior: To assess the visco-elastic passive behavior, the fiber was stretched in a sudden staircase-like pattern in 10% L steps to 160% L with a holding time of 10 s. To prevent any active contraction, the fiber was kept in LR during the recording. The force response of the fiber comprised of an instantaneous passive restoration force and a force relaxation, with an exponential decay of force back to a steady-state level (see Figure 5).
4.5. Data Analysis and Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ECM | extracellular matrix |
EDL | M. extensor digitorum longus |
EGTA | ethylene glycol-bis(-aminoethyl ether)-N N N’ N’-tetraacetic acid |
FBS | fetal bovine serum |
FCS | fetal calf serum |
FT | force transducer |
HA | high activating (solution) |
HDTA | hexamethylenediaminetetraacetic acid |
Hepes | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
het | heterozygous |
HKS | high potassium solution |
hom | homozygous |
HR | high relaxing (solution) |
IF | intermediate filament |
LR | low relaxing (solution) |
MHC | myosin heavy chain |
RLT | resting length-tension |
SOL | M. soleus |
SR | sarcoplasmic reticulum |
VC | voice coil |
wt | wild type |
ULF | unit length filament |
References
- Ramaswamy, K.S.; Palmer, M.L.; van der Meulen, J.H.; Renoux, A.; Kostrominova, T.Y.; Michele, D.E.; Faulkner, J.A. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 2011, 589, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Ra, H.J.; Picart, C.; Feng, H.; Sweeney, H.L.; Discher, D.E. Muscle cell peeling from micropatterned collagen: Direct probing of focal and molecular properties of matrix adhesion. J. Cell Sci. 1999, 112, 1425–1436. [Google Scholar] [PubMed]
- Mártonfalvi, Z.; Kellermayer, M. Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy. PLoS ONE 2014, 9, e85847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, J.D.; Williams, C.D.; Regnier, M.; Daniel, T.L. A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics. Integr. Comp. Biol. 2018, 58, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman-Storer, C.M. The cytoskeleton of skeletal muscle: Is it affected by exercise? A brief review. Med. Sci. Sports Exerc. 1991, 23, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Li, Z.; Gouble, F. Passive stiffness is increased in soleus muscle of desmin knockout mouse. Muscle Nerve 2001, 24, 1090–1092. [Google Scholar] [CrossRef]
- Meyer, G.A.; Kiss, B.; Ward, S.R.; Morgan, D.L.; Kellermayer, M.S.Z.; Lieber, R.L. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics. Biophys. J. 2010, 98, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Clemen, C.S.; Herrmann, H.; Strelkov, S.V.; Schroeder, R. Desminopathies: Pathology and mechanisms. Acta Neuropathol. 2013, 125, 47–75. [Google Scholar] [CrossRef] [Green Version]
- Liem, R.K.H. Cytoskeletal Integrators: The Spectrin Superfamily. Cold Spring Harb. Perspect. Biol. 2016, 8. [Google Scholar] [CrossRef]
- Palmisano, M.G.; Bremner, S.N.; Hornberger, T.A.; Meyer, G.A.; Domenighetti, A.A.; Shah, S.B.; Kiss, B.; Kellermayer, M.; Ryan, A.F.; Lieber, R.L. Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network. J. Cell Sci. 2015, 128, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Block, J.; Witt, H.; Candelli, A.; Peterman, E.J.G.; Wuite, G.J.L.; Janshoff, A.; Köster, S. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Phys. Rev. Lett. 2017, 118, 048101. [Google Scholar] [CrossRef] [PubMed]
- Kreplak, L.; Herrmann, H.; Aebi, U. Tensile properties of single desmin intermediate filaments. Biophys. J. 2008, 94, 2790–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, Z.; Ding, L.; Burckhardt, C.J.; Lowery, J.; Zaritsky, A.; Sitterley, K.; Mota, A.; Costigliola, N.; Starker, C.G.; Voytas, D.F.; et al. Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration. Cell Syst. 2016, 3, 252–263.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.C.; Reilich, P.; Huebner, A.; Fischer, D.; Schroder, R.; Vorgerd, M.; Kress, W.; Born, C.; Schoser, B.G.; Krause, K.H.; et al. Scapuloperoneal syndrome type Kaeser and a wide phenotypic spectrum of adult-onset, dominant myopathies are associated with the desmin mutation R350P. Brain 2007, 130, 1485–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer, H. Pathogenic effects of a novel heterozygous R350P desmin mutation on the assembly of desmin intermediate filaments in vivo and in vitro. Hum. Mol. Genet. 2005, 14, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Clemen, C.S.; Fischer, D.; Reimann, J.; Eichinger, L.; Mueller, C.R.; Mueller, H.D.; Goebel, H.H.; Schroeder, R. How much mutant protein is needed to cause a protein aggregate myopathy in vivo? Lessons from an exceptional desminopathy. Hum. Mutat. 2009, 30, E490–E499. [Google Scholar] [CrossRef] [PubMed]
- Durmuş, H.; Ayhan, Ö.; Çırak, S.; Deymeer, F.; Parman, Y.; Franke, A.; Eiber, N.; Chevessier, F.; Schlötzer-Schrehardt, U.; Clemen, C.S.; et al. Neuromuscular endplate pathology in recessive desminopathies: Lessons from man and mice. Neurology 2016, 87, 799–805. [Google Scholar] [CrossRef]
- Clemen, C.S.; Stöckigt, F.; Strucksberg, K.H.; Chevessier, F.; Winter, L.; Schütz, J.; Bauer, R.; Thorweihe, J.M.; Wenzel, D.; Schlötzer-Schrehardt, U.; et al. The toxic effect of R350P mutant desmin in striated muscle of man and mouse. Acta Neuropathol. 2015, 129, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Diermeier, S.; Buttgereit, A.; Schürmann, S.; Winter, L.; Xu, H.; Murphy, R.M.; Clemen, C.S.; Schröder, R.; Friedrich, O. Preaged remodeling of myofibrillar cytoarchitecture in skeletal muscle expressing R349P mutant desmin. Neurobiol. Aging 2017, 58, 77–87. [Google Scholar] [CrossRef]
- Diermeier, S.; Iberl, J.; Vetter, K.; Haug, M.; Pollmann, C.; Reischl, B.; Buttgereit, A.; Schürmann, S.; Spörrer, M.; Goldmann, W.H.; et al. Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci. Rep. 2017, 7, 1391. [Google Scholar] [CrossRef] [Green Version]
- Haug, M.; Meyer, C.; Reischl, B.; Prölß, G.; Vetter, K.; Iberl, J.; Nübler, S.; Schürmann, S.; Rupitsch, S.J.; Heckel, M.; et al. The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice. Sci. Rep. 2019, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, M.; Reischl, B.; Prölß, G.; Pollmann, C.; Buckert, T.; Keidel, C.; Schürmann, S.; Hock, M.; Rupitsch, S.; Heckel, M.; et al. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens. Bioelectron. 2018, 102, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Jurcut, R.O.; Bastian, A.E.; Militaru, S.; Popa, A.; Manole, E.; Popescu, B.A.; Tallila, J.; Popescu, B.O.; Ginghină, C.D. Discovery of a new mutation in the desmin gene in a young patient with cardiomyopathy and muscular weakness. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2017, 58, 225–230. [Google Scholar]
- Friedrich, O.; Hund, E.; von Wegner, F. Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model. J. Neurol. 2010, 257, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Buttgereit, A.; Weber, C.; Garbe, C.S.; Friedrich, O. From chaos to split-ups–SHG microscopy reveals a specific remodelling mechanism in aging dystrophic muscle. J. Pathol. 2013, 229, 477–485. [Google Scholar] [CrossRef]
- Schneidereit, D.; Nübler, S.; Prölß, G.; Reischl, B.; Schürmann, S.; Müller, O.J.; Friedrich, O. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. Light Sci. Appl. 2018, 7, 79. [Google Scholar] [CrossRef]
- Balogh, J.; Li, Z.; Paulin, D.; Arner, A. Lower active force generation and improved fatigue resistance in skeletal muscle from desmin deficient mice. J. Muscle Res. Cell Motil. 2003, 24, 453–459. [Google Scholar] [CrossRef]
- Larsson, L.; Edström, L. Effects of age on enzyme-histochemical fibre spectra and contractile properties of fast- and slow-twitch skeletal muscles in the rat. J. Neurol. Sci. 1986, 76, 69–89. [Google Scholar] [CrossRef]
- Brooks, S.V.; Faulkner, J.A. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 1988, 404, 71–82. [Google Scholar] [CrossRef]
- Williams, D.A.; Head, S.I.; Lynch, G.S.; Stephenson, D.G. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice. J. Physiol. 1993, 460, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, J.E.; Widrick, J.J. Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice. J. Appl. Physiol. 2003, 95, 2425–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgerton, V.R.; Smith, J.L.; Simpson, D.R. Muscle fibre type populations of human leg muscles. Histochem. J. 1975, 7, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Lynch, G.S.; Rodgers, B.J.; Williams, D.A. The effects of age and low-intensity endurance exercise on the contractile properties of single skinned fast- and slow-twitch skeletal muscle fibres. Growth Dev. Aging GDA 1993, 57, 147–161. [Google Scholar] [PubMed]
- Pavan, P.; Monti, E.; Bondí, M.; Fan, C.; Stecco, C.; Narici, M.; Reggiani, C.; Marcucci, L. Alterations of Extracellular Matrix Mechanical Properties Contribute to Age-Related Functional Impairment of Human Skeletal Muscles. Int. J. Mol. Sci. 2020, 21, 3992. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, G.; Ranatunga, K.W. The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J. Physiol. 1996, 496, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Joumaa, V.; Stevens, L.; Neagoe, C.; Li, Z.; Mounier, Y.; Linke, W.; Goubel, F. Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications. Pfluegers Archiv. Eur. J. Physiol. 2002, 444, 771–776. [Google Scholar] [CrossRef]
- Anderson, J.; Li, Z.; Goubel, F. Models of skeletal muscle to explain the increase in passive stiffness in desmin knockout muscle. J. Biomech. 2002, 35, 1315–1324. [Google Scholar] [CrossRef]
- Wood, L.K.; Kayupov, E.; Gumucio, J.P.; Mendias, C.L.; Claflin, D.R.; Brooks, S.V. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J. Appl. Physiol. 2014, 117, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Meyer, G.A.; Lieber, R.L. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J. Biomech. 2011, 44, 771–773. [Google Scholar] [CrossRef] [Green Version]
- Gershlak, J.R.; Black, L.D. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix. Exp. Cell Res. 2015, 330, 311–324. [Google Scholar] [CrossRef]
- Haug, M.; Meyer, C.; Reischl, B.; Prölß, G.; Nübler, S.; Schürmann, S.; Schneidereit, D.; Heckel, M.; Pöschel, T.; Rupitsch, S.J.; et al. MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging. Biosens. Bioelectron. 2019, 138, 111284. [Google Scholar] [CrossRef] [PubMed]
- Eddinger, T.J.; Cassens, R.G.; Moss, R.L. Mechanical and histochemical characterization of skeletal muscles from senescent rats. Am. J. Physiol. 1986, 251, C421–C430. [Google Scholar] [CrossRef] [PubMed]
- Krivickas, L.S.; Suh, D.; Wilkins, J.; Hughes, V.A.; Roubenoff, R.; Frontera, W.R. Age- and gender-related differences in maximum shortening velocity of skeletal muscle fibers. Am. J. Phys. Med. Rehabil. 2001, 80, 447–455; quiz 456–457. [Google Scholar] [CrossRef] [PubMed]
- Stehle, R.; Brenner, B. Cross-Bridge Attachment during High-Speed Active Shortening of Skinned Fibers of the Rabbit Psoas Muscle: Implications for Cross-Bridge Action during Maximum Velocity of Filament Sliding. Biophys. J. 2000, 78, 1458–1473. [Google Scholar] [CrossRef] [Green Version]
- Winter, L.; Wittig, I.; Peeva, V.; Eggers, B.; Heidler, J.; Chevessier, F.; Kley, R.A.; Barkovits, K.; Strecker, V.; Berwanger, C.; et al. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol. 2016, 132, 453–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, C.H.; Harding, D.P.; Miller, D.J. Non-mitochondrial calcium ion regulation in rat ventricular myocytes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1989, 236, 53–77. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollmann, C.; Haug, M.; Reischl, B.; Prölß, G.; Pöschel, T.; Rupitsch, S.J.; Clemen, C.S.; Schröder, R.; Friedrich, O. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. Int. J. Mol. Sci. 2020, 21, 5501. https://doi.org/10.3390/ijms21155501
Pollmann C, Haug M, Reischl B, Prölß G, Pöschel T, Rupitsch SJ, Clemen CS, Schröder R, Friedrich O. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. International Journal of Molecular Sciences. 2020; 21(15):5501. https://doi.org/10.3390/ijms21155501
Chicago/Turabian StylePollmann, Charlotte, Michael Haug, Barbara Reischl, Gerhard Prölß, Thorsten Pöschel, Stefan J Rupitsch, Christoph S Clemen, Rolf Schröder, and Oliver Friedrich. 2020. "Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology" International Journal of Molecular Sciences 21, no. 15: 5501. https://doi.org/10.3390/ijms21155501
APA StylePollmann, C., Haug, M., Reischl, B., Prölß, G., Pöschel, T., Rupitsch, S. J., Clemen, C. S., Schröder, R., & Friedrich, O. (2020). Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. International Journal of Molecular Sciences, 21(15), 5501. https://doi.org/10.3390/ijms21155501