Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Literature Search Results
2.2. Prognostic Value of MiR-155 in Tissues of BC Patients
2.2.1. Tissue MiR-155 Versus Patient- and Tumour-Related Prognostic Factors
2.2.2. Tissue miR-155 Versus Prognostic Models and Response to Therapy
2.2.3. Tissue MiR-155 vs. Molecular Tumour Markers
2.3. Prognostic Value of MiR-155 in Plasma/Serum of BC Patients
2.3.1. Circulating MiR-155 Versus Patient- and Tumour-Related Prognostic Factors
2.3.2. Circulating MiR-155 vs. Prognostic Models and Response to Therapy
2.4. HMDD Database
3. Discussion and Conclusions
4. Materials and Methods
4.1. Search Strategy
4.2. Selection Criteria
4.3. Data Extraction and Collection
4.4. Planning and Conducting the Review
4.5. HMDD Database
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BC | Breast cancer |
TNBC | Triple-negative breast cancer |
OS | Overall survival |
DFS | Disease-free survival |
DMFS | Metastasis disease-free survival |
RT-qlPCR | Quantitative Reverse Transcription Polymerase Chain Reaction |
ER | Estrogen receptor |
HER2 | Human epidermal growth factor receptor 2 |
PR | Progesterone receptor |
LN | Lymph node |
CTCs | Circulating tumour cells |
TNM | Tumour, Node, Metastasis |
References
- Fidler-Benaoudia, M.M.; Bray, F.; Soerjomataram, I. The global cancer burden and human development: A review. Scand. J. Public Health 2018, 46, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Herranz, H.; Cohen, S.M. MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev. 2010, 24, 1339–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Pathol. Mech. Dis. 2013, 9, 287–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 2015, 5, 1122–1143. [Google Scholar] [CrossRef]
- Grimaldi, A.M.; Incoronato, M. Clinical Translatability of “Identified” Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers 2019, 11, 901. [Google Scholar] [CrossRef] [Green Version]
- Jinling, W.; Sijing, S.; Jie, Z.; Guinian, W. Prognostic value of circulating microRNA-21 for breast cancer: A systematic review and meta-analysis. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Mao, X.; Shi, P.; He, B.; Xu, K.; Zhang, S.; Wang, J. MicroRNAs in the prognosis of triple-negative breast cancer A systematic review and meta-analysis. Medicine 2017, 96, e7085. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.-C.; Tang, J.-H. Clinical significance of MicoRNA-155 expression in human breast cancer. J. Surg. Oncol. 2012, 106, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.M.; Hassan, Z.K.; Zekri, A.-R.; Gaber, A.A.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al Shabanah, O. MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2012, 13, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.-R.; Guo, G.-L.; Zhang, W.; Huang, G.-L.; Hu, X.-Q.; Zhu, J.; Huang, Q.-D.; You, J.; Zhang, X.-H. Clinical significance of miR-155 expression in breast cancer and effects of miR-155 ASO on cell viability and apoptosis. Oncol. Rep. 2012, 27, 1149–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyevleva, A.G.; Kuligina, E.S.; Mitiushkina, N.V.; Togo, A.V.; Miki, Y.; Imyanitov, E.N. High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas. Breast Cancer Res. Treat. 2012, 131, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Gwak, J.M.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Yun, S.; Na Seo, A.; Lee, H.J.; Park, S.Y. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res. Treat. 2014, 147, 39–49. [Google Scholar] [CrossRef]
- Gasparini, P.; Cascione, L.; Fassan, M.; Lovat, F.; Guler, G.; Balci, S.; Irkkan, C.; Morrison, C.; Croce, C.M.; Shapiro, C.L.; et al. microRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers. Oncotarget 2014, 5, 1174–1184. [Google Scholar] [CrossRef]
- Gasparini, P.; Lovat, F.; Fassan, M.; Casadei, L.; Cascione, L.; Jacob, N.K.; Carasi, S.; Palmieri, D.; Costinean, S.; Shapiro, C.L.; et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc. Natl. Acad. Sci. USA 2014, 111, 4536–4541. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.H.; Kim, H.J.; Gwak, J.M.; Chung, Y.R.; Park, S.Y. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum. Pathol. 2017, 68, 69–78. [Google Scholar] [CrossRef]
- Raychaudhuri, M.; Bronger, H.; Buchner, T.; Kiechle, M.; Weichert, W.; Avril, S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 2017, 162, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhong, L.; Luo, H.; Wang, S. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Oncotargets Ther. 2019, 12, 7993–8002. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, M.; Nishikawa, S.; Kondo, N.; Wanifuchi-Endo, Y.; Hato, Y.; Hisada, T.; Dong, Y.; Okuda, K.; Sugiura, H.; Kato, H.; et al. Prognostic impact of TP53INP1 gene expression in estrogen receptor alpha-positive breast cancer patients. Jpn. J. Clin. Oncol. 2019, 49, 567–575. [Google Scholar] [CrossRef]
- Raeisi, F.; Mahmoudi, E.; Dehghani-Samani, M.; Hosseini, S.S.E.; Ghahfarrokhi, A.M.; Arshi, A.; Forghanparast, K.; Ghazanfari, S. Differential Expression Profile of miR-27b, miR-29a, and miR-155 in Chronic Lymphocytic Leukemia and Breast Cancer Patients. Mol. Ther. Oncolytics 2020, 16, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 2010, 119, 586–593. [Google Scholar] [CrossRef]
- Mar-Aguilar, F.; Mendoza-Ramírez, J.A.; Malagón-Santiago, I.; Espino-Silva, P.K.; Santuario-Facio, S.K.; Ruiz-Flores, P.; Rodríguez-Padilla, C.; Reséndez-Pérez, D. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis. Markers 2013, 34, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Sochor, M.; Bašová, P.; Pešta, M.; Dusilkova, N.; Bartos, J.; Burda, P.; Pospisil, V.; Stopka, T. Oncogenic MicroRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 2014, 14, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Jiang, W.; Xu, X.; Zheng, X. Serum microRNA-155 in early diagnosis and prognosis of breast cancer. Int. J. Clin. Exp. Med. 2016, 9, 10289–10296. [Google Scholar]
- Jurkovicova, D.; Smolková, B.; Magyerkova, M.; Sestakova, Z.; Kajabova, V.H.; Kulcsar, L.; Zmetakova, I.; Kalinkova, L.; Krivulcik, T.; Karaba, M.; et al. Down-regulation of traditional oncomiRs in plasma of breast cancer patients. Oncotarget 2017, 8, 77369–77384. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Su, F.; Chen, M.; Li, Y.; Qi, X.; Xiao, J.; Li, X.; Liu, X.; Liang, W.; Zhang, Y.; et al. Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum. Pathol. 2017, 64, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zaleski, M.; Kobilay, M.; Schroeder, L.; Debald, M.; Semaan, A.; Hettwer, K.; Uhlig, S.; Kuhn, W.; Hartmann, G.; Holdenrieder, S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018, 9, 22523–22536. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-K.; Luo, Q.; Peng, H.; Li, J.; Zhao, M.; Wang, J.; Gu, Y.-Y.; Li, Y.; Yuan, P.; Zhao, G.-H.; et al. A Panel of Serum Noncoding RNAs for the Diagnosis and Monitoring of Response to Therapy in Patients with Breast Cancer. Med. Sci. Monit. 2018, 24, 2448–2476. [Google Scholar] [CrossRef]
- Khalighfard, S.; Alizadeh, A.M.; Irani, S.; Omranipour, R. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci. Rep. 2018, 8, 17981. [Google Scholar] [CrossRef]
- Babaei, E.; Hosseinpour-Feizi, M.-A.; Soleimanpour, E.; Montazeri, V. Circulating miR-21 and miR-155 as potential noninvasive biomarkers in Iranian Azeri patients with breast carcinoma. J. Cancer Res. Ther. 2019, 15, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Lukianova, N.Y.; Borikun, T.V.; Chekhun, V.F. Tumor microenvironment-derived miRNAs asprognosticmarkers of breast cancer. Exp. Oncol. 2019, 41, 242–247. [Google Scholar] [PubMed]
- Rodríguez-Martínez, A.; De Miguel-Perez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Expósito, J.; Martorell-Marugan, J.; Carmona-Saez, P.; Garrido-Navas, C.; Rolfo, C.; et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Fortis, S.P.; Vaxevanis, C.K.; Mahaira, L.G.; Sofopoulos, M.; Sotiriadou, N.N.; Dinou, A.; Arnogiannaki, N.; Stavropoulos-Giokas, C.; Thanos, D.; Baxevanis, C.N.; et al. Serum miRNA-based distinct clusters define three groups of breast cancer patients with different clinicopathological and immune characteristics. Cancer Immunol. Immunother. 2019, 68, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Swellam, M.; Ramadan, A.; El-Hussieny, E.A.; Bakr, N.; Hassan, N.M.; Sobeih, M.E.; Ezzelarab, L.R. Clinical significance of blood-based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers. J. Cell. Biochem. 2019, 120, 12321–12330. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, Z.; Yu, Z. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim. Biophys. Sin. 2019, 51, 386–392. [Google Scholar] [CrossRef]
- Anwar, S.L.; Tanjung, D.S.; Fitria, M.S.; Kartika, A.I.; Sari, D.N.I.; Rakhmina, D.; Wardana, T.; Astuti, I.; Haryana, S.M.; Aryandono, T. Dynamic Changes of Circulating Mir-155 Expression and the Potential Application as a Non-Invasive Biomarker in Breast Cancer. Asian Pac. J. Cancer Prev. 2020, 21, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Shi, J.; Gao, Y.; Cui, C.; Zhang, S.; Li, J.; Zhou, Y.; Cui, Q. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019, 47, D1013–D1017. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Chen, G.; Cui, Q. Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Crețoiu, D.; Suciu, N.; Crețoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, V.; Priyanka, K.; Tuli, H.S. Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol. Diagn. Ther. 2020, 24, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Cascione, L.; Gasparini, P.; Lovat, F.; Carasi, S.; Pulvirenti, A.; Ferro, A.; Alder, H.; He, G.; Vecchione, A.; Croce, C.M.; et al. Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer. PLoS ONE 2013, 8, e55910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.-R.; Guo, G.-L.; Zhai, Q.; Zou, Z.-Y.; Zhang, W. Effects of miR-155 Antisense Oligonucleotide on Breast Carcinoma Cell Line MDA-MB-157 and Implanted Tumors. Asian Pac. J. Cancer Prev. 2013, 14, 2361–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, M.; Alessandro, L.; Jennifer, T.; Douglas, G.A. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, b2535. [Google Scholar]
Year | Country | Cohort Study | Sample | Method | miRNAs | miR-155 Expression | Prognosis | Significantly Associated Parameters | Survival Analysis | Reference |
---|---|---|---|---|---|---|---|---|---|---|
2012 | China | 92 BC | Frozen T | RT-qPCR | miR-155 | ↑ | Poor | Tumour grade, LN metastases, TNM, DFS, OS | KM curve, multivariate, univariate | [10] |
2012 | Egypt | 40 BC, 40 CNT | Frozen T | RT-qPCR | miR-10b, -21, -155, -373 | ↑ | Poor | tumour size, tumour grade, Metastases-related genes | np | [11] |
2012 | China | 42 BC, 42 CNT | Frozen T | RT-qPCR | miR-155 | ↑ | Poor | TNM, LN metastases, Ki-67, ER/PR+ | np | [12] |
2012 | NA | 120 BC | T | RT-qPCR | miR-155, -10b, -21, -31 | ↑ | Poor | ER− | np | [13] |
2014 | Korea | 295 BC | FFPE-T | RT-qPCR | miR-9, -155, -200a | ↑ | Poor | ER/PR−, Her2−, subtype | KM curve | [14] |
2014 | USA | 173 BC | FFPE-T | Nanostring | miR-27a, -30e, -155, -493 | ↑ | Better | Better outcome | KM curve, univariate | [15] |
2014 | USA | 173 BC | FFPE-T | Nanostring | miR-155 | ↑ | Better | OS | KM curve | [16] |
2017 | Korea | 190 BC | FFPE-T | qRT-qPCR | miR-9, -155 | ↑ | Better | EMT markers, DMFS | KM curve, multivariate, univariate | [17] |
2017 | Germany | 106 BC | FFPE-T | RT-qPCR | miR-7, -21, -29a, -29b, -34a, -125b, -155, -200c, -340, -451 | ↑ | Poor | DFS, OS | KM curve, multivariate | [18] |
2019 | China | 100 BC, 28 CNT | Fresh T | RT-qPCR | miR-155 | ↑ | Poor | LN metastases, TNM, OS | KM curve | [19] |
2019 | Japan | 291 BC | FFPE-T | RT-qPCR | miR-155 | ↑ | ns | ns | KM curve | [20] |
2020 | Iran | 15 BC, 15 CNT | Frozen T | RT-qPCR | miR-27b, -29a, -155 | ↑ | ns | prevascular invasion | KM curve | [21] |
Year | Country | Cohort Study | Sample | Method | miRNAs | miR-155 Expression | Prognosis | Significantly Associated Parameters | Survival Analysis | Reference |
---|---|---|---|---|---|---|---|---|---|---|
2010 | China | 68 BC, 40 CNT | S + T | RT-qPCR | miR-21, -106a, -126, -155, -199a, -335 | ↑ | Poor | Age, tumour grade, ER−, PR− | np | [22] |
2013 | Mexico | 61 BC, 10 CNT | S + T | RT-qPCR | miR-10b, -21, -125b, -145, -155, -191, -382 | ↑ | - | ns | np | [23] |
2014 | Finland | 63 BC, 21 CNT | S | RT-qPCR | miR-155, -19a, -24, -181b | ↑ | Poor | treatment, risk | multivariate | [24] |
2016 | China | 148 BC, 142 CNT | S | RT-qPCR | miR-155 | ↑ | Poor | Menarche, abortions, BMI, family history, TNM stage, OS | KM curve | [25] |
2017 | Slovakia | 137 BC, 11 CNT | P | RT-qPCR | miR-17, -18a, -19a, -20a, -21, -27a, -155 | ns | Poor | Ki-67 | np | [26] |
2017 | China | 118 BC, 30 CNT | S | RT-qPCR | miR-155, -19a, -21, -125b, -155, -205, -373 | ↑ | Poor | Stage, LN metastases | np | [27] |
2018 | Germany | 55 BC, 20 BL, 28 CNT | S | RT-qPCR | miR-21, -34a, -92a, -155, -222, let-7c | ns | ns | ns | np | [28] |
2018 | China | 158 BC, 107 CNT | S | RT-qPCR | miR-155, -574-5p, let-7a | ↑ | Poor | TNM stage, treatment, LN metastases | np | [29] |
2018 | Iran | 30 BC, 10 CNT | P + T | RT-qPCR | miR-10b, -21, -155, Let-7a | ↑ | Poor | TNM stage, LN metastases, treatment | np | [30] |
2019 | Iran | 30 BC, 25 CNT | P + T | RT-qPCR | miR-21, -155 | ↑ | - | ns | np | [31] |
2019 | Ukraine | 89 BC, 53 BL, 14 CNT | S + T | RT-qPCR | miR-155, -205, -320a | ↑ | Poor | LN metastases, TN subtype | np | [32] |
2019 | Spain | 53 BC, 8 CNT | S | RT-qPCR | miR-21, -105, -155, -222, -221 | ↑ | Poor | CTC | np | [33] |
2019 | Greece | 48 BC | S | RT-qPCR | miR-16, -21, -23α, -146α, -155, -181α | ns | Poor | Worse outcome | np | [34] |
2019 | Egypt | 96 BC, 47 BL, 39 CNT | S | RT-qPCR | miR-21, -126, -155 | ↑ | Poor | TNM stage, grade, DFS | KM curve | [35] |
2019 | China | 64 BC, 58 CNT | P | RT-qPCR | miR-155 | ↑ | Poor | OS | KM curve | [36] |
2020 | Indonesia | 102 BC, 15 CNT | P | RT-qPCR | miR-155 | ↑ | Poor | Age, tumour size, treatment | np | [37] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimaldi, A.M.; Nuzzo, S.; Condorelli, G.; Salvatore, M.; Incoronato, M. Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 5834. https://doi.org/10.3390/ijms21165834
Grimaldi AM, Nuzzo S, Condorelli G, Salvatore M, Incoronato M. Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review. International Journal of Molecular Sciences. 2020; 21(16):5834. https://doi.org/10.3390/ijms21165834
Chicago/Turabian StyleGrimaldi, Anna Maria, Silvia Nuzzo, Gerolama Condorelli, Marco Salvatore, and Mariarosaria Incoronato. 2020. "Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review" International Journal of Molecular Sciences 21, no. 16: 5834. https://doi.org/10.3390/ijms21165834
APA StyleGrimaldi, A. M., Nuzzo, S., Condorelli, G., Salvatore, M., & Incoronato, M. (2020). Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review. International Journal of Molecular Sciences, 21(16), 5834. https://doi.org/10.3390/ijms21165834