5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of 5-(N-Trifluoromethylcarboxy)aminouracil
2.2. Crystallography
2.3. Radiolysis
2.4. A Possible Mechanism of Electron-Induced Degradation of CF3CONHU
2.5. Cytotoxicity
2.6. Clonogenic Assay
2.7. Histone H2A.X Phosphorylation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 5-(N-trifluoromethylcarboxy)aminouracil
3.3. Crystallography
3.4. Radiolysis
3.5. HPLC and LC-MS
3.6. Calculations
3.7. Cytotoxicity
3.8. Clonogenic Assay
3.9. Histone H2A.X Phosphorylation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CF3CONHU | 5-(N-trifluoromethylcarboxy) aminouracil |
IR | Ionizing Radiation |
DEA | Dissociative Electron Attachment |
AEA | Adiabatic Electron Affinity |
PCM | Polarization Continuum Model |
PC3 | Prostate Cancer Cell Line |
HDFa | Human Dermal Fibroblasts |
BrdU | 5-bromo-2’-deoxyuridine |
FBS | Fetal Bovine Serum |
References
- Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007, 19, 397–417. [Google Scholar] [CrossRef]
- Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med. 2009, 9, 442–458. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Joiner, M.C.; Van der Kogel, A. Basic Clinical Radiobiology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wang, H.; Mu, X.; He, H.; Zhang, X.D. Cancer radiosensitizers. Trends Pharmacol. Sci. 2018, 39, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Rak, J.; Chomicz, L.; Wiczk, J.; Westphal, K.; Zdrowowicz, M.; Wityk, P.; Żyndul, M.; Makurat, S.; Golon, Ł. Mechanisms of damage to DNA labeled with electrophilic nucleobases induced by ionizing or UV radiation. J. Phys. Chem. B 2015, 119, 8227–8238. [Google Scholar] [CrossRef] [PubMed]
- von Sonntag, C. Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Nabben, F.J.; Karman, J.P.; Loman, H. Inactivation of biologically active DNA by hydrated electrons. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1982, 42, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, S.; Girouard, S.; Huels, M.A.; Sanche, L.; Hunting, D.J. Interstrand cross-links: A new type of γ-ray damage in bromodeoxyuridine-substituted DNA. Biochemistry 2005, 44, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Warters, R.L.; Hofer, K.G.; Harris, C.R.; Smith, J.M. Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site of radiation damage. Curr. Top. Radiat. Res. Q. 1977, 12, 389–407. [Google Scholar]
- Kinsella, T.J.; Dobson, P.P.; Mitchell, J.B.; Fornace, A.J. Enhancement of X ray induced DNA damage by pre-treatment with halogenated pyrimidine analogs. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 733–739. [Google Scholar] [CrossRef]
- Wetmore, S.D.; Boyd, R.J.; Eriksson, L.A. A theoretical study of 5-halouracils: Electron affinities, ionization potentials and dissociation of the related anions. Chem. Phys. Lett. 2001, 343, 151–158. [Google Scholar] [CrossRef]
- Li, X.; Sanche, L.; Sevilla, M.D. Dehalogenation of 5-halouracils after low energy electron attachment: A density functional theory investigation. J. Phys. Chem. A 2002, 106, 11248–11253. [Google Scholar] [CrossRef]
- Chomicz, L.; Rak, J.; Storoniak, P. Electron-induced elimination of the bromide anion from brominated nucleobases. A computational study. J. Phys. Chem. B 2012, 116, 5612–5619. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, M.; Liu, P.; Xie, S.; Cheng, F.; Wang, L. 5-(Halomethyl) uridine derivatives as potential antitumor radiosensitizers: A DFT study. Chem. Phys. Lett. 2018, 692, 374–381. [Google Scholar] [CrossRef]
- Polska, K.; Rak, J.; Bass, A.D.; Cloutier, P.; Sanche, L. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers. J. Chem. Phys. 2012, 136, 075101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Polska, K.; Rak, J.; Wagner, J.R.; Sanche, L. Fundamental mechanisms of DNA radiosensitization: Damage induced by low-energy electrons in brominated oligonucleotide trimers. J. Phys. Chem. B 2012, 116, 9676–9682. [Google Scholar] [CrossRef] [PubMed]
- Westphal, K.; Wiczk, J.; Miloch, J.; Kciuk, G.; Bobrowski, K.; Rak, J. Irreversible electron attachment–a key to DNA damage by solvated electrons in aqueous solution. Org. Biomol. Chem. 2015, 13, 10362–10369. [Google Scholar] [CrossRef] [PubMed]
- Westphal, K.; Skotnicki, K.; Bobrowski, K.; Rak, J. Radiation damage to single stranded oligonucleotide trimers labelled with 5-iodopyrimidines. Org. Biomol. Chem. 2016, 14, 9331–9337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomicz, L.; Zdrowowicz, M.; Kasprzykowski, F.; Rak, J.; Buonaugurio, A.; Wang, Y.; Bowen, K.H. How to find out whether a 5-substituted uracil could be a potential DNA radiosensitizer. J. Phys. Chem. Lett. 2013, 4, 2853–2857. [Google Scholar] [CrossRef]
- Makurat, S.; Chomicz-Mańka, L.; Rak, J. Electrophilic 5-substituted uracils as potential radiosensitizers: A density functional theory study. Chem. Phys. Chem. 2016, 17, 2572–2578. [Google Scholar] [CrossRef]
- Zdrowowicz, M.; Chomicz, L.; Żyndul, M.; Wityk, P.; Rak, J.; Wiegand, T.J.; Hanson, C.G.; Adhikary, A.; Sevilla, M.D. 5-Thiocyanato-2′-deoxyuridine as a possible radiosensitizer: Electron-induced formation of uracil-C5-thiyl radical and its dimerization. Phys. Chem. Chem. Phys. 2015, 17, 16907–16916. [Google Scholar] [CrossRef]
- Sosnowska, M.; Makurat, S.; Zdrowowicz, M.; Rak, J. 5-Selenocyanatouracil: A potential hypoxic radiosensitizer. Electron attachment induced formation of selenium centered radical. J. Phys. Chem. B 2017, 121, 6139–6147. [Google Scholar] [CrossRef]
- Makurat, S.; Zdrowowicz, M.; Chomicz-Mańka, L.; Kozak, W.; Serdiuk, I.E.; Wityk, P.; Kawecka, A.; Sosnowska, M.; Rak, J. 5-Selenocyanato and 5-trifluoromethanesulfonyl derivatives of 2’-deoxyuridine: Synthesis, radiation and computational chemistry as well as cytotoxicity. RSC Adv. 2018, 8, 21378–21388. [Google Scholar] [CrossRef] [Green Version]
- Makurat, S.; Spisz, P.; Kozak, W.; Rak, J.; Zdrowowicz, M. 5-iodo-4-thio-2’-deoxyuridine as a sensitizer of X-ray induced cancer cell killing. Int. J. Mol. Sci. 2019, 20, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, W.; Demkowicz, S.; Daśko, M.; Rachon, J.; Rak, J. Modifications at the C(5) position of pyrimidine nucleosides. Russ. Chem. Rev. 2020, 89, 281–310. [Google Scholar] [CrossRef]
- Weygand, F.; Geiger, R. N-Trifluoracetyl-aminosäuren, IV. Mitteil.: N-trifluoracetylierung von aminosäuren in wasserfreier trifluoressigsäure. Chem. Ber. 1956, 89, 647–652. [Google Scholar] [CrossRef]
- Barnett, S.A.; Hulme, A.T.; Issa, N.; Lewis, T.C.; Price, L.S.; Tocher, D.A.; Price, S.L. The observed and energetically feasible crystal structures of 5-substituted uracils. New J. Chem. 2008, 32, 1761–1775. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond; Cornell University Press: New York, NY, USA, 1960. [Google Scholar]
- Sakai, T.T.; Santi, D.V. Hydrolysis of hydroxybenzotrifluorides and fluorinated uracil derivatives. A general mechanism for carbon–fluorine bond labilization. J. Med. Chem. 1973, 16, 1079–1084. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kumadaki, I. Reactions of aromatic trifluoromethyl compounds with nucleophilic reagents. Acc. Chem. Res. 1978, 11, 197–204. [Google Scholar] [CrossRef]
- Jones, M.F. The stability of trifluorothymidine: Hydrolysis in buffered aqueous solutions. J. Pharm. Pharmacol. 1981, 33, 274–278. [Google Scholar] [CrossRef]
- Weygand, F.; Csendes, E. N-Trifluoracetyl-aminosäuren. Angew. Chem. 1952, 64, 136. [Google Scholar] [CrossRef]
- Weygand, F.; Frauendorfer, E. Reductive elimination of the N-trifluoroacetyl and N-trichloroacetyl group by sodium boron hydride and applications in peptide chemistry. Chem. Ber. 1970, 103, 2437–2449. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle−Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Truhlar, D.G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 2004, 108, 6908–6918. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Rassolov, V.; Pople, J.A. Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys. 1999, 110, 4703–4709. [Google Scholar] [CrossRef] [Green Version]
- Peskin, A.V.; Winterbourn, C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000, 293, 157–166. [Google Scholar] [CrossRef]
- Pauwels, B.; Korst, A.E.C.; De Pooter, C.M.J.; Lambrechts, H.A.J.; Pattyn, G.G.O.; Lardon, F.; Vermorken, J.B. The radiosensitising effect of gemcitabine and the influence of the rescue agent amifostine in vitro. Eur. J. Cancer 2003, 39, 838–846. [Google Scholar] [CrossRef]
- CrysAlis CCD and CrysAlis RED, v1.171.36.24; Program Used to Refine Structure; Oxford Diffraction Ltd.: England, UK, 2012.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Johnson, C.K. ORTEP II, Report ORNL-5138; ORNL: Oak Ridge, TN, USA, 1976. [Google Scholar]
- Motherwell, S.; Clegg, S. PLUTO-78, Version 1978.37; Program for Drawing and Molecular Structure, University of Cambridge: Cambridge, UK, 1978. [Google Scholar]
- Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Wong, M.H.; Wiberg, K.B.; Frisch, M. Hartree-fock second derivatives and electric field properties in a solvent reaction field: Theory and application. J. Chem. Phys. 1991, 95, 8991–8998. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, C., Frenking, G., Kim, K., Scuseri, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 195–249. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Version D.01; Software for Calculation; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
Dose [Gy] | % of γH2AX Positive Cells | |
---|---|---|
Control (Non-Treated) | CF3CONHU (10−4 M, 48 h) | |
0 Gy | 6.91 ± 0.17 | 7.00 ± 0.55 |
2 Gy | 16.32 ± 0.12 | 37.48 ± 1.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spisz, P.; Kozak, W.; Chomicz-Mańka, L.; Makurat, S.; Falkiewicz, K.; Sikorski, A.; Czaja, A.; Rak, J.; Zdrowowicz, M. 5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid. Int. J. Mol. Sci. 2020, 21, 6352. https://doi.org/10.3390/ijms21176352
Spisz P, Kozak W, Chomicz-Mańka L, Makurat S, Falkiewicz K, Sikorski A, Czaja A, Rak J, Zdrowowicz M. 5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid. International Journal of Molecular Sciences. 2020; 21(17):6352. https://doi.org/10.3390/ijms21176352
Chicago/Turabian StyleSpisz, Paulina, Witold Kozak, Lidia Chomicz-Mańka, Samanta Makurat, Karina Falkiewicz, Artur Sikorski, Anna Czaja, Janusz Rak, and Magdalena Zdrowowicz. 2020. "5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid" International Journal of Molecular Sciences 21, no. 17: 6352. https://doi.org/10.3390/ijms21176352
APA StyleSpisz, P., Kozak, W., Chomicz-Mańka, L., Makurat, S., Falkiewicz, K., Sikorski, A., Czaja, A., Rak, J., & Zdrowowicz, M. (2020). 5-(N-Trifluoromethylcarboxy)aminouracil as a Potential DNA Radiosensitizer and Its Radiochemical Conversion into N-Uracil-5-yloxamic Acid. International Journal of Molecular Sciences, 21(17), 6352. https://doi.org/10.3390/ijms21176352