Revealing Metabolic Perturbation Following Heavy Methamphetamine Abuse by Human Hair Metabolomics and Network Analysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Subjects
2.3. Targeted Metabolomics
2.4. Untargeted Metabolomics
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Targeted Metabolomics
3.2. Untargeted Metabolomics
3.3. Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Courtney, K.E.; Ray, L.A. Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 2014, 143, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, R.R.; Seminerio, M.J.; Turner, R.C.; Robson, M.J.; Nguyen, L.; Miller, D.B.; O’Callaghan, J.P. Methamphetamine-induced toxicity: An updated review on issues related to hyperthermia. Pharmacol. Ther. 2014, 144, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 2016 National Survey on Drug Use and Health. Available online: https://www.drugabuse.gov/national-survey-drug-use-health (accessed on 26 March 2018).
- Kwon, N.J.; Han, E.A. Commentary on the effects of methamphetamine and the status of methamphetamine abuse among youths in South Korea, Japan, and China. Forensic Sci. Int. 2018, 286, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24, 97–129. [Google Scholar] [CrossRef]
- Zaitsu, K.; Hayashi, Y.; Kusano, M.; Tsuchihashi, H.; Ishii, A. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies. Drug Metab. Pharmacokinet. 2016, 31, 21–26. [Google Scholar] [CrossRef]
- Bouhifd, M.; Hartung, T.; Hogberg, H.T.; Kleensang, A.; Zhao, L. Review: Toxicometabolomics. J. Appl. Toxicol. 2013, 33, 1365–1383. [Google Scholar] [CrossRef]
- Ghanbari, R.; Sumner, S. Using Metabolomics to investigate biomarkers of drug addiction. Trends Mol. Med. 2018, 24, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Courtwright, D.T. The prepared mind: Marie Nyswander, methadone maintenance, and the metabolic theory of addiction. Addiction 1997, 92, 257–265. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, L.; Shi, J.; Yu, X.; Xiao, W.; Sun, R.; Zhou, Y.; Aa, J.; Wang, G. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse. Mol. Biosyst. 2014, 10, 1968–1977. [Google Scholar] [CrossRef]
- Adkins, D.E.; McClay, J.L.; Vunck, S.A.; Batman, A.M.; Vann, R.E.; Clark, S.L.; Souza, R.P.; Crowley, J.J.; Sullivan, P.F.; van den Oord, E.J.; et al. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization. Genes Brain Behav. 2013, 12, 780–791. [Google Scholar] [CrossRef]
- Zaitsu, K.; Miyawaki, I.; Bando, K.; Horie, H.; Shima, N.; Katagi, M.; Tatsuno, M.; Bamba, T.; Sato, T.; Ishii, A.; et al. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. Anal. Bioanal. Chem. 2014, 406, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- McClay, J.L.; Adkins, D.E.; Vunck, S.A.; Batman, A.M.; Vann, R.E.; Clark, S.L.; Beardsley, P.M.; van den Oord, E.J. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 2013, 9, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Lv, L.; Yan, G.; Deng, P.; Wang, Y.; Zhou, J.; Yang, Y.; Li, Y.; Cen, X. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology 2013, 36, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Shima, N.; Miyawaki, I.; Bando, K.; Horie, H.; Zaitsu, K.; Katagi, M.; Bamba, T.; Tsuchihashi, H.; Fukusaki, E. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 2011, 287, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Xu, J.; Liu, X.; Dai, Z.; Liu, Z.; Zhao, X.; Sun, Y.; Pu, X. Metabolomics profiling of methamphetamine addicted human serum and three rat brain areas. RSC Adv. 2019, 9, 41107–41119. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jang, W.J.; Shakya, R.; Choi, B.; Jeong, C.H.; Lee, S. Current understanding of methamphetamine-associated metabolic changes revealed by the metabolomics approach. Metabolites 2019, 9, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.; Kim, S.P.; Hwang, S.; Hwang, J.; Yang, C.H.; Lee, S. Metabolic characterization in urine and hair from a rat model of methamphetamine self-administration using LC-QTOF-MS-based metabolomics. Metabolomics 2017, 13, 2195. [Google Scholar] [CrossRef]
- Tsutsui, H.; Maeda, T.; Min, J.Z.; Inagaki, S.; Higashi, T.; Kagawa, Y.; Toyo’oka, T. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin. Chim. Acta 2011, 412, 861–872. [Google Scholar] [CrossRef]
- Sulek, K.; Han, T.L.; Villas-Boas, S.G.; Wishart, D.S.; Soh, S.E.; Kwek, K.; Gluckman, P.D.; Chong, Y.S.; Kenny, L.C.; Baker, P.N. Hair metabolomics: Identification of fetal compromise provides proof of concept for biomarker discovery. Theranostics 2014, 4, 953–959. [Google Scholar] [CrossRef]
- He, X.; de Seymour, J.V.; Sulek, K.; Qi, H.; Zhang, H.; Han, T.L.; Villas-Boas, S.G.; Baker, P.N. Maternal hair metabolome analysis identifies a potential marker of lipid peroxidation in gestational diabetes mellitus. Acta Diabetol. 2016, 53, 119–122. [Google Scholar] [CrossRef]
- Delplancke, T.D.J.; de Seymour, J.V.; Tong, C.; Sulek, K.; Xia, Y.; Zhang, H.; Han, T.L.; Baker, P.N. Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy. Sci. Rep. 2018, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Han, T.L.; Delplancke, T.; McKenzie, E.J.; de Seymour, J.V.; Chua, M.C.; Tan, K.H.; Baker, P.N. Association between maternal exposure to phthalates and lower language ability in offspring derived from hair metabolome analysis. Sci. Rep. 2018, 8, 6745. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, B.M.; Tsatsakis, A.M. Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: State of the art, critical review and future needs. Toxicol. Lett. 2012, 210, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Yamada, K.; Toyoshima, M.; Ohnishi, T.; Iwayama, Y.; Shimamoto, C.; Toyota, T.; Nozaki, Y.; Balan, S.; Matsuzaki, H.; et al. Utility of scalp hair follicles as a novel source of biomarker genes for psychiatric illnesses. Biol. Psychiatry 2015, 78, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, J.; In, S.; Choi, H.; Oh, S.M.; Jang, C.G.; Chung, K.H. Development of a simultaneous analytical method for selected anorectics, methamphetamine, MDMA, and their metabolites in hair using LC-MS/MS to prove anorectics abuse. Anal. Bioanal. Chem. 2012, 403, 1385–1394. [Google Scholar] [CrossRef]
- Lee, S.; Cordero, R.; Paterson, S. Distribution of 6-monoacetylmorphine and morphine in head and pubic hair from heroin-related deaths. Forensic Sci. Int. 2009, 183, 74–77. [Google Scholar] [CrossRef]
- Cordero, R.; Lee, S.; Paterson, S. Distribution of concentrations of cocaine and its metabolites in hair collected postmortem from cases with diverse causes/circumstances of death. J. Anal. Toxicol. 2010, 34, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Han, E.; Park, Y.; Choi, H.; Chung, H. Distribution of methamphetamine and amphetamine in drug abusers’ head hair. Forensic Sci. Int. 2009, 190, 16–18. [Google Scholar] [CrossRef]
- The NIDA Quick Screen. Available online: https://www.drugabuse.gov/publications/resource-guide-screening-drug-use-in-general-medical-settings/nida-quick-screen (accessed on 8 January 2018).
- Comelia, R.R.; Sascha, D. Analysis of Human Urine Using the AbsoluteIDQTM Kit; Biocrates Life Sciences AG: Innsburck, Austria, 2010. [Google Scholar]
- Veiga, S.; Wahrheit, J.; Rodriguez-Martin, A.; Sonntag, D. Quantitative metabolomics in Alzheimer’s disease: Technical considerations for improved reproducibility. Methods Mol. Biol. 2018, 1779, 463–470. [Google Scholar] [CrossRef]
- Steiner, N.; Muller, U.; Hajek, R.; Sevcikova, S.; Borjan, B.; Johrer, K.; Gobel, G.; Pircher, A.; Gunsilius, E. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS ONE 2018, 13, e0202045. [Google Scholar] [CrossRef]
- Xie, P.; Wang, T.J.; Yin, G.; Yan, Y.; Xiao, L.H.; Li, Q.; Bi, K.S. Metabonomic study of biochemical changes in human hair of heroin abusers by liquid chromatography coupled with ion trap-time of flight mass spectrometry. J. Mol. Neurosci. 2016, 58, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Pragst, F.; Balikova, M.A. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta 2006, 370, 17–49. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Paulus, M.P.; Wittmann, M.; Chung, H.; Song, J.M. Hair analysis and self-report of methamphetamine use by methamphetamine dependent individuals. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, R.; Luo, J.; He, L.; Liu, J.; Zhang, J. Increased absolute glutamate concentrations and glutamate-to-creatine ratios in patients with methamphetamine use disorders. Front. Psychiatry 2018, 9, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howells, F.M.; Uhlmann, A.; Temmingh, H.; Sinclair, H.; Meintjes, E.; Wilson, D.; Stein, D.J. (1)H-magnetic resonance spectroscopy ((1)H-MRS) in methamphetamine dependence and methamphetamine induced psychosis. Schizophr. Res. 2014, 153, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jang, W.J.; Jang, J.H.; Park, B.; Seo, Y.H.; Jeong, C.H.; Lee, S. Role of hair pigmentation in drug incorporation into hair. Forensic Sci. Int. 2017, 281, 171–175. [Google Scholar] [CrossRef]
- Zammit, V.A.; Ramsay, R.R.; Bonomini, M.; Arduini, A. Carnitine, mitochondrial function and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1353–1362. [Google Scholar] [CrossRef]
- Wajner, M.; Amaral, A.U. Mitochondrial dysfunction in fatty acid oxidation disorders: Insights from human and animal studies. Biosci. Rep. 2015, 36, e00281. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Yao, D.; Gosnell, B.A.; Chen, C. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity. J. Lipid Res. 2012, 53, 2318–2330. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Kimura, T.; Noguchi, Y.; Shikata, N.; Takahashi, M. Plasma amino acid analysis for diagnosis and amino acid-based metabolic networks. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Siminska, E.; Koba, M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids 2016, 48, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Gueli, M.C.; Taibi, G. Alzheimer’s disease: Amino acid levels and brain metabolic status. Neurol. Sci. 2013, 34, 1575–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.F.; Wang, W.Q.; Li, X.M.; Rauw, G.; Baker, G.B. Body fluid levels of neuroactive amino acids in autism spectrum disorders: A review of the literature. Amino Acids 2017, 49, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jang, W.J.; Yu, H.; Ryu, I.S.; Jeong, C.H.; Lee, S. Integrated non-targeted and targeted metabolomics uncovers dynamic metabolic effects during short-term abstinence in methamphetamine self-administering rats. J. Proteome Res. 2019, 18, 3913–3925. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.M.; Moszczynska, A.; Peretti, F.J.; Adams, V.; Schmunk, G.A.; Kalasinsky, K.S.; Ang, L.; Mamalias, N.; Turenne, S.D.; Kish, S.J. Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend. 2002, 67, 73–79. [Google Scholar] [CrossRef]
- Cummings, B.S.; Pati, S.; Sahin, S.; Scholpa, N.E.; Monian, P.; Trinquero, P.M.; Clark, J.K.; Wagner, J.J. Differential effects of cocaine exposure on the abundance of phospholipid species in rat brain and blood. Drug Alcohol Depend. 2015, 152, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, F.; Pierozan, P.; Biasibetti-Brendler, H.; Ferreira, F.S.; Dos Santos Petry, F.; Trindade, V.M.T.; Pessoa-Pureur, R.; Wyse, A.T.S. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus. Metab. Brain Dis. 2018, 33, 693–704. [Google Scholar] [CrossRef]
- Orio, L.; Pavon, F.J.; Blanco, E.; Serrano, A.; Araos, P.; Pedraz, M.; Rivera, P.; Calado, M.; Suarez, J.; de Fonseca, F.R. Lipid transmitter signaling as a new target for treatment of cocaine addiction: New roles for acylethanolamides and lysophosphatidic acid. Curr. Pharm. Des. 2013, 19, 7036–7049. [Google Scholar] [CrossRef]
- Astarita, G.; Avanesian, A.; Grimaldi, B.; Realini, N.; Justinova, Z.; Panlilio, L.V.; Basit, A.; Goldberg, S.R.; Piomelli, D. Methamphetamine accelerates cellular senescence through stimulation of de novo ceramide biosynthesis. PLoS ONE 2015, 10, e0116961. [Google Scholar] [CrossRef] [Green Version]
- Waterham, H.R.; Ferdinandusse, S.; Wanders, R.J. Human disorders of peroxisome metabolism and biogenesis. Biochim. Biophys. Acta 2016, 1863, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Adibhatla, R.M.; Hatcher, J.F.; Dempsey, R.J. Lipids and lipidomics in brain injury and diseases. AAPS J. 2006, 8, E314–E321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; An, Y.; Zhang, L.; Lei, H.; Zhang, L.; Wang, Y.; Tang, H. Combined NMR and GC-MS analyses revealed dynamic metabolic changes associated with the carrageenan-induced rat pleurisy. J. Proteome Res. 2013, 12, 5520–5534. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Yeh, K.W.; Lin, G.; Chiang, M.H.; Yang, S.C.; Chao, W.J.; Yao, T.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; et al. Metabolomics Reveals Dynamic Metabolic Changes Associated with Age in Early Childhood. PLoS ONE 2016, 11, e0149823. [Google Scholar] [CrossRef] [Green Version]
Subjects | ID | Age (Years) | Concentrations (ng/mg) | ||
---|---|---|---|---|---|
MA 1 | AM 2 | ||||
Drug-free controls (male, n = 12) | Mean (SD) | C1 | 36 | - | - |
C2 | 34 | ||||
C3 | 40 | ||||
C4 | 40 | ||||
C5 | 42 | ||||
C6 | 44 | ||||
C7 | 48 | ||||
C8 | 35 | ||||
C9 | 40 | ||||
C10 | 41 | ||||
C11 | 40 | ||||
C12 | 37 | ||||
39.8 (3.9) | |||||
Heavy MA abusers (male, n = 10) | M1 | 37 | 65.7 | 4.6 | |
M2 | 36 | 163.4 | 8.5 | ||
M3 | 36 | 72.5 | 0.2 | ||
M4 | 27 | 28.5 | 1.9 | ||
M5 | 37 | 48.7 | 2.4 | ||
M6 | 46 | 31.2 | 2.7 | ||
M7 | 30 | 75.8 | 6.3 | ||
M8 | 37 | 63.74 | 4.3 | ||
M9 | 38 | 25.2 | 3.7 | ||
M10 | 46 | 25.2 | 2.0 | ||
Mean (SD) | 37.0 (5.9) | 60.0 (41.5) | 3.7 (2.4) |
Metabolite Group | Total Number of Metabolites | Number of (Semi-) Quantified Metabolites | Number of Significant Changed Metabolites |
---|---|---|---|
Acylcarnitines | 40 | 22 | 5 |
Amino acids and biogenic amines | 42 | 22 | 2 |
Glycerophospholipids | 90 | 39 | 25 |
Sphingolipids | 15 | 7 | 3 |
Monosaccarids | 1 | 0 | 0 |
Total | 188 | 90 | 35 |
Metabolite Group | Metabolite | Fold Change | p Value |
---|---|---|---|
Acylcarnitines | Carnitine | 1.80 | 0.0065 |
Decadienylcarnitine | 2.51 | 0.0119 | |
Octadecadienylcarnitine | 2.39 | 0.0224 | |
Octadecanoylcarnitine | −1.45 | 0.0047 | |
Valerylcarnitine | −1.92 | 0.0062 | |
Amino acids and biogenic amines | Arginine | 5.61 | 0.0044 |
Methionine | −1.56 | 0.0049 | |
Glycerophospholipids | lysoPC a 1 C160 | 2.14 | 0.0007 |
lysoPC a C170 | 1.73 | 0.0002 | |
lysoPC a C181 | 2.74 | 4.0469 × 10−5 | |
lysoPC a C204 | 1.33 | 0.0478 | |
PC aa 2 C341 | −1.52 | 0.0092 | |
PC aa C362 | −1.41 | 0.0185 | |
PC aa C365 | −2.78 | 7.5669 × 10−5 | |
PC aa C366 | −2.13 | 0.0010 | |
PC aa C381 | −1.59 | 0.0382 | |
PC aa C383 | −1.37 | 0.0091 | |
PC aa C385 | −2.33 | 0.0002 | |
PC aa C403 | −2.56 | 0.0043 | |
PC aa C404 | −2.22 | 0.0061 | |
PC ae 3 C340 | −1.89 | 0.0033 | |
PC ae C360 | −1.69 | 0.0015 | |
PC ae C361 | −1.61 | 0.0054 | |
PC ae C365 | −3.13 | 0.0001 | |
PC ae C380 | −1.59 | 0.0020 | |
PC ae C381 | −2.04 | 0.0026 | |
PC ae C382 | −2.08 | 0.0035 | |
PC ae C383 | −2.08 | 0.0078 | |
PC ae C401 | −2.78 | 0.0005 | |
PC ae C402 | −2.27 | 0.0071 | |
PC ae C422 | −2.04 | 0.0150 | |
PC ae C423 | −1.92 | 0.0284 | |
Sphingolipids | SM 4 C241 | 2.04 | 0.0184 |
SM OH C221 | 1.77 | 0.0163 | |
SM OH C241 | 1.51 | 0.0236 |
Ionization Polarity | m/z | tR (min) | ΔtR (min) | Formula | Mass | ΔMass (ppm) | Metabolites (Fold Change) | Species | Score |
---|---|---|---|---|---|---|---|---|---|
Positive | 130.0507 | 1.14 | −0.31 | C5H7NO3 | 129.0434 | −6.49 | 5-Oxo-proline | (M + H)+ | 83.5 |
132.1022 | 1.32 | 0.03 | C6H13NO2 | 131.0949 | −2.11 | (L-)Isoleucine | (M + H)+ | 99.4 | |
139.0523 | 1.42 | 0.00 | C6H6N2O2 | 138.0452 | −16.54 | Urocanate | (M + H)+ | 70.6 | |
146.0926 | 1.27 | 0.14 | C5H11N3O2 | 145.0852 | −0.41 | * 4-Guanidinobutanoate (2.8) | (M + H)+ | 83.6 | |
195.0873 | 14.64 | −0.04 | C8H10N4O2 | 194.0800 | 1.84 | Caffeine | (M + H)+ | 99.1 | |
302.3051 | 35.96 | 0.01 | C18H39NO2 | 301.2978 | 0.88 | * Sphinganine (−1.8) | (M + H)+ | 99.6 | |
Negative | 151.0258 | 2.64 | 0.01 | C5H4N4O2 | 152.0330 | 2.63 | Xanthine | (M − H)− | 98.1 |
167.0207 | 1.75 | −0.07 | C5H4N4O3 | 168.0280 | 1.87 | * Urate (−2.0) | (M − H)− | 86.6 | |
117.0193 | 1.51 | 0.03 | C4H6O4 | 118.0266 | 0.18 | Succinate | (M − H)− | 87.7 | |
281.2484 | 39.56 | −0.04 | C18H34O2 | 282.2556 | 0.92 | * Petroselinic acid (−3.3) | (M − H)− | 99.4 | |
105.0199 | 0.90 | −0.02 | C3H6O4 | 106.0272 | −5.39 | Glycerate | (M − H)− | 85.5 | |
89.0250 | 1.04 | 0.19 | C3H6O3 | 90.0323 | −6.46 | Glyceraldehyde | (M − H)− | 85.4 | |
131.0824 | 0.85 | 0.13 | C5H12N2O2 | 132.0896 | 2.13 | (L-)Ornithine | (M − H)− | 85.1 | |
174.0882 | 0.85 | 0.09 | C6H13N3O3 | 175.0955 | 0.97 | Citrulline | (M − H)− | 87.1 | |
128.0354 | 1.48 | 0.03 | C5H7NO3 | 129.0427 | −0.49 | 5-Oxo-proline | (M − H)− | 87.7 | |
121.0294 | 9.68 | 0.14 | C7H6O2 | 122.0367 | 0.84 | * 4-Hydroxybenzaldehyde (2.9) | (M − H)− | 87.8 |
Module | Metabolism Pathway | Number of Hidden Proteins | p-Value | FDR 1 | Hidden Protein |
---|---|---|---|---|---|
1 | Peroxisome | 4 | 9.99 × 10−8 | 1.40 × 10−6 | ACOT8,PEX5,HACL1,PAOX |
2 | Glycosphingolipid biosynthesis—lacto and neolacto series | 3 | 2.71 × 10−7 | 1.38 × 10−5 | B3GALT5,B3GNT3,A4GALT |
3 | Glycine, serine and threonine metabolism | 4 | 5.44 × 10−9 | 1.09 × 10−7 | SHMT2,SHMT1,GNMT,SARDH |
4 | Sphingolipid metabolism | 3 | 1.42 × 10−6 | 3.42 × 10−5 | SMPD3,SMPD2,SMPD4 |
5 | Cysteine and methionine metabolism | 3 | 2.48 × 10−6 | 1.74 × 10−5 | BHMT2,MTR,BHMT |
6 | Glycerophospholipid metabolism | 4 | 2.69 × 10−8 | 5.38 × 10−7 | LYPLA2,LYPLA1,PLA2G2C,PLA2G15 |
7 | Pentose and glucuronate interconversions | 3 | 1.09 × 10−7 | 2.05 × 10−6 | UGT2B4,GUSB,UGT2B7 |
Drug metabolism—other enzymes | 3 | 1.36 × 10−6 | 8.15 × 10−6 | UGT2B4,GUSB,UGT2B7 | |
8 | Ether lipid metabolism | 4 | 2.99 × 10−10 | 4.18 × 10−9 | PLA2G12B,PLA2G7,PAFAH1B3,PAFAH2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jang, W.-J.; Yu, H.; Kim, J.; Lee, S.-K.; Jeong, C.-H.; Lee, S. Revealing Metabolic Perturbation Following Heavy Methamphetamine Abuse by Human Hair Metabolomics and Network Analysis. Int. J. Mol. Sci. 2020, 21, 6041. https://doi.org/10.3390/ijms21176041
Kim S, Jang W-J, Yu H, Kim J, Lee S-K, Jeong C-H, Lee S. Revealing Metabolic Perturbation Following Heavy Methamphetamine Abuse by Human Hair Metabolomics and Network Analysis. International Journal of Molecular Sciences. 2020; 21(17):6041. https://doi.org/10.3390/ijms21176041
Chicago/Turabian StyleKim, Suji, Won-Jun Jang, Hyerim Yu, Jihyun Kim, Sang-Ki Lee, Chul-Ho Jeong, and Sooyeun Lee. 2020. "Revealing Metabolic Perturbation Following Heavy Methamphetamine Abuse by Human Hair Metabolomics and Network Analysis" International Journal of Molecular Sciences 21, no. 17: 6041. https://doi.org/10.3390/ijms21176041
APA StyleKim, S., Jang, W. -J., Yu, H., Kim, J., Lee, S. -K., Jeong, C. -H., & Lee, S. (2020). Revealing Metabolic Perturbation Following Heavy Methamphetamine Abuse by Human Hair Metabolomics and Network Analysis. International Journal of Molecular Sciences, 21(17), 6041. https://doi.org/10.3390/ijms21176041