Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance
Abstract
:1. Introduction
2. Causal Role of DAGs in Insulin Resistance?
2.1. Molecular Mechanisms
2.2. Relevant Mouse Models
3. Causal Role of Ceramides in Insulin Resistance?
3.1. Ceramides Biosynthetic Pathways
3.2. Mechanistic Insights from Cell-Based Studies
3.3. Mechanistic Insights from Rodent Studies
3.3.1. Pharmacological Inhibition of Ceramide Synthesis
3.3.2. Transgenic Mouse Models Modulating Total Ceramide Pool
3.3.3. Transgenic Mouse Models Modulating Specific Ceramides Species
Mouse Models | Diet/Treatment | BW/BC | Plasma Changes | Tissue Changes | Readouts of Insulin Sensitivity | Readouts of Insulin Signaling | References |
---|---|---|---|---|---|---|---|
Degs1+/− | CD (7w) | - | - | SkM ↓ Cer/DhCer WAT ↓ Cer/DhCer Liver ↓ Cer/DhCer | ↑ Insulin sensitivity index ↑ Insulin tolerance | - | Holland et al., 2007 [74] |
CD + Dexamethasone (6w + 1w) | - | - | ↑↑ Insulin sensitivity index ↑↑ Insulin tolerance | - | |||
Sptlc2+/− | CD (16w) | ↔ BW | ↔ | SkM ↔ AT ↔ Liver ↑ Cer | ↑ Glucose tolerance ↑ Insulin tolerance ↔ Pyruvate tolerance | AT + Liver ↑↑ INSR phosphorylation ↔ Total INSR ↑↑ Akt p-S473 | Li et al., 2011 [80] |
HFD (16w) | ↓ BW gain | ↓ SM S1P ↓↓ Cer | SkM ↔ AT ↔ Sphingolipids ↓ Adipocyte size Liver ↑ Cer | SkM + AT + Liver ↑↑ INSR phosphorylation ↔ Total INSR ↑↑ Akt p-S473 SkM + AT ↑ GLUT4 translocation | |||
Sms2+/− | CD (16w) | ↔ BW | - | SkM ↓ SM ↑↑ Cer AT ↓ SM Liver ↓ SM ↑↑ Cer | ↑ Glucose tolerance ↑ Insulin tolerance SkM + WAT ↑ glucose uptake | Liver ↑↑ Akt p-S473 | |
HFD (16w) | ↓ BW gain | - | - | ↑ Glucose tolerance ↑ Insulin tolerance ↔ Pyruvate tolerance | - | ||
Cerk−/− | HFD (11w) | ↓ BW gain | - | Brain ↔ C1P AT ↓↓ Adipocyte size ↓↓ Inflammation | ↑ Glucose tolerance | eWAT ↑↑ Glut4 + INSR expression | Mitsutake et al., 2012 [87] |
CerS2−/− | CD | ↓ BW ↔ BC | - | Liver ↓↓ C22, C24 Cer ↑↑ C16 Cer, HexCer, SM ↑↑ Sphinganine ↑↑ nSMase activity ↓ glycogen storage | ↑ Fasting/Fed plasma glucose ↓ Insulin tolerance ↓ Glucose tolerance | Liver ↓↓ p-INSR, Akt p-S473 SkM/AT ↔ | Park et al., 2013 [88] |
CerS2+/− | CD (12w) | ↔ BW gain ↓ BW/Lean mass | - | Liver ↓↓ C22:0/C24:0 Cer ↑↑ C16:0 GlcCer ↑↑ C16:0 DhSM ↑↑ C16:0 ↓↓ C24:0 DhCer | ↔ Plasma Insulin ↔ Glucose tolerance ↔ Insulin tolerance | - | Raichur et al., 2014 [89] |
HFD (12w) | ↔ BW gain ↑↑ Fat mass/Lean mass | - | Liver ↑ weight ↑ TAG ↑ macrophages ↑↑ C16:0, C18:0, C24:1 Cer ↑ Total Cer ↓↓ Total DhCer ↑ C16:0, C18:1, C24:1 SM ↓↓ C26:0 SM ↑↑ Sphinganine, Sphingosine ↑↑ C16:0 GlcCer ↓↓ C22:0, C24:0 GlcCer | ↑ Fed and Fasted plasma Insulin ↓ Glucose tolerance ↓ Insulin tolerance | - | ||
CerS6−/− | CD (17w) | ↓ BW gain | - | - | ↑ Glucose tolerance ↔ Insulin tolerance | - | Turpin et al., 2014 [82] |
HFD (17w) | ↓ BW gain ↓ Fat mass | - | WAT ↓↓ Adipocyte size ↓↓ MAC2 positive cells ↓↓ C16:0 Cer ↑ C18:0 Cer BAT ↓↓ C16:0 Cer ↓↓ LD size ↑↑ Lipolysis, ↑↑ β-oxydation capacity Liver ↓↓ C16:0 Cer SkM ↔ Cer | ↓ Serum insulin ↑ Glucose tolerance ↑ Insulin tolerance | Liver ↑↑ Akt p-T308, p-S473 ↑↑ p-GSK3β SkM ↔ | ||
Cers6ΔBAT | HFD (17w) | ↔ BW gain ↓ Fat mass | - | BAT ↑↑ β-oxydation capacity | ↑ Glucose tolerance ↔ Insulin tolerance | - | |
Cers6ΔLiver | HFD (17w) | ↓ BW gain | - | Liver ↓↓ C16:0 Cer, DhCer | ↑ Glucose tolerance ↔ Insulin tolerance | - | |
Liver-specific overexpression of AC | HFD + Dox (8w) | ↔ BW gain | ↓↓ C16:0, C18:0, Total Cer ↓↓ Sphingosine Sphinganine | Liver ↓ weight ↓↓ C16:0, C18:0, C20:0 Cer ↓ Sphingosine ↓↓ TAG ↑↑ DAG ↓ FA synthesis and uptake gene expression AT ↓ GlcCer, DhCer, LacCer ↓↓ Sphingosine Sphinganine Fat pad weight redistribution ↓ inflammation | ↑ Glucose tolerance ↑ Insulin tolerance ↑ HE clamp gWAT + sWAT + mWAT ↑↑ Glucose uptake | Liver + gWAT ↑↑ Akt p-S473 | Xia et al., 2015 [90] |
CD + Dox (8w) | - | - | - | ↑ Glucose tolerance | - | ||
HFD − HFD + Dox (8w–8w) | - | - | Liver ↑↑ TAG ↓↓ C16:0 C18:0 Cer | ↔ Insulin tolerance (3d post-induction) | - | ||
AT-specific overexpression of AC | HFD + Dox (8w) | ↔ BW gain | ↓ Cer GluCer ↑↑ Sphingosine Sphinganine ↑↑ S1P | mWAT+ gWAT + sWAT ↓ weight (gWAT) ↓↓ C16:0, C18:0, Total Cer ↓ Inflammation Liver ↓↓ TAG ↓↓ C16:0 C18:0 Cer | ↑ Glucose tolerance ↑ Insulin tolerance ↑ HE clamp gWAT + sWAT + mWAT ↑↑ Glucose uptake | Liver + gWAT ↑↑ Akt p-S473 | Xia et al., 2015 [90] |
CD + Dox (8w) | - | - | mWAT ↓ C18:0, C24:0, C24:1 Total Cer Liver ↓ Total Cer ↓↓ TAG | ↑ Glucose tolerance | - | ||
HFD − HFD + Dox (8w–8w) | - | - | Liver ↓↓ C16:0, C18:0 Cer ↓↓ TAG | ↑ Insulin tolerance (3d post-induction) | - | ||
CerS5−/− | CD (16w) | ↔ BW ↔ eWAT mass | ↑↑ C24;0 Cer, SM ↓ S1P | SkM ↓ C16:0 Cer Liver ↓↓ C16:0 SM eWAT ↔ | ↔ Glucose tolerance ↔ Insulin tolerance | eWAT ↑ Akt p-S473 | Gosejacob et al., 2016 [91] |
HFD (16w) | ↓ BW gain ↓ eWAT mass | ↓ C16:0, C20:0 SM ↓ S1P | SkM ↓↓ C16:0, C18:0 Cer, SM Liver ↓↓ C16:0 Cer, SM ↑ C18:0 SM eWAT ↓↓ C16:0, C18:0 Cer ↓↓ Adipocyte size ↓ proinflammatory cytokines | ↑ Glucose tolerance ↑ Insulin tolerance | - | ||
Sms2−/− | CD (12–23w) | ↔ BW | ↓ C22:0, 24:0 SM ↑↑ C20:0-C24:0 Cer ↑↑ C22:0 HexCer | Liver ↓↓ C20:0-C24:0 SM ↑↑ C20–24:0 HexCer SkM Very few modifications in SM or Cer content ↔ TAG, DAG | ↔ Fasting plasma insulin ↔ Fasting plasma glucose ↔ HOMA-IR ↑ Glucose tolerance ↑ Insulin tolerance ↑ 18F-FDG clearance | Liver/SkM ↑↑ Akt p-S473 mWAT ↓↓ Akt p-S473 | Sugimoto et al., 2016 [92] |
HFD (12–23w) | ↓ BW gain | ↓ C16:0-C24:0 SM ↑↑ C20:0-C24:0 Cer ↑↑ C22:0 HexCer | Liver ↓ C18:0-C22:0 SM ↑↑ C22:0 Cer ↓↓ C24:1 DhCer ↑↑ C16:0-C22:0 HexCer SkM ↓ TAG, DAG ↔ NEFA | ↓ Fasting plasma insulin ↔ Fasting plasma glucose ↓ HOMA-IR ↑ Glucose tolerance ↑ Insulin tolerance ↑ 18F-FDG clearance SkM + Liver + Heart ↑ 18F-FDG uptake | Liver/SkM ↑↑ p-INSR, Akt p-S473 mWAT ↑↑ Akt p-S473 | ||
Sms2ΔLiver | HFD (32w) | ↔ BW | ↓ C20:0–24:0 SM ↑ C22:0, 24:0, 24:1 Cer ↑ HexCer | Liver ↓ C20:0–24:0 SM ↑↑ HexCer SkM ↔ | ↔ Fasting plasma glucose ↔ Fasting plasma insulin ↔ Glucose tolerance ↔ Insulin tolerance | - | |
Sptlc2ΔAdipo | CD (12–16w) | - | ↔ Cer, DhCer, DHC, GM3 | Primary Adipocytes eWAT ↓ C22:0, C24:0, C24:1, Total Cer sWAT ↓↓ All Cer BAT ↓↓ C22:0, C24:0, C24:1, Total Cer AT eWAT ↓ Total Cer, ↓↓ Adipocyte size sWAT ↓ C16:0, C24:0, Total Cer ↓↓ DhCer, MHCer, ↓↓ Adipocyte size ↑↑ Thermogenic gene expression, ↑ Uncoupled respiration and OCR BAT ↓↓ C24:0, C24:1, Total Cer | ↔ Fed/Fasting plasma glucose ↔ HOMA-IR ↑ Glucose tolerance | - | Chaurasia et al., 2016 [79] |
HFD (12–16w) | ↓ BW gain ↓ Fat mass/Lean mass ratio | - | BAT ↑ Basal respiration Liver ↓ Lipid storage | ↓ Fed/Fasting plasma glucose ↑ HOMA-IR ↑ Glucose tolerance ↑ HE clamp Glucose uptake sWAT ↑ eWAT + BAT ↑↑ SkM ↔ | - | ||
CerS6 KD (ASO) | HFD (18w + 6w ASO) | ↓ BW and Fat mass | - | Liver ↓ TAG ↑↑ Glycogen ↑ Gys2 mRNA | ↔ Fed blood glucose ↓ Fed/Fasting plasma Insulin ↓ HOMA-IR ↔ Glucose tolerance ↑ Insulin tolerance | - | Raichur et al., 2019 [83] |
CD (ob/ob) | ↓ BW gain ↓ Fat mass (compared to pre-treatment) | ↓↓ C16:0 Cer ↑↑ C18:0, C20:0 Cer ↑ C22:0, C24:0, C24:1 Cer | Liver ↓↓ C16:0 Cer ↑↑ C20:0, C22:0, C24:0, C24:1 Cer | ↓ Fasted plasma glucose ↓ Fasted plasma insulin ↑ HOMA-IR ↑ Glucose tolerance ↑ Insulin tolerance | - | ||
CerS1−/− | HFD (17w) | ↓ BW gain ↓ Fat mass | - | SkM ↓↓ C18:0 Cer, DhCer, SM ↑↑ C16:0, C22:0, C24:0, C24:1 Cer, DhCer, SM ↔ DAG TAG Heart + Liver + WAT ↔ Cer, DhCer, SM | ↑ Glucose tolerance ↑ Insulin tolerance | - | Turpin-Nolan et al., 2019 [85] |
CerS1ΔSkM | HFD (17w) | ↔ BW gain ↔ Fat mass | - | SkM ↓↓ C18:0 Cer, DhCer ↑↑ C16:0 Cer ↑↑ C22:1, C24:0, C24:1 Cer, DhCer, SM ↓↓ C22:0 Cer ↔ DAG TAG Heart + Liver + WAT ↔ Cer | ↑ Glucose tolerance ↑ Insulin tolerance ↑ HE Clamp (↑ suppression of hepatic glucose production) Glucose uptake SkM ↑ (Trend) | ↔ Akt p-T308, p-S473 ↔ PP2A activity | |
CerS5ΔSkM + CerS6ΔSkM | HFD (17w) | ↔ BW gain ↔ Fat mass | - | SkM + Heart + Liver+ WAT ↔ Cer, DhCer, SM | ↔ Glucose tolerance ↔ Insulin tolerance | - | |
ob/ob Degs1Rosa26/ERT2-Cre | CD (12w) | ↓ BW gain ↓ Fat mass | ↓↓ Cer/DhCer, Cer ↓↓ SM, Sphingosine | Liver + WAT + SkM ↓↓ Cer/DhCer ↑↑ DhCer eWAT + sWAT ↓ Adipocyte size ↓ SM ↔ Cer Liver ↓↓ LD area | ↑ Glucose tolerance ↑ Insulin tolerance | - | Chaurassia et al., 2019 [81] |
Degs1ΔAdipo | HFD (12w) | ↔ BW | ↔ Cer/DhCer | eWAT + sWAT+ BAT + SkM ↓↓ Cer/DhCer ↔ Cer Liver ↔ Cer/DhCer, Cer Liver + SkM ↓↓ SM | ↓ Fed/Fasting plasma glucose ↓ Serum insulin ↑ Glucose tolerance ↑ Insulin tolerance | - | |
Degs1ΔLiver | HFD (12w) | ↔ BW | ↓↓ Cer/DhCer ↓↓ Cer ↑↑ DhCer ↓↓ SM | Liver + SkM ↓↓ Cer/DhCer SkM ↓↓ SM | ↔ Fed/Fasting plasma glucose ↓ Serum insulin ↑ Glucose tolerance ↑ Insulin tolerance | - | |
Degs1ΔLiver/Adipo | HFD (12w) | ↔ BW | ↓↓ Cer/DhCer ↓↓ Cer ↑↑ DhCer ↓↓ SM | BAT + Liver + eWAT + sWAT + SkM ↓ Cer/DhCer ↓↓ Cer ↑↑ DhCer Liver + SkM ↓↓ SM | ↓ Fed/Fasting plasma glucose ↓ Serum insulin ↑ Glucose tolerance ↑ Insulin tolerance | - | |
CerS5−/− | HFD (13–17w) | ↔ BW ↔ Fat mass | - | Liver ↓↓ C16:0, C22:0, C24:0 Cer | ↔ Glucose tolerance ↓ Insulin tolerance | - | Hammerschmidt et al., 2019 [84] |
CerS6−/− | HFD (13–17w) | ↓ BW gain ↓↓ Fat mass | - | Liver ↓↓ C16:0 ↓ C16:1 | ↑ Glucose tolerance ↑ Insulin tolerance | - | |
CerS6iKO | HFD (13–17w) | ↓ BW gain | - | Liver ↓↓ C16:0 | ↑ Glucose tolerance ↑ Insulin tolerance | - | |
CerS6fl/fl + AAV8-TBG-iCre | HFD (13–17w) | ↔ BW ↔ Fat mass | - | Liver ↓ C16:0 | ↑ Glucose tolerance ↔ Insulin tolerance ↔ Pyruvate tolerance | - | |
WT + AAV8-TBG-CerS6 | HFD (13–17w) | ↔ BW- | - | Liver ↑↑ C16:0 | ↔ Glucose tolerance ↔ Insulin tolerance ↓ Pyruvate tolerance | - |
3.3.4. Ceramides or Complex Sphingolipids as Culprit of IR?
3.4. Emerging Mechanisms of Action of Ceramides
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Acid ceramidase |
Akt | Protein kinase B |
ASO | Antisense oligonucleotide |
AT | Adipose tissue |
ATGL | Adipose triglyceride lipase |
BAT | Brown adipose tissue |
CEM | Caveolin-enriched microdomains |
CerS | Ceramide synthase |
CERT | Ceramide transfer protein |
DAG | Diacylgycerol |
DEGS | Dihydroceramide desaturase |
DGAT | Diacylgycerol acyltransferase |
DGK | Diacylglycerol kinase |
ER | Endoplasmic reticulum |
eWAT | Epididymal white adipose tissue |
FFA | Free fatty acid |
GLUT4 | Glucose transporter type 4 |
HFD | High-fat diet |
IMTG | Intramyocellular triacyglycerol |
INSR | Insulin receptor |
IR | Insulin resistance |
IRS1 | Insulin receptor substrate 1 |
JNK | c-Jun N-terminal Kinase (JNK) |
LD | Lipid droplet |
MAM | Mitochondrial-associated membrane |
MFF | Mitochondrial fission factor |
nPKC | novel PKC |
PA | Palmitic acid |
PDK1 | Phosphoinositide-kinase 1 |
PKC | Protein kinase C |
PP2A | Protein phosphatase 2A |
SFA | Saturated fatty acid |
SM | Sphingomyelin |
SMase | Sphingomyelinase |
SPT | Serine palmitoyltransferase |
sWAT | Subcutaneous white adipose tissue |
T2D | Type 2 diabetes |
TAG | Triacylglycerol |
References
- Schnurr, T.M.; Jakupović, H.; Carrasquilla, G.D.; Ängquist, L.; Grarup, N.; Sørensen, T.I.A.; Tjønneland, A.; Overvad, K.; Pedersen, O.; Hansen, T.; et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: A case-cohort study. Diabetologia 2020, 63, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Golden, S.H.; Cefalu, W.T. Diabetes and aging: Unique considerations and goals of care. Diabetes Care 2017, 40, 440–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, J.P.; Thompson, T.J.; Gregg, E.W.; Barker, L.E.; Williamson, D.F. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 2010, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeks, K.A.C.; Freitas-Da-Silva, D.; Adeyemo, A.; Beune, E.J.A.J.; Modesti, P.A.; Stronks, K.; Zafarmand, M.H.; Agyemang, C. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: A systematic review and meta-analysis. Intern. Emerg. Med. 2016, 11, 327–340. [Google Scholar] [CrossRef]
- Defronzo, R.A.; Simonson, D.; Ferrannini, E.; Barrett, E. Insulin resistance: A universal finding in diabetic states. Bull. Schweiz. Akad. Med. Wiss. 1981, 223–238. [Google Scholar]
- Roden, M.; Shulman, G.I. The integrative biology of type 2 diabetes. Nature 2019, 576, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Defronzo, R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [Green Version]
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef]
- Badin, P.M.; Langin, D.; Moro, C. Dynamics of skeletal muscle lipid pools. Trends Endocrinol. Metab. 2013, 24, 607–615. [Google Scholar] [CrossRef]
- Laurens, C.; Moro, C. Intramyocellular fat storage in metabolic diseases. Horm. Mol. Biol. Clin. Investig. 2016, 26, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B.; et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krssak, M.; Petersen, K.F.; Dresner, A.; Dipietro, L.; Vogel, S.M.; Rothman, D.L.; Shulman, G.I.; Roden, M. Krssak, 1999. Diabetologia 1999, 42, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moro, C.; Galgani, J.E.; Luu, L.C.; Pasarica, M.; Mairal, A.; Bajpeyi, S.; Schmitz, G.; Langin, D.; Liebisch, G.; Smith, S.R. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J. Clin. Endocrinol. Metab. 2009, 94, 3440–3447. [Google Scholar] [CrossRef] [Green Version]
- Perseghin, G.; Scifo, P.; De Cobelli, F.; Pagliato, E.; Battezzati, A.; Arcelloni, C.; Vanzulli, A.; Testolin, G.; Pozza, G.; Del Maschio, A.; et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999, 48, 1600–1606. [Google Scholar] [CrossRef]
- Bandet, C.L.; Tan-Chen, S.; Bourron, O.; Le Stunff, H.; Hajduch, E. Sphingolipid metabolism: New insight into ceramide-induced lipotoxicity in muscle cells. Int. J. Mol. Sci. 2019, 20, 479. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.C.; Shulman, G.I. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol. Sci. 2017, 38, 649–665. [Google Scholar] [CrossRef]
- Sokolowska, E.; Blachnio-Zabielska, A. The Role of Ceramides in Insulin Resistance. Front. Endocrinol. (Lausanne) 2019, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.C.; Hunerdosse, D.M.; Kerege, A.; Playdon, M.C.; Perreault, L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 2012, 55, 1140–1150. [Google Scholar] [CrossRef] [Green Version]
- Perreault, L.; Newsom, S.A.; Strauss, A.; Kerege, A.; Kahn, D.E.; Harrison, K.A.; Snell-Bergeon, J.K.; Nemkov, T.; D’Alessandro, A.; Jackman, M.R.; et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 2018, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Takayama, S.; White, M.F.; Lauris, V.; Kahn, C.R. Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells. Proc. Natl. Acad. Sci. USA 1984, 81, 7797–7801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Werve, G.; Zaninetti, D.; Lang, U.; Vallotton, M.B.; Jeanrenaud, B. Identification of a major defect in insulin-resistant tissues of genetically obese (fa/fa) rats. Impaired protein kinase C. Diabetes 1987, 36, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; White, M.F.; Kahn, C.R. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J. Biol. Chem. 1988, 263, 3440–3447. [Google Scholar] [PubMed]
- Jornayvaz, F.R.; Shulman, G.I. Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab. 2012, 15, 574–584. [Google Scholar] [CrossRef] [Green Version]
- Szendroedi, J.; Yoshimura, T.; Phielix, E.; Koliaki, C.; Marcucci, M.; Zhang, D.; Jelenik, T.; Müller, J.; Herder, C.; Nowotny, P.; et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 9597–9602. [Google Scholar] [CrossRef] [Green Version]
- Peck, B.; Huot, J.; Renzi, T.; Arthur, S.; Turner, M.J.; Marino, J.S. Mice lacking PKC-θ in skeletal muscle have reduced intramyocellular lipid accumulation and increased insulin responsiveness in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R468–R477. [Google Scholar] [CrossRef] [Green Version]
- Hançer, N.J.; Qiu, W.; Cherella, C.; Li, Y.; Copps, K.D.; White, M.F. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J. Biol. Chem. 2014, 289, 12467–12484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, M.; Riojas, R.A.; Xin, X.; Gao, Z.; Zeng, R.; Wu, J.; Dong, L.Q.; Liu, F. Protein kinase C θ (PKCθ)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J. Biol. Chem. 2009, 284, 2038–2044. [Google Scholar] [CrossRef] [Green Version]
- López-Sánchez, I.; Garcia-Marcos, M.; Mittal, Y.; Aznar, N.; Farquhar, M.G.; Ghosh, P. Protein kinase C-theta (PKCθ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin. Proc. Natl. Acad. Sci. USA 2013, 110, 5510–5515. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.C.; Rinehart, J.; Shulman, G.I.; Petersen, M.C.; Madiraju, A.K.; Gassaway, B.M.; Marcel, M.; Nasiri, A.R.; Butrico, G.; Marcucci, M.J.; et al. Insulin receptor Thr 1160 phosphorylation mediates lipid-induced hepatic insulin resistance Find the latest version: Insulin receptor Thr 1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Investig. 2016, 126, 4361–4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassaway, B.M.; Petersen, M.C.; Surovtseva, Y.V.; Barber, K.W.; Sheetz, J.B.; Aerni, H.R.; Merkel, J.S.; Samuel, V.T.; Shulman, G.I.; Rinehart, J. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc. Natl. Acad. Sci. USA 2018, 115, E8996–E9005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badin, P.M.; Vila, I.K.; Louche, K.; Mairal, A.; Marques, M.A.; Bourlier, V.; Tavernier, G.; Langin, D.; Moro, C. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 2013, 154, 1444–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, A.J.; Bruce, C.R.; Turpin, S.M.; Morris, A.J.; Febbraio, M.A.; Watt, M.J. Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Endocrinology 2011, 152, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rando, R.R.; Young, N. The stereospecific activation of protein kinase C. Biochem. Biophys. Res. Commun. 1984, 122, 818–823. [Google Scholar] [CrossRef]
- Eichmann, T.O.; Kumari, M.; Haas, J.T.; Farese, R.V.; Zimmermann, R.; Lass, A.; Zechner, R. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O- acyltransferases. J. Biol. Chem. 2012, 287, 41446–41457. [Google Scholar] [CrossRef] [Green Version]
- Serup, A.K.; Alsted, T.J.; Jordy, A.B.; Schjerling, P.; Holm, C.; Kiens, B. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of DAG. Diabetes 2016, 65, 2932–2942. [Google Scholar] [CrossRef] [Green Version]
- Kawanishi, N.; Takagi, K.; Lee, H.C.; Nakano, D.; Okuno, T.; Yokomizo, T.; Machida, S. Endurance exercise training and high-fat diet differentially affect composition of diacylglycerol molecular species in rat skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R892–R901. [Google Scholar] [CrossRef] [Green Version]
- Phan, J.; Reue, K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005, 1, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Bvhnfout, P.G.N. Usjhmzdfsjef Tzouiftjt Jo Tlfmfubm Nvtdmf Boe Qspufdut Bhbjotu Gbu Joevdfe Jotvmjo Sftjtubodf. J. Clin. Investig. 2007, 117, 1679–1689. [Google Scholar] [CrossRef]
- Levin, M.C.; Monetti, M.; Watt, M.J.; Sajan, M.P.; Stevens, R.D.; Bain, J.R.; Newgard, C.B.; Farese, R.V.; Farese, R.V. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am. J. Physiol. Endocrinol. Metab. 2007, 293, 1772–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanoh, H.; Yamada, K.; Sakane, F. Diacylglycerol kinases: Emerging downstream regulators in cell signaling systems. J. Biochem. 2002, 131, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Chibalin, A.V.; Leng, Y.; Vieira, E.; Krook, A.; Björnholm, M.; Long, Y.C.; Kotova, O.; Zhong, Z.; Sakane, F.; Steiler, T.; et al. Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance. Cell 2008, 132, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannerås-Holm, L.; Schönke, M.; Brozinick, J.T.; Vetterli, L.; Bui, H.H.; Sanders, P.; Nascimento, E.B.M.; Björnholm, M.; Chibalin, A.V.; Zierath, J.R. Diacylglycerol kinase ε deficiency preserves glucose tolerance and modulates lipid metabolism in obese mice. J. Lipid Res. 2017, 58, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Benziane, B.; Borg, M.L.; Tom, R.Z.; Riedl, I.; Massart, J.; Björnholm, M.; Gilbert, M.; Chibalin, A.V.; Zierath, J.R. DGKζ deficiency protects against peripheral insulin resistance and improves energy metabolism. J. Lipid Res. 2017, 58, 2324–2333. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Greimel, P.; Hirabayashi, Y. GPRC5B-Mediated Sphingomyelin Synthase 2 Phosphorylation Plays a Critical Role in Insulin Resistance. iScience 2018, 8, 250–266. [Google Scholar] [CrossRef]
- Reidy, P.T.; Mahmassani, Z.S.; McKenzie, A.I.; Petrocelli, J.J.; Summers, S.A.; Drummond, M.J. Influence of exercise training on skeletal muscle insulin resistance in aging: Spotlight on muscle ceramides. Int. J. Mol. Sci. 2020, 21, 1514. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.L.; Summers, S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 2008, 29, 381–402. [Google Scholar] [CrossRef] [Green Version]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175. [Google Scholar] [CrossRef]
- Bikman, B.T.; Summers, S.A.; Bikman, B.T.; Summers, S.A. Ceramides as modulators of cellular and whole- body metabolism Find the latest version: Science in medicine Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Investig. 2011, 121, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012, 441, 789–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz-Peiffer, C.; Craig, D.L.; Biden, T.J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem. 1999, 274, 24202–24210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajduch, E.; Balendran, A.; Batty, I.H.; Litherland, G.J.; Blair, A.S.; Downes, C.P.; Hundal, H.S. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 2001, 44, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.N.; O’Brien, L.; Brindley, D.N. Effects of cell-permeable ceramides and tumor necrosis factor-α on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes 1998, 47, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Summers, S.A.; Birnbaum, M.J.; Pittman, R.N. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 1998, 273, 16568–16575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peraldi, P.; Hotamisligil, G.S.; Buurman, W.A.; White, M.F.; Spiegelman, B.M. Tumor necrosis factor (TNF)-β inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 1996, 271, 13018–13022. [Google Scholar] [CrossRef] [Green Version]
- Kanety, H.; Hemi, R.; Papa, M.Z.; Karasik, A. Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J. Biol. Chem. 1996, 271, 9895–9897. [Google Scholar] [CrossRef] [Green Version]
- Salinas, M.; López-Valdaliso, R.; Martín, D.; Alvarez, A.; Cuadrado, A. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide- activated protein phosphatase in PC12 cells. Mol. Cell. Neurosci. 2000, 15, 156–169. [Google Scholar] [CrossRef]
- Zinda, M.J.; Vlahos, C.J.; Lai, M.T. Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87MG cells. Biochem. Biophys. Res. Commun. 2001, 280, 1107–1115. [Google Scholar] [CrossRef]
- Schubert, K.M.; Scheid, M.P.; Duronio, V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J. Biol. Chem. 2000, 275, 13330–13335. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.; Powell, D.; Hajduch, E.; Hajduch, E.; Kular, G.; Kular, G.; Hundal, H.; Hundal, H. Disables 3-Phosphoinositide Binding To the Pleckstrin Homology Domain of Protein Kinase. Mol. Cell. Biol. 2003, 23, 7794–7808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratford, S.; Wald, D.B.D.E.; Summers, S.A. Homology Domain Translocation. Society 2001, 368, 359–368. [Google Scholar]
- Stratford, S.; Hoehn, K.L.; Liu, F.; Summers, S.A. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 2004, 279, 36608–36615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.C.; Benjamin, D.I.; Kuo, T.; Lee, R.A.; Li, M.L.; Mar, D.J.; Costello, D.E.; Nomura, D.K.; Wang, J.C. The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCz. Sci. Signal. 2017, 10, eaai7905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, T.E.; Houck, K.L.; O’Neill, S.M.; Nagarajan, M.; Stover, T.C.; Pomianowski, P.T.; Unal, O.; Yun, J.K.; Naides, S.J.; Kester, M. Ceramide recruits and activates protein kinase C ζ (PKCζ) within structured membrane microdomains. J. Biol. Chem. 2007, 282, 12450–12457. [Google Scholar] [CrossRef] [Green Version]
- Blouin, C.M.; Prado, C.; Takane, K.K.; Lasnier, F.; Garcia-Ocana, A.; Ferré, P.; Dugail, I.; Hajduch, E. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 2010, 59, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahfouz, R.; Khoury, R.; Blachnio-Zabielska, A.; Turban, S.; Loiseau, N.; Lipina, C.; Stretton, C.; Bourron, O.; Ferré, P.; Foufelle, F.; et al. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: A mechanistic insight. PLoS ONE 2014, 9, e101865. [Google Scholar] [CrossRef]
- Chavez, J.A.; Summers, S.A. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 2003, 419, 101–109. [Google Scholar] [CrossRef]
- Holland, W.L.; Bikman, B.T.; Wang, L.P.; Yuguang, G.; Sargent, K.M.; Bulchand, S.; Knotts, T.A.; Shui, G.; Clegg, D.J.; Wenk, M.R.; et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Investig. 2011, 121, 1858–1870. [Google Scholar] [CrossRef] [Green Version]
- Chavez, J.A.; Knotts, T.A.; Wang, L.P.; Li, G.; Dobrowsky, R.T.; Florant, G.L.; Summers, S.A. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 2003, 278, 10297–10303. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Kaddai, V.; Ching, J.; Fridianto, K.T.; Sieli, R.J.; Sugii, S.; Summers, S.A. A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes. J. Biol. Chem. 2016, 291, 23978–23988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandet, C.L.; Mahfouz, R.; Véret, J.; Sotiropoulos, A.; Poirier, M.; Giussani, P.; Campana, M.; Philippe, E.; Blachnio-Zabielska, A.; Ballaire, R.; et al. Ceramide transporter CERT is involved in muscle insulin signaling defects under lipotoxic conditions. Diabetes 2018, 67, 1258–1271. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Casas, J.; Llebaria, A.; Abad, J.L.; Fabrias, G. Inhibitors of sphingolipid metabolism enzymes. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1957–1977. [Google Scholar] [CrossRef] [PubMed]
- Holland, W.L.; Brozinick, J.T.; Wang, L.P.; Hawkins, E.D.; Sargent, K.M.; Liu, Y.; Narra, K.; Hoehn, K.L.; Knotts, T.A.; Siesky, A.; et al. Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metab. 2007, 5, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Badeanlou, L.; Bielawski, J.; Roberts, A.J.; Hannun, Y.A.; Samad, F. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E211–E224. [Google Scholar] [CrossRef] [Green Version]
- Ussher, J.R.; Koves, T.R.; Cadete, V.J.J.; Zhang, L.; Jaswal, J.S.; Swyrd, S.J.; Lopaschuk, D.G.; Proctor, S.D.; Keung, W.; Muoio, D.M.; et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 2010, 59, 2453–2464. [Google Scholar] [CrossRef] [Green Version]
- Blachnio-Zabielska, A.U.; Hady, H.R.; Markowski, A.R.; Kurianiuk, A.; Karwowska, A.; Górski, J.; Zabielski, P. Inhibition of ceramide de novo synthesis affects adipocytokine secretion and improves systemic and adipose tissue insulin sensitivity. Int. J. Mol. Sci. 2018, 19, 3995. [Google Scholar] [CrossRef] [Green Version]
- Frangioudakis, G.; Garrard, J.; Raddatz, K.; Nadler, J.L.; Mitchell, T.W.; Schmitz-Peiffer, C. Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: Reversal and improvement of glucose tolerance by lipid metabolism inhibitors. Endocrinology 2010, 151, 4187–4196. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, B.; Kaddai, V.A.; Lancaster, G.I.; Henstridge, D.C.; Sriram, S.; Galam, D.L.A.; Gopalan, V.; Prakash, K.N.B.; Velan, S.S.; Bulchand, S.; et al. Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism. Cell Metab. 2016, 24, 820–834. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, H.; Liu, J.; Liang, C.-P.; Li, Y.; Li, Y.; Teitelman, G.; Beyer, T.; Bui, H.H.; Peake, D.A.; et al. Reducing Plasma Membrane Sphingomyelin Increases Insulin Sensitivity. Mol. Cell. Biol. 2011, 31, 4205–4218. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, B.; Tippetts, T.S.; Monibas, R.M.; Liu, J.; Li, Y.; Wang, L.; Wilkerson, J.L.; Rufus Sweeney, C.; Pereira, R.F.; Sumida, D.H.; et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science (80-) 2019, 365, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014, 20, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Raichur, S.; Brunner, B.; Bielohuby, M.; Hansen, G.; Pfenninger, A.; Wang, B.; Bruning, J.C.; Larsen, P.J.; Tennagels, N. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol. Metab. 2019, 21, 36–50. [Google Scholar] [CrossRef]
- Hammerschmidt, P.; Ostkotte, D.; Nolte, H.; Gerl, M.J.; Jais, A.; Brunner, H.L.; Sprenger, H.G.; Awazawa, M.; Nicholls, H.T.; Turpin-Nolan, S.M.; et al. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell 2019, 177, 1536–1552. [Google Scholar] [CrossRef]
- Turpin-Nolan, S.M.; Hammerschmidt, P.; Chen, W.; Jais, A.; Timper, K.; Awazawa, M.; Brodesser, S.; Brüning, J.C. CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance. Cell Rep. 2019, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.; Lim, X.Y.; Toop, H.D.; Osborne, B.; Brandon, A.E.; Taylor, E.N.; Fiveash, C.E.; Govindaraju, H.; Teo, J.D.; McEwen, H.P.; et al. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Mitsutake, S.; Date, T.; Yokota, H.; Sugiura, M.; Kohama, T.; Igarashi, Y. Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett. 2012, 586, 1300–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.W.; Park, W.J.; Kuperman, Y.; Boura-Halfon, S.; Pewzner-Jung, Y.; Futerman, A.H. Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 2013, 57, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Raichur, S.; Wang, S.T.; Chan, P.W.; Li, Y.; Ching, J.; Chaurasia, B.; Dogra, S.; Öhman, M.K.; Takeda, K.; Sugii, S.; et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014, 20, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.Y.; Holland, W.L.; Kusminski, C.M.; Sun, K.; Sharma, A.X.; Pearson, M.J.; Sifuentes, A.J.; McDonald, J.G.; Gordillo, R.; Scherer, P.E. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metab. 2015, 22, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Gosejacob, D.; Jäger, P.S.; Dorp, K.V.; Frejno, M.; Carstensen, A.C.; Köhnke, M.; Degen, J.; Dörmann, P.; Hoch, M. Ceramide synthase 5 is essential to maintain C16:0-Ceramide pools and contributes to the development of diet-induced obesity. J. Biol. Chem. 2016, 291, 6989–7003. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Shimizu, Y.; Zhao, S.; Ukon, N.; Nishijima, K.-i.; Wakabayashi, M.; Yoshioka, T.; Higashino, K.; Numata, Y.; Okuda, T.; et al. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 688–702. [Google Scholar] [CrossRef] [PubMed]
- Kabayama, K.; Sato, T.; Kitamura, F.; Uemura, S.; Won Kang, B.; Igarashi, Y.; Inokuchi, J.I. TNAα-induced insulin resistance in adipocytes as a membrane microdomain disorder: Involvement of ganglioside GM3. Glycobiology 2005, 15, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagami, S.; Inokuchi, J.I.; Kabayama, K.; Yoshimura, H.; Kitamura, F.; Uemura, S.; Ogawa, C.; Ishii, A.; Saito, M.; Ohtsuka, Y.; et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002, 277, 3085–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck, S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J.L.; Werth, N.; et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 2003, 100, 3445–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aerts, J.M.; Ottenhoff, R.; Powlson, A.S.; Grefhorst, A.; Van Eijk, M.; Dubbelhuis, P.F.; Aten, J.; Kuipers, F.; Serlie, M.J.; Wennekes, T.; et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 2007, 56, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.H.; De Sousa, A.C.P.; Mahfouz, R.; Hainault, I.; Blachnio-Zabielska, A.; Bourron, O.; Koskas, F.; Górski, J.; Ferré, P.; Foufelle, F.; et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: Implication of the double-stranded RNA-activated protein kinase. J. Biol. Chem. 2016, 291, 3019–3029. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Tippetts, T.S.; Brassfield, E.S.; Tucker, B.J.; Ockey, A.; Swensen, A.C.; Anthonymuthu, T.S.; Washburn, T.D.; Kane, D.A.; Prince, J.T.; et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem. J. 2013, 456, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.E. Lipid rafts and insulin signaling. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1–E10. [Google Scholar] [CrossRef]
- Vainio, S. Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep. 2002, 3, 95–100. [Google Scholar] [CrossRef]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lair, B.; Laurens, C.; Van Den Bosch, B.; Moro, C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int. J. Mol. Sci. 2020, 21, 6358. https://doi.org/10.3390/ijms21176358
Lair B, Laurens C, Van Den Bosch B, Moro C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. International Journal of Molecular Sciences. 2020; 21(17):6358. https://doi.org/10.3390/ijms21176358
Chicago/Turabian StyleLair, Benjamin, Claire Laurens, Bram Van Den Bosch, and Cedric Moro. 2020. "Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance" International Journal of Molecular Sciences 21, no. 17: 6358. https://doi.org/10.3390/ijms21176358
APA StyleLair, B., Laurens, C., Van Den Bosch, B., & Moro, C. (2020). Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. International Journal of Molecular Sciences, 21(17), 6358. https://doi.org/10.3390/ijms21176358