Downregulation of ORP3 Correlates with Reduced Survival of Colon Cancer Patients with Advanced Nodal Metastasis and of Female Patients with Grade 3 Colon Cancer
Abstract
:1. Introduction
2. Results
2.1. ORP3 mRNA Levels Are Downregulated in Colon Cancer
2.2. Significance of ORP3 mRNA Levels for Patient’s Survival
2.3. Description of Study Population
2.4. Survival Analysis in Relation to ORP3 mRNA Levels
3. Discussion
4. Materials and Methods
4.1. Human Tumor Tissue
4.2. RNA Extraction, cDNA Synthesis and Determination of cDNA Purity
4.3. Determination of ORP3 mRNA Levels by Polymerase Chain Reaction (PCR) in Tumor Samples of 206 Colon Cancer Patients
4.4. Determination of ORP3 mRNA Levels by RT-qPCR in Matched Normal and Tumor Tissue of 44 Colon Cancer Patients
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ORP3 | oxysterol binding protein-related protein 3 |
CRC | Colorectal cancer |
FAP | familiar adenomatous polyposis |
dMMR | DNA mismatch repair |
MLH1 | Mut L homolog1 |
MSH2 | Mut S homolog 2 |
BRAF | Proto-oncogene B-raf |
OSBPL3 | oxysterol binding protein-like 3 |
ER | endoplasmic reticulum |
UICC | Union for International Cancer Control |
cis | Carcinoma in situ |
CIN | Chromosomal instability |
PP2A | Protein phosphatase 2 |
HePTP | hematopoietic protein tyrosine kinase |
ERK | extracellular signal-regulated kinases |
CCNU | lomustine |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
DNA | deoxyribonucleic acid |
HPRT | Hypoxanthine Phosphoribosyltransferase |
MSI | microsatellite instability |
MSI-H | high microsatellite instability |
HNPCC | hereditary non-polyposis colorectal cancer |
MSS | micro-satellite stable |
PH | pleckstrin–homology |
min | minimum |
may | maximum |
NR5A2 | nuclear receptor of subfamily 5 group A |
LRH-1 | liver receptor homologue 1 |
References
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers 2015, 1, 15065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divella, R.; De Luca, R.; Abbate, I.; Naglieri, E.; Daniele, A. Obesity and cancer: The role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 2016, 7, 2346–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, W.M.; Faris, M.E.; Peltomaki, P. Molecular Determinants of Colon Cancer Susceptibility in the East and West. Curr. Mol. Med. 2017, 17, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Afrasanie, V.A.; Marinca, M.V.; Alexa-Stratulat, T.; Gafton, B.; Paduraru, M.; Adavidoaiei, A.M.; Miron, L.; Rusu, C. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer - practical implications for the clinician. Radiol. Oncol. 2019, 53, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinicrope, F.A. Lynch Syndrome-Associated Colorectal Cancer. N. Engl. J. Med. 2018, 379, 764–773. [Google Scholar] [CrossRef]
- Ma, H.; Brosens, L.A.A.; Offerhaus, G.J.A.; Giardiello, F.M.; de Leng, W.W.J.; Montgomery, E.A. Pathology and genetics of hereditary colorectal cancer. Pathology 2018, 50, 49–59. [Google Scholar] [CrossRef]
- Nojadeh, J.N.; Behrouz Sharif, S.; Sakhinia, E. Microsatellite instability in colorectal cancer. EXCLI J. 2018, 17, 159–168. [Google Scholar]
- Wright, M.; Beaty, J.S.; Ternent, C.A. Molecular Markers for Colorectal Cancer. Surg. Clin. N. Am. 2017, 97, 683–701. [Google Scholar] [CrossRef]
- Reilly, N.M.; Novara, L.; Di Nicolantonio, F.; Bardelli, A. Exploiting DNA repair defects in colorectal cancer. Mol. Oncol. 2019, 13, 681–700. [Google Scholar] [CrossRef] [Green Version]
- Rhee, Y.Y.; Kim, K.J.; Kang, G.H. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway. Gut Liver 2017, 11, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonchere, V.; Marisa, L.; Greene, M.; Virouleau, A.; Buhard, O.; Bertrand, R.; Svrcek, M.; Cervera, P.; Goloudina, A.; Guillerm, E.; et al. Identification of Positively and Negatively Selected Driver Gene Mutations Associated With Colorectal Cancer With Microsatellite Instability. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Bonnot, P.E.; Passot, G. RAS mutation: Site of disease and recurrence pattern in colorectal cancer. Chin. Clin. Oncol. 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Gatalica, Z.; Vranic, S.; Xiu, J.; Swensen, J.; Reddy, S. High microsatellite instability (MSI-H) colorectal carcinoma: A brief review of predictive biomarkers in the era of personalized medicine. Fam. Cancer 2016, 15, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L. Molecular Genetic Pathology; Humana Press: Totowa, NJ, USA, 2009. [Google Scholar]
- Hewish, M.; Lord, C.J.; Martin, S.A.; Cunningham, D.; Ashworth, A. Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat. Rev. Clin. Oncol. 2010, 7, 197–208. [Google Scholar] [CrossRef]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J.; et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Devaud, N.; Gallinger, S. Chemotherapy of MMR-deficient colorectal cancer. Fam. Cancer 2013, 12, 301–306. [Google Scholar] [CrossRef]
- Smyrk, T.C.; Watson, P.; Kaul, K.; Lynch, H.T. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 2001, 91, 2417–2422. [Google Scholar] [CrossRef]
- Gatalica, Z.; Torlakovic, E. Pathology of the hereditary colorectal carcinoma. Fam. Cancer 2008, 7, 15–26. [Google Scholar] [CrossRef]
- Maccaroni, E.; Bracci, R.; Giampieri, R.; Bianchi, F.; Belvederesi, L.; Brugiati, C.; Pagliaretta, S.; Del Prete, M.; Scartozzi, M.; Cascinu, S. Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: Are all mutations equal? Oncotarget 2015, 6, 38737–38748. [Google Scholar] [CrossRef] [Green Version]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdem-Eraslan, L.; van den Bent, M.J.; Hoogstrate, Y.; Naz-Khan, H.; Stubbs, A.; van der Spek, P.; Bottcher, R.; Gao, Y.; de Wit, M.; Taal, W.; et al. Identification of Patients with Recurrent Glioblastoma Who May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from the BELOB Trial. Cancer Res. 2016, 76, 525–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehto, M.; Tienari, J.; Lehtonen, S.; Lehtonen, E.; Olkkonen, V.M. Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: The expression and intracellular localization of ORP3, ORP6, and ORP7. Cell Tissue Res. 2004, 315, 39–57. [Google Scholar] [CrossRef]
- Lehto, M.; Mayranpaa, M.I.; Pellinen, T.; Ihalmo, P.; Lehtonen, S.; Kovanen, P.T.; Groop, P.H.; Ivaska, J.; Olkkonen, V.M. The R-Ras interaction partner ORP3 regulates cell adhesion. J. Cell Sci. 2008, 121 Pt 5, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Weber-Boyvat, M.; Kentala, H.; Lilja, J.; Vihervaara, T.; Hanninen, R.; Zhou, Y.; Peranen, J.; Nyman, T.A.; Ivaska, J.; Olkkonen, V.M. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Exp. Cell Res. 2015, 331, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Weng, J.; Anderson, R.G. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 2005, 307, 1472–1476. [Google Scholar] [CrossRef]
- Charman, M.; Colbourne, T.R.; Pietrangelo, A.; Kreplak, L.; Ridgway, N.D. Oxysterol-binding protein (OSBP)-related protein 4 (ORP4) is essential for cell proliferation and survival. J. Biol. Chem. 2014, 289, 15705–15717. [Google Scholar] [CrossRef] [Green Version]
- Koga, Y.; Ishikawa, S.; Nakamura, T.; Masuda, T.; Nagai, Y.; Takamori, H.; Hirota, M.; Kanemitsu, K.; Baba, Y.; Baba, H. Oxysterol binding protein-related protein-5 is related to invasion and poor prognosis in pancreatic cancer. Cancer Sci. 2008, 99, 2387–2394. [Google Scholar] [CrossRef]
- Liu, H.; Huang, S. Role of oxysterol-binding protein-related proteins in malignant human tumours. World J. Clin. Cases 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Meena, J.K.; Cerutti, A.; Beichler, C.; Morita, Y.; Bruhn, C.; Kumar, M.; Kraus, J.M.; Speicher, M.R.; Wang, Z.Q.; Kestler, H.A.; et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015, 34, 1371–1384. [Google Scholar] [CrossRef] [Green Version]
- Njeru, S.N.; Kraus, J.; Meena, J.K.; Lechel, A.; Katz, S.F.; Kumar, M.; Knippschild, U.; Azoitei, A.; Wezel, F.; Bolenz, C.; et al. Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor. Oncogene 2020, 39, 1445–1465. [Google Scholar] [CrossRef] [PubMed]
- Vasaikar, S.; Huang, C.; Wang, X.; Petyuk, V.A.; Savage, S.R.; Wen, B.; Dou, Y.; Zhang, Y.; Shi, Z.; Arshad, O.A.; et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell 2019, 177, 1035–1049.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, l1. [Google Scholar] [CrossRef] [Green Version]
- Stein, S.; Lemos, V.; Xu, P.; Demagny, H.; Wang, X.; Ryu, D.; Jimenez, V.; Bosch, F.; Luscher, T.F.; Oosterveer, M.H.; et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J. Clin. Investig. 2017, 127, 583–592. [Google Scholar] [CrossRef]
- Bayrer, J.R.; Mukkamala, S.; Sablin, E.P.; Webb, P.; Fletterick, R.J. Silencing LRH-1 in colon cancer cell lines impairs proliferation and alters gene expression programs. Proc. Natl. Acad. Sci. USA 2015, 112, 2467–2472. [Google Scholar] [CrossRef] [Green Version]
- Kramer, H.B.; Lai, C.F.; Patel, H.; Periyasamy, M.; Lin, M.L.; Feller, S.M.; Fuller-Pace, F.V.; Meek, D.W.; Ali, S.; Buluwela, L. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016, 44, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Feng, J.; Li, L.; Wu, Y.; Xie, H.; Yin, Y.; Ye, J.; Li, Z. Liver receptor homologue 1, a novel prognostic marker in colon cancer patients. Oncol. Lett. 2018, 16, 2833–2838. [Google Scholar] [CrossRef] [Green Version]
- Ahlquist, T.; Bottillo, I.; Danielsen, S.A.; Meling, G.I.; Rognum, T.O.; Lind, G.E.; Dallapiccola, B.; Lothe, R.A. RAS signaling in colorectal carcinomas through alteration of RAS, RAF, NF1, and/or RASSF1A. Neoplasia 2008, 10, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Tariq, K.; Ghias, K. Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol. Med. 2016, 13, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 7th ed.; Sobin, L.H., Gospodarowicz, M.K., Eds.; Wiley-Liss Inc: New York, NY, USA, 2009. [Google Scholar]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.D. WHO Classification of Tumors of the Digestive System. World Health Organization Classification of Tumours, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2010. [Google Scholar]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Kassambra, A.; Kosinski, M.; Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2′. R package version 0.4.8. Available online: https://CRAN.R-project.org/package=survminer (accessed on 5 August 2020).
- Wickham, H.; François, R.; Henry, L.; Müller, K. A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 5 August 2020).
Total | Median ORP3 mRNA Levels [RQ] (Min/Max) | Median Age [Years] (Min/Max) | Median Survival [Months] (Min/Max) | |
---|---|---|---|---|
Follow-up | p = 0.526 | p = 0.001 * | p < 0.001 * | |
alive | 92 | 0.008 (0.001/0.019) | 67.32 (29.81/88.23) | 91.05 (0.46/175.49) |
dead | 114 | 0.008 (0.0005/0.1088) | 73.55 (39.21/89.68) | 17.02 (0.33/114.41) |
Sex | p = 0.666 | p = 0.293 | p = 0.102 | |
M | 110 | 0.008 (0.0005/0.1088) | 70.37 (29.81/88.58) | 38.91 (0.39/175.49) |
F | 96 | 0.008 (0.0006/0.1029 | 70.87 (39.69/89.67) | 56.01 (0.33/164.77) |
Stage (UICC) | p = 0.113 | p = 0.073 | p < 0.001 * | |
I | 37 | 0.00811 (0.0016/0.0191) | 75.37 (45.31/89.67) | 64.57 (0.52/175.49) |
II | 52 | 0.008273 (0.0020/0.0248) | 70.82 (32.34/87.95) | 67.75 (1.18/164.05) |
III | 58 | 0.009395 (0.0009/0.1088) | 69.00 (40.17/88.23) | 64,16 (0.33/153.48) |
IV | 57 | 0.007249 (0.0005/0.1029) | 67.58 (29.81/87.59) | 14.50 (0.65/140.23) |
cis | 2 | |||
Stage (UICC) female | p = 0.005 * | p = 0.504 | p < 0.001 * | |
I | 19 | 0.0077 (0.0015/0.0148) | 74.28 (51.42/89.68) | 64.57 (1.15/164.77) |
II | 24 | 0.0096 (0.0024/0.0165) | 68.82 (40.35/87.95) | 74.54 (1.18/156.09) |
III | 29 | 0.0107 (0.0027/0.0299) | 71.55 (42.13/88.23) | 69.57 (0.33/153.49) |
IV | 23 | 0.0069 (0.0006/0.1029) | 68.32 (39.70/86.49) | 12.01 (1.31/81.09) |
cis | 1 | |||
Stage (UICC) male | p = 0.936 | p = 0.123 | p = 0.002 | |
I | 18 | 0.0084 (0.0038/0.0191) | 77.65 (45.31/88.58) | 57.48 (0.52/175.49) |
II | 28 | 0.0073 (0.0019/0.0248) | 73.05 (32.34/84.79) | 67.75 (4.51/164.04) |
III | 29 | 0.0081 (0.0009/0.1087) | 67.34 (40.17/84.67) | 62.50 (0.39/134.17) |
IV | 34 | 0.0080 (0.0005/0.033) | 66.37 (29.81/87.59) | 15.42 (0.66/140.23) |
CIS | 1 | |||
Grade | p = 0.323 | p = 0.360 | p = 0.092 | |
1 | 12 | 0.008211 (0.0006/0.0165) | 74.99 (39.69/88.09) | 54.39 (3.91/164.77) |
2 | 135 | 0.008082 (0.0005/0.0325) | 70.17 (40.17/89.67) | 47.53 (0.39/175.49) |
3 | 54 | 0.008264 (0.0019/0.1088) | 69.19 (29.81/88.23) | 61.74 (0.33/167.37) |
4 | 5 | 0.015794 (0.0042/0.0248) | 75.56 (58.98/87.95) | 4.93 (0.76/30.36) |
Localization | p = 0.245 | p = 0.041 * | p = 0.557 | |
descendens | 104 | 0.0079 (0.0005/0.0313) | 68.20 (39.21/88.58) | 54.58 (0.39/175.49) |
ascendens | 102 | 0.0085 (0.0006/0.1087) | 72.86 (29.81/89.68) | 40.90 (0,32/167.37) |
Lymph nodes | p = 0.789 | p = 0.032 * | p = 0.001 * | |
not invaded | 101 | 0.008204 (0.0016/0.0248) | 73.74 (32.33/89.67) | 64.57 (0.53/175.49) |
invaded | 105 | 0.008124 (0.0005/0.1088) | 67.87 (29.81/88.23) | 27.96 (0.33/153.49) |
Metastasis | p = 0.033 * | p = 0.128 | p < 0.001 * | |
negative | 149 | 0.008587 (0.0010/0.1088) | 71.54 (32.33/89.67) | 64.64 (0.33/175.49) |
positive | 57 | 0.007250 (0.0005/0.1029) | 67.58 (29.81/87.58) | 14.50 (0.66/140.23) |
Total | 206 | 0.008126 (0.0005/0.1088) | 70.41 (29.81/89.67) | 48.12 (0.33/175.49) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Richter, J.; Blatz, A.; Gärtner, F.; Alberts, R.; Azoitei, A.; Makori, W.A.; Meessen, S.; Knippschild, U.; Günes, C. Downregulation of ORP3 Correlates with Reduced Survival of Colon Cancer Patients with Advanced Nodal Metastasis and of Female Patients with Grade 3 Colon Cancer. Int. J. Mol. Sci. 2020, 21, 5894. https://doi.org/10.3390/ijms21165894
Xu P, Richter J, Blatz A, Gärtner F, Alberts R, Azoitei A, Makori WA, Meessen S, Knippschild U, Günes C. Downregulation of ORP3 Correlates with Reduced Survival of Colon Cancer Patients with Advanced Nodal Metastasis and of Female Patients with Grade 3 Colon Cancer. International Journal of Molecular Sciences. 2020; 21(16):5894. https://doi.org/10.3390/ijms21165894
Chicago/Turabian StyleXu, Pengfei, Julia Richter, Annette Blatz, Fabian Gärtner, Roland Alberts, Anca Azoitei, Wycliffe Arika Makori, Sabine Meessen, Uwe Knippschild, and Cagatay Günes. 2020. "Downregulation of ORP3 Correlates with Reduced Survival of Colon Cancer Patients with Advanced Nodal Metastasis and of Female Patients with Grade 3 Colon Cancer" International Journal of Molecular Sciences 21, no. 16: 5894. https://doi.org/10.3390/ijms21165894
APA StyleXu, P., Richter, J., Blatz, A., Gärtner, F., Alberts, R., Azoitei, A., Makori, W. A., Meessen, S., Knippschild, U., & Günes, C. (2020). Downregulation of ORP3 Correlates with Reduced Survival of Colon Cancer Patients with Advanced Nodal Metastasis and of Female Patients with Grade 3 Colon Cancer. International Journal of Molecular Sciences, 21(16), 5894. https://doi.org/10.3390/ijms21165894