Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies
Abstract
:1. Introduction
2. Methods
2.1. Inclusion Criteria
- The study should be a primary research article;
- The study should include the use of cannabinoids (endocannabinoid, phytocannabinoids, and synthetic);
- Cannabinoids should have been used in treating melanoma;
- In vivo studies that explored the effect of cannabinoids on tumor activity or size were selected;
- All study types were included except reviews and commentaries.
2.2. Exclusion Criteria
- The article was not written in English;
- It was a judgement article;
- The reported study was not on animals;
- The article or study was not related to melanoma;
- The article was not related to cannabinoids.
2.3. Search Strategy for Identification of Studies
2.4. Data Extraction and Synthesis
2.5. Quality Assessment
2.6. Assessment of the Risk of Bias in the Included Studies
3. Results
Cannabinoids and Melanoma Cancer
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Moshi, M.J.; Mhame, P.P. Legislation on Medicinal Plants in Africa. In Medicinal Plant Research in Africa; Elsevier: Amsterdam, The Netherlands, 2013; pp. 843–858. [Google Scholar]
- Ramesh, P.; Okigbo, R. Effects of plants and medicinal plant combinations as anti-infectives. Afr. J. Pharm. Pharmacol. 2008, 2, 130–135. [Google Scholar]
- Merhavi-Shoham, E.; Itzhaki, O.; Markel, G.; Schachter, J.; Besser, M.J. Adoptive Cell Therapy for Metastatic Melanoma. Cancer J. 2017, 23, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, C.M.; Green, A.C.; Pandeya, N.; Whiteman, D.C. Trends in Melanoma Incidence Rates in Eight Susceptible Populations through 2015. J. Investig. Dermatol. 2019, 139, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vainio, H.; Miller, A.B.; Bianchini, F. An international evaluation of the cancer–preventive potential of sunscreens. Int. J. Cancer 2000, 88, 838–842. [Google Scholar] [CrossRef]
- Lasithiotakis, K.; Leiter, U.; Meier, F.; Eigentler, T.; Metzler, G.; Moehrle, M.; Breuninger, H.; Garbe, C. Age and gender are significant independent predictors of survival in primary cutaneous melanoma. ACS J. 2008, 112, 1795–1804. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Sulem, P.; Stacey, S.N.; Goldstein, A.M.; Rafnar, T.; Sigurgeirsson, B.; Benediktsdottir, K.R.; Thorisdottir, K.; Ragnarsson, R.; Sveinsdottir, S.G. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat. Genet. 2008, 40, 891. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. 2005, 41, 2040–2059. [Google Scholar] [CrossRef]
- Griffin, L.L.; Ali, F.R.; Lear, J.T. Non-melanoma skin cancer. Clin. Med. (Lond.) 2016, 16, 65. [Google Scholar] [CrossRef]
- Serrone, L.; Zeuli, M.; Sega, F.; Cognetti, F. Dacarbazine-based chemotherapy for metastatic melanoma: Thirty-year experience overview. J. Exp. Clin. Cancer Res. 2000, 19, 21–34. [Google Scholar]
- Maverakis, E.; Cornelius, L.A.; Bowen, G.M.; Phan, T.; Patel, F.B.; Fitzmaurice, S.; He, Y.; Burrall, B.; Duong, C.; Kloxin, A.M. Metastatic melanoma—A review of current and future treatment options. Acta Dermato-Venereol. 2015, 95, 516–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luke, J.J.; Hodi, F.S. Vemurafenib and BRAF inhibition: A new class of treatment for metastatic melanoma. Clin. Cancer Res. 2012, 18, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heakal, Y.; Kester, M.; Savage, S. Vemurafenib (PLX4032): An orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. Ann. Pharmacother. 2011, 45, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A. Anti-CTLA4 antibody clinical trials in melanoma. Update Cancer Ther. 2007, 2, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Thomas, C.M.; Ng, K.E. An overview of the changing landscape of treatment for advanced melanoma. Pharmacotherapy 2017, 37, 319–333. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Lorigan, P.; Hersey, P.; Hauschild, A.; Robert, C.; McDermott, D.; Marshall, M.A.; Gomez-Navarro, J.; Liang, J.Q.; Bulanhagui, C.A. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 2010, 16, 1042–1048. [Google Scholar] [CrossRef] [Green Version]
- Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Bastholt, L.; Grob, J.-J.; Malvehy, J.; Newton-Bishop, J.; Stratigos, A.J. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—Update 2016. Eur. J. Cancer 2016, 63, 201–217. [Google Scholar] [CrossRef]
- Davey, R.J.; van der Westhuizen, A.; Bowden, N.A. Metastatic melanoma treatment: Combining old and new therapies. Crit. Rev. Oncol. Hematol. 2016, 98, 242–253. [Google Scholar] [CrossRef]
- Milando, R.; Friedman, A. Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases. Am. J. Clin. Dermatol. 2019, 20, 167–180. [Google Scholar] [CrossRef]
- Happyana, N.; Kayser, O. Monitoring metabolite profiles of Cannabis sativa L. trichomes during flowering period using 1H NMR-based metabolomics and real-time PCR. Planta Med. 2016, 82, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Vasisth, G.; Kapoor, A. Systematic review of the potential role of cannabinoids as antiproliferative agents for urological cancers. Can. Urol. Assoc. J. 2017, 11, E138. [Google Scholar] [CrossRef] [PubMed]
- Ligresti, A.; Moriello, A.S.; Starowicz, K.; Matias, I.; Pisanti, S.; De Petrocellis, L.; Laezza, C.; Portella, G.; Bifulco, M.; Di Marzo, V. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther. 2006, 318, 1375–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther. 2010, 9, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Reyaz, A. Isolation of cannabinoids from the plant Cannabis sativa L. and its potential anticancer activity. Int. Res. J. Biotech. 2012, 3, 22–26. [Google Scholar]
- Lafaye, G.; Karila, L.; Blecha, L.; Benyamina, A. Cannabis, cannabinoids, and health. Dialogues Clin. Neurosci. 2017, 19, 309. [Google Scholar] [PubMed]
- Dariš, B.; Verboten, M.T.; Knez, Ž.; Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic Med. Sci. 2019, 19, 14. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Tong, M.; Pan, H.; Li, D. Medical Cannabinoids for Cancer Cachexia: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2019, 2019, 2864384. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; SobociŦ, A.M.; Czarnecka, A.; Król, M.; Botta, B.; Szczylik, C. The therapeutic aspects of the endocannabinoid system (ECS) for cancer and their development: From nature to laboratory. Curr. Pharm. Des. 2016, 22, 1756–1766. [Google Scholar] [CrossRef] [Green Version]
- Blázquez, C.; González-Feria, L.; Alvarez, L.; Haro, A.; Casanova, M.L.; Guzmán, M. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res. 2004, 64, 5617–5623. [Google Scholar] [CrossRef] [Green Version]
- Simmerman, E.; Qin, X.; Jack, C.Y.; Baban, B. Cannabinoids as a Potential New and Novel Treatment for Melanoma: A Pilot Study in a Murine Model. J. Surg. Res. 2019, 235, 210–215. [Google Scholar] [CrossRef]
- Armstrong, J.L.; Hill, D.S.; McKee, C.S.; Hernandez-Tiedra, S.; Lorente, M.; Lopez-Valero, I.; Anagnostou, M.E.; Babatunde, F.; Corazzari, M.; Redfern, C.P. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J. Investig. Dermatol. 2015, 135, 1629–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, M.; Duarte, M.; Blazquez, C.; Ravina, J.; Rosa, M.; Galve-Roperh, I.; Sánchez, C.; Velasco, G.; González-Feria, L. A pilot clinical study of Δ 9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer 2006, 95, 203. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Bali, C. Cannabis extract treatment for terminal acute lymphoblastic leukemia with a Philadelphia chromosome mutation. Case Rep. Oncol. 2013, 6, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer 2003, 3, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Ray, A.; Dittel, B.N. Cannabinoid receptor 2 is critical for the homing and retention of marginal zone B lineage cells and for efficient T-independent immune responses. J. Immunol. 2011, 187, 5720–5732. [Google Scholar] [CrossRef] [PubMed]
- Strouse, T. Cannabinoids in cancer treatment settings. J. Community Support. Oncol. 2016, 14, 1–5. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 2011, 10, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Blazquez, C.; Carracedo, A.; Barrado, L.; Real, P.J.; Fernandez-Luna, J.L.; Velasco, G.; Malumbres, M.; Guzman, M. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J. 2006, 20, 2633–2635. [Google Scholar] [CrossRef] [Green Version]
- Kenessey, I.; Banki, B.; Mark, A.; Varga, N.; Tovari, J.; Ladanyi, A.; Raso, E.; Timar, J. Revisiting CB1 receptor as drug target in human melanoma. Pathol. Oncol. Res. POR 2012, 18, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, D.H.; Friedman, A. The therapeutic potential of cannabinoids in dermatology. Skin Ther. Lett. 2018, 23, 1–5. [Google Scholar]
- Blake, A.; Wan, B.A.; Malek, L.; DeAngelis, C.; Diaz, P.; Lao, N.; O’Hearn, S. A selective review of medical cannabis in cancer pain management. Ann. Palliat. Med. 2017, 6, s215–s222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, A.A.; Camilleri, M. Cannabinoids in intestinal inflammation and cancer. Pharmacol. Res. 2009, 60, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kuhathasan, N.; Dufort, A.; MacKillop, J.; Gottschalk, R.; Minuzzi, L.; Frey, B.N. The use of cannabinoids for sleep: A critical review on clinical trials. Exp. Clin. Psychopharmacol. 2019, 27, 383–401. [Google Scholar] [CrossRef]
- Leweke, F.M.; Mueller, J.K.; Lange, B.; Rohleder, C. Therapeutic Potential of Cannabinoids in Psychosis. Biol. Psychiatry 2016, 79, 604–612. [Google Scholar] [CrossRef]
- Hassan, S. Cannabinoids for the Treatment of Chronic Pain: A Critical Review of Randomized Controlled Trials. J. Pain Manag. Med. 2018, 4, 131. [Google Scholar] [CrossRef]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC: CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef]
- Brown, M.R.D.; Farquhar-Smith, W.P. Cannabinoids and cancer pain: A new hope or a false dawn? Eur. J. Intern. Med. 2018, 49, 30–36. [Google Scholar] [CrossRef]
- Ball, S.; Vickery, J.; Hobart, J.; Wright, D.; Green, C.; Shearer, J.; Nunn, A.; Cano, M.G.; MacManus, D.; Miller, D. The Cannabinoid Use in Progressive Inflammatory Brain Disease (CUPID) trial: A randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis. Health Technol. Assess 2015, 19, 1–187. [Google Scholar] [CrossRef]
- Velasco, G.; Sánchez, C.; Guzmán, M. Anticancer mechanisms of cannabinoids. Curr. Oncol. 2016, 23, S23. [Google Scholar] [CrossRef] [Green Version]
- López-Valero, I.; Saiz-Ladera, C.; Torres, S.; Hernández-Tiedra, S.; García-Taboada, E.; Rodríguez-Fornés, F.; Barba, M.; Dávila, D.; Salvador-Tormo, N.; Guzmán, M. Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem. Pharmacol. 2018, 157, 266–274. [Google Scholar] [CrossRef]
- Ladin, D.A.; Soliman, E.; Griffin, L.; Van Dross, R. Preclinical and clinical assessment of cannabinoids as anti-cancer agents. Front. Pharmacol. 2016, 7, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glodde, N.; Jakobs, M.; Bald, T.; Tüting, T.; Gaffal, E. Differential role of cannabinoids in the pathogenesis of skin cancer. Life Sci. 2015, 138, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Sánchez, C.; Guzmán, M. Endocannabinoids and Cancer. In Endocannabinoids; Pertwee, R.G., Ed.; Springer: Cham, Switzerland, 2015; pp. 449–472. [Google Scholar]
- Hinz, B.; Ramer, R. Anti-tumour actions of cannabinoids. Br. J. Pharmacol. 2019, 176, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Haustein, M.; Ramer, R.; Linnebacher, M.; Manda, K.; Hinz, B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem. Pharmacol. 2014, 92, 312–325. [Google Scholar] [CrossRef] [PubMed]
- McKallip, R.J.; Nagarkatti, M.; Nagarkatti, P.S. Δ-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol. 2005, 174, 3281–3289. [Google Scholar] [CrossRef] [Green Version]
- Taha, T.; Meiri, D.; Talhamy, S.; Wollner, M.; Peer, A.; Bar-Sela, G. Cannabis impacts tumor response rate to nivolumab in patients with advanced malignancies. Oncologist 2019, 24, 549. [Google Scholar] [CrossRef] [Green Version]
- Soderstrom, K.; Soliman, E.; Van Dross, R. Cannabinoids modulate neuronal activity and cancer by CB1 and CB2 receptor-independent mechanisms. Front. Pharmacol. 2017, 8, 720. [Google Scholar] [CrossRef]
First Author (Year) | Study Population (Animals) | Tumor Induction (Cell Line) | Study Intervention | Dose of Cannabinoid | Duration | Anticancer Outcomes | |||
---|---|---|---|---|---|---|---|---|---|
Strain | Age | Number | Intervention | Control | |||||
Hamtiaux 2012 | C57BL/6mice | 5–weeks | n = 6 | B16 melanoma cells | PEA+URB597 (s.c) | Vehicle | 10 mg/Kg | 6 days | Co-administration of PEA and URB597 resulted in a significant reduction of tumor growth & size |
Glodde 2015 | C57BL/6mice Wild-type and CB1/CB2-deficient mice | 8–10 weeks | n = 10 | B16 melanoma cells HCmel12 | THC (s.c) | Vehicle | 5 mg/Kg per day | 25 days | Inhibits HCmel12 melanoma growth but does not affect B16 and CB1/CB2 deficient HCmel12 |
Armstrong et al. 2015 | Athymic nude mice | 5 weeks | 20 mice (n = 5 per group) | Xenograft CHL-1 cells | THC (oral) THC-BDS + CBD-BDS (oral) Temozolomide | Vehicle | 15 mg/Kg (daily) 7.5 mg/Kg + 7.5 mg/Kg (daily) 5 mg/Kg (daily) | 20 days | Reduction in tumor size THC-BDS + CBD-BDS ≥ THC > TEMO |
Blazquez 2006 | C57BL/6mice Nude mice | n = 8 (per group) n = 6 for each experimental group | B16 melanoma cells | WIN55-212-2(s.c) or JWH-133 (s.c) WIN55-212-2 (s.c) | Vehicle | 50 mg/day 50 mg/day 50 mg/per3days | 8 days 21 days | WIN55-212-2 = JWH-133 in preventing tumor growth Decreased tumor growth and metastasis | |
Kenessey 2012 | SCID mice | n = 8 | HT168-M1 | ACEA (i.p) | Solvent control | 0.24 mg/Kg 1/2 mg/Kg | 21 days | CB1 agonistic AECA into SCID mice inhibit liver colonization of human melanoma cells | |
Simmerman 2018 | C57BL/6mice | 8–12 weeks of age) | 18 (n = 6 per group) | Murine melanoma cell line, B16F10 | CBD (i.p) Cisplatin (i.p) | Vehicle | 5 mg/Kg twice per week 5mg/Kg once per week | Increased the quality of life and movement; significantly decreased growth curve and increased survival curve |
Study | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Other Bias | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Random Group Allocation | Baseline Group Characteristics | Allocation Conceal | Random Hosing | Blinding of Examiner | Random Outcome Selection | Blinding of Assessor | Any Randomization | Any Blinding | Size Calculation | Temp Control | ||
Armstrong 2015 | L | H | H | H | H | H | H | H | Y | N | N | N |
Blazquez 2006 | L | L | H | H | H | H | H | H | Y | N | N | N |
Hamtiaux 2012 | L | L | H | H | H | H | H | H | Y | N | N | N |
Glodde 2015 | H | L | H | H | H | H | H | H | N | N | N | N |
Kenessey 2012 | H | H | H | L | H | H | H | H | N | N | N | N |
Simmerman 2018 | H | H | H | L | H | H | H | H | N | N | N | N |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachari, A.; Piva, T.J.; Salami, S.A.; Jamshidi, N.; Mantri, N. Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies. Int. J. Mol. Sci. 2020, 21, 6040. https://doi.org/10.3390/ijms21176040
Bachari A, Piva TJ, Salami SA, Jamshidi N, Mantri N. Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies. International Journal of Molecular Sciences. 2020; 21(17):6040. https://doi.org/10.3390/ijms21176040
Chicago/Turabian StyleBachari, Ava, Terrence J. Piva, Seyed Alireza Salami, Negar Jamshidi, and Nitin Mantri. 2020. "Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies" International Journal of Molecular Sciences 21, no. 17: 6040. https://doi.org/10.3390/ijms21176040
APA StyleBachari, A., Piva, T. J., Salami, S. A., Jamshidi, N., & Mantri, N. (2020). Roles of Cannabinoids in Melanoma: Evidence from In Vivo Studies. International Journal of Molecular Sciences, 21(17), 6040. https://doi.org/10.3390/ijms21176040