Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement
Abstract
:1. Introduction
2. Results
2.1. Determination of Lethal Dose of EMS Treatment
2.2. EMS-Induced Abundant Phenotypic Mutations
2.3. Genome-Wide Analysis of EMS-Induced SNPs in Yellow Leaf Mutant Line
2.4. Yellow Leaf Mutants with Reduced Chlorophyll Contents
2.5. EMS Treatment Resulted in Disrupted Chloroplast Structure
3. Discussion
4. Materials and Methods
4.1. Plant Material and Preliminary Mutagenic Treatment
4.2. EMS Treatment and Phenotypic Evaluation of Mutagenic Population
4.3. Whole-Genome Resequencing of Bulked DNA
4.4. Determination of Photosynthetic Pigments
4.5. Transmission Electron Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EMS | Ethylmethanesulfonate |
LD50 | Lethal Dose at 50% |
TEM | Transmission electron microscopy |
SNP | Single nucleotide polymorphism |
References
- Usman, A.; Cheema, H.M.N.; Sheraz, A.; Khan, I.A.; Waqas, M.; Khan, A.A. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies. Front. Plant Sci. 2016, 7, 1863. [Google Scholar]
- Zhang, Y.; Wang, X.F.; Li, Z.K.; Zhang, G.Y.; Ma, Z.Y. Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers. GMR 2011, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Bian, N.; Wen, M.; Xiao, J.; Yuan, C.; Cao, A.; Zhang, S.; Wang, X.; Wang, H. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor. Appl. Genet. 2017, 130, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301, 1849. [Google Scholar] [CrossRef] [Green Version]
- Wesley, S.V. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001, 27, 581–590. [Google Scholar] [CrossRef]
- Auld, D.L.; Bechere, E.; Ethridge, M.; Becker, W.D.; Cantrell, R.G. Registration of TTU 202-1107-B and TTU 271-2155-C mutant germplasm lines of upland cotton with improved fiber quality. Crop Sci. 2000, 40, 1835–1836. [Google Scholar]
- Aslam, U.; Khan, A.A.; Cheema, H.M.N.; Imtiaz, F.; Malik, W. Kill Curve Analysis and Response of Ethyl Methanesulfonate and γ-rays in Diploid and Tetraploid Cotton. Int. J. Agric. Biol. 2013, 15, 1560–8530. [Google Scholar]
- Till, B.J.; Cooper, J.; Tai, T.H.; Colowit, P.; Greene, E.A.; Comai, H.L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Herring, A.D.; Auld, D.L.; Ethridge, M.D.; Hequet, E.F.; Bechere, E.; Green, C.J.; Cantrell, R.G. Inheritance of fiber quality and lint yield in a chemically mutated population of cotton. Euphytica 2004, 136, 333–339. [Google Scholar] [CrossRef]
- Muthusamy, A.; Jayabalan, N. In vitro induction of mutation in cotton (Gossypium hirsutum L.) and isolation of mutants with improved yield and fiber characters. Acta Physiol. Plant. 2011, 33, 1793–1801. [Google Scholar] [CrossRef]
- Brown, N.; Smith, W.C.; Auld, D.; Hequet, E.F. Improvement of Upland Cotton Fiber Quality through Mutation of TAM 94L-25. Crop Sci. 2013, 53, 452–459. [Google Scholar] [CrossRef]
- Patel, J.D.; Wright, R.J.; Chandnani, R.; Goff, V.H.; Ingles, J.; Paterson, A.H. EMS-mutated cotton populations suggest overlapping genetic control of trichome and lint fiber variation. Euphytica 2016, 208, 597–608. [Google Scholar] [CrossRef]
- Lian, X.; Liu, Y.; Guo, H.; Fan, Y.; Zeng, F. Ethyl methanesulfonate mutant library construction in Gossypium hirsutum L. for allotetraploid functional genomics and germplasm innovation. Plant J. 2020, 103, 858–868. [Google Scholar] [CrossRef]
- Ke, C.; Guan, W.; Bu, S.; Li, X.; Deng, Y.; Wei, Z.; Wu, W.; Zheng, Y.; Lightfoot, D.A. Determination of absorption dose in chemical mutagenesis in plants. PLoS ONE 2019, 14, e0210596. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinze, L.L.; Elodie, G.; Gore, M.A.; Fang, D.D.; Scheffler, B.E.; Yu, J.Z.; Jones, D.C.; James, F.; Percy, R.G. Genetic diversity of the two commercial tetraploid cotton species in the Gossypium Diversity Reference Set. J. Hered. 2016, 107, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Si, Z.; Liu, H.; Zhu, J.; Chen, J.; Wang, Q.; Lei, F.; Gao, F.; Tian, Y.; Chen, Y.; Chang, L.; et al. Mutation of self-pruning homologs in cotton promotes short-branching plant architecture. J. Exp. Bot. 2018, 69, 2543–2553. [Google Scholar] [CrossRef]
- Liu, J.; Meng, Y.; Lv, F.; Chen, J.; Ma, Y.; Wang, Y.; Chen, B.; Zhang, L.; Zhou, Z. Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Front. Plant Sci. 2015, 6, 747. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.D.; Naoumkina, M.; Thyssen, G.N.; Bechere, E.; Li, P.; Florane, C.B. An EMS-induced mutation in a tetratricopeptide repeat-like superfamily protein gene (Ghir_A12G008870) on chromosome A12 is responsible for the li y short fiber phenotype in cotton. Theor. Appl. Genet. 2020, 133, 271–282. [Google Scholar] [CrossRef]
- Su, T.; Wang, P.; Li, H.; Zhao, Y.; Ma, C. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J. Integr. Plant Biol. 2018, 60, 591–607. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Madgwick, P.J.; Bayon, C.; Tearall, K.; Hernandez-Lopez, A.; Baudo, M.; Rakszegi, M.; Hamada, W.; Al-Yassin, A.; Ouabbou, H.; et al. Mutation discovery for crop improvement. J. Exp. Bot. 2009, 60, 2817–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Chen, Z.J.; John, Z.Y.; Raska, D.; Kohel, R.J.; Womack, J.E.; Stelly, D.M. Wide-Cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 2004, 167, 1317–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthusamy, A.; Jayabalan, N. Radiation and chemical mutagen induced somaclonal variations through in vitro organogenesis of cotton (Gossypium hirsutum L.). Int. J. Radiat. Biol. 2014, 90, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Yang, Z.; Fan, S.; Zhu, H.; Pang, C.; Tian, M.; Yu, S. Cytological and genetic analysis of a virescent mutant in upland cotton (Gossypium hirsutum L.). Euphytica 2012, 187, 235–245. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, J.; Gao, F.; Xu, C.; Wu, H.; Chen, K.; Si, Z.; Yan, H.; Zhang, T. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis–next generation sequencing and virus-induced gene silencing strategies. J. Exp. Bot. 2017, 68, 4125–4135. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Heng, L. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Basu, U.; Bajaj, D.; Sharma, A.; Malik, N.; Parida, S.K. Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea. Plant Cell Environ. 2018, 42, 158–173. [Google Scholar] [CrossRef] [Green Version]
Chromosome | No. of SNPs | Chromosome Length | Mutation Density (per Mb) |
---|---|---|---|
A01 | 57,780 | 115,637,255 | 499.7 |
A02 | 36,446 | 100,057,689 | 364.2 |
A03 | 5770 | 105,315,579 | 54.8 |
A04 | 6089 | 81,554,553 | 74.7 |
A05 | 10,435 | 102,776,486 | 101.5 |
A06 | 63,929 | 115,140,250 | 555.2 |
A07 | 14,189 | 92,880,876 | 152.8 |
A08 | 11,397 | 119,882,356 | 95.1 |
A09 | 7256 | 77,927,517 | 93.1 |
A10 | 6575 | 110,302,803 | 59.6 |
A11 | 44,148 | 113,101,708 | 390.3 |
A12 | 6030 | 102,106,374 | 59.1 |
A13 | 7703 | 109,233,746 | 70.5 |
D01 | 8891 | 62,811,768 | 141.5 |
D02 | 6002 | 67,659,327 | 88.7 |
D03 | 4275 | 50,986,338 | 83.8 |
D04 | 18,630 | 52,479,919 | 355.0 |
D05 | 12,870 | 63,323,194 | 203.2 |
D06 | 2771 | 62,964,862 | 44.0 |
D07 | 4960 | 56,457,815 | 87.9 |
D08 | 10,355 | 65,987,480 | 156.9 |
D09 | 11,188 | 51,526,817 | 217.1 |
D10 | 5313 | 65,706,892 | 80.9 |
D11 | 14,493 | 68,311,261 | 212.2 |
D12 | 3044 | 58,873,029 | 51.7 |
D13 | 7038 | 60,343,961 | 116.6 |
Overall | 387,577 | 2,133,349,855 | 181.7 |
Genomic Region | No. of SNP | Ratio (%) |
---|---|---|
Intergenic | 317,078 | 81.81 |
Upstream/downstream | 34,991 | 9.03 |
Upstream | 21,048 | 5.43 |
Downstream | 13,943 | 3.60 |
Genic | 35,508 | 9.16 |
Intronic | 20,080 | 5.18 |
Exonic | 15,428 | 3.98 |
Synonymous | 4380 | 1.13 |
Non-synonymous | 6194 | 1.60 |
Stop gain | 133 | 0.03 |
Stop loss | 11 | 0.00 |
UTR 5′ | 1590 | 0.41 |
UTR 3′ | 2354 | 0.61 |
Splicing | 766 | 0.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, M.A.; Wang, P.; Zhu, T.; Liang, C.; Meng, Z.; Malik, W.; Guo, S.; Zhang, R. Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement. Int. J. Mol. Sci. 2020, 21, 6505. https://doi.org/10.3390/ijms21186505
Abid MA, Wang P, Zhu T, Liang C, Meng Z, Malik W, Guo S, Zhang R. Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement. International Journal of Molecular Sciences. 2020; 21(18):6505. https://doi.org/10.3390/ijms21186505
Chicago/Turabian StyleAbid, Muhammad Ali, Peilin Wang, Tao Zhu, Chengzhen Liang, Zhigang Meng, Waqas Malik, Sandui Guo, and Rui Zhang. 2020. "Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement" International Journal of Molecular Sciences 21, no. 18: 6505. https://doi.org/10.3390/ijms21186505
APA StyleAbid, M. A., Wang, P., Zhu, T., Liang, C., Meng, Z., Malik, W., Guo, S., & Zhang, R. (2020). Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement. International Journal of Molecular Sciences, 21(18), 6505. https://doi.org/10.3390/ijms21186505