The Impact of Insertion Sequences on O-Serotype Phenotype and Its O-Locus-Based Prediction in Klebsiella pneumoniae O2 and O1
Abstract
:1. Introduction
2. Results
2.1. O-Antigen Structures of the BIDMC 7B and ABC152 Strains Represent the O2 Variant 1 O-Serotype
2.2. Disruption of the gmlB Gene by IS Affects the O-Antigen Phenotype in BIDMC 7B and ABC152
2.3. ISs Occur in O2v2 and O1v2 K. pneumoniae Isolates—in Silico Study
3. Discussion
4. Materials and Methods
4.1. Bacteria and Growth Conditions
4.2. O-Specific Polysaccharides
4.3. LPS Preparation
4.4. NMR Spectroscopy
4.5. DNA Isolation
4.6. DNA Library Preparation and Sequencing
4.7. Sequence Analysis
4.8. Data Availability
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDR | Multidrug-Resistant |
ESBL | Extended-Spectrum Beta-Lactamases |
COSY | Correlation Spectroscopy |
CPKP | Carbapenemase-Producing K. pneumoniae |
CPS | Capsular Polysaccharide; K antigen |
DEPT | Distortionless Enhancement by Polarization Transfer |
HR-MAS | High Resolution-Magic Angle Spinning |
HSQC | Heteronuclear Single Quantum Correlation |
IS | Insertion Sequence |
LPS | Lipopolysaccharide |
MLST | Multi-locus Sequence Typing |
NMR | Nuclear Magnetic Resonance |
O-PS | O-specific Polysaccharide |
PCR | Polymerase Chain Reaction |
ST | Sequence Type |
TOCSY | Total Correlation Spectroscopy |
WGS | Whole-genome Sequencing |
References
- Follador, R.; Heinz, E.; Wyres, K.L.; Ellington, M.J.; Kowarik, M.; Holt, K.E.; Thomson, N.R. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb. Genom. 2016, 2, e000073. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.M.; Bachman, M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell. Infect Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020. [Google Scholar] [CrossRef]
- Boucher, H.W.; Ambrose, P.G.; Chambers, H.F.; Ebright, R.H.; Jezek, A.; Murray, B.E.; Newland, J.G.; Ostrowsky, B.; Rex, J.H. White paper: Developing antimicrobial drugs for resistant pathogens, narrow-spectrum indications, and unmet needs. J. Infect Dis. 2017, 216, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Magrini, N. WHO, Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Grundmann, H.; Glasner, C.; Albiger, B.; Aanensen, D.M.; Tomlinson, C.T.; Andrasević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. Lancet Infect Dis. 2017, 17, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Adamo, R.; Margarit, I. Fighting antibiotic-resistant Klebsiella pneumoniae with “sweet” immune targets. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Edelman, R.; Taylor, D.N.; Wasserman, S.S.; McClain, J.B.; Cross, A.S.; Sadoff, J.C.; Que, J.U.; Cryz, S.J. Phase 1 trial of a 24-valent Klebsiella capsular polysaccharide vaccine and an eight-valent Pseudomonas O-polysaccharide conjugate vaccine administered simultaneously. Vaccine 1994, 12, 1288–1294. [Google Scholar] [CrossRef]
- Feldman, M.F.; Mayer Bridwell, A.E.; Scott, N.E.; Vinogradov, E.; McKee, S.R.; Chavez, S.M.; Twentyman, J.; Stallings, C.L.; Rosen, D.A.; Harding, C.M. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 2019, 116, 18655–18663. [Google Scholar] [CrossRef] [Green Version]
- Hegerle, N.; Choi, M.; Sinclair, J.; Amin, M.N.; Ollivault-Shiflett, M.; Curtis, B.; Laufer, R.S.; Shridhar, S.; Brammer, J.; Toapanta, F.R.; et al. Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa. PLoS ONE 2018, 13, e0203143. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyres, K.L.; Wick, R.R.; Gorrie, C.; Jenney, A.; Follador, R.; Thomson, N.R.; Holt, K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genom. 2016, 2, e000102. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.R.; Ovchinnikova, O.G.; Kelly, S.D.; Williamson, M.L.; Butler, J.E.; Liu, B.; Wang, L.; Gou, X.; Follador, R.; Lowary, T.L.; et al. Molecular basis for the structural diversity in serogroup O2-antigen polysaccharides in Klebsiella pneumoniae. J. Biol. Chem. 2018, 293, 4666–4679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.D.; Clarke, B.R.; Ovchinnikova, O.G.; Sweeney, R.P.; Williamson, M.L.; Lowary, T.L.; Whitfield, C. Klebsiella pneumoniae O1 and O2ac antigens provide prototypes for an unusual strategy for polysaccharide antigen diversification. J. Biol. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.S.; Mestre, F.; Albertí, S.; Hernández-Allés, S.; Álvarez, D.; Doménech-Sánchez, A.; Gil, J.; Merino, S.; Tomás, J.M.; Benedí, V.J. Klebsiella pneumoniae lipopolysaccharide O typing: Revision of prototype strains and O-group distribution among cClinical isolates from different sources and countries. J. Clin. Microbiol. 1999, 37, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Guachalla, L.M.; Stojkovic, K.; Hartl, K.; Kaszowska, M.; Kumar, Y.; Wahl, B.; Paprotka, T.; Nagy, E.; Lukasiewicz, J.; Nagy, G.; et al. Discovery of monoclonal antibodies cross-reactive to novel subserotypes of K. pneumoniae O3. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stojkovic, K.; Szijártó, V.; Kaszowska, M.; Niedziela, T.; Hartl, K.; Nagy, G.; Lukasiewicz, J. Identification of D-Galactan-III as part of the lipopolysaccharide of Klebsiella pneumoniae serotype O1. Front. Microbiol 2017, 8, 684. [Google Scholar] [CrossRef] [Green Version]
- Szijártó, V.; Guachalla, L.M.; Hartl, K.; Varga, C.; Banerjee, P.; Stojkovic, K.; Kaszowska, M.; Nagy, E.; Lukasiewicz, J.; Nagy, G. Both clades of the epidemic KPC-producing Klebsiella pneumoniae clone ST258 share a modified galactan O-antigen type. Int. J. Med. Microbiol. 2016, 306, 89–98. [Google Scholar] [CrossRef]
- Rollenske, T.; Szijarto, V.; Lukasiewicz, J.; Guachalla, L.M.; Stojkovic, K.; Hartl, K.; Stulik, L.; Kocher, S.; Lasitschka, F.; Al-Saeedi, M.; et al. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat. Immunol. 2018, 19, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Szijártó, V.; Guachalla, L.M.; Hartl, K.; Varga, C.; Badarau, A.; Mirkina, I.; Visram, Z.C.; Stulik, L.; Power, C.A.; Nagy, E.; et al. Endotoxin neutralization by an O-antigen specific monoclonal antibody: A potential novel therapeutic approach against Klebsiella pneumoniae ST258. Virulence 2017, 8, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-T.; Shih, Y.-J.; Cheong, C.-M.; Yi, W.-C. Rapid and accurate determination of lipopolysaccharide O-antigen types in Klebsiella pneumoniae with a novel PCR-based O-genotyping method. J. Clin. Microbiol. 2016, 54, 666–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, B.R.; Whitfield, C. Molecular cloning of the rfb region of Klebsiella pneumoniae serotype O1:K20: The rfb gene cluster is responsible for synthesis of the D-galactan I O polysaccharide. J. Bacteriol. 1992, 174, 4614–4621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varki, A.; Cummings, R.D.; Aebi, M.; Packer, N.H.; Seeberger, P.H.; Esko, J.D.; Stanley, P.; Hart, G.; Darvill, A.; Kinoshita, T.; et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 2015, 25, 1323–1324. [Google Scholar] [CrossRef] [Green Version]
- Artyszuk, D.; Wołkowicz, T. Zastosowanie sekwencjonowania pełnogenomowego do genotypowania bakterii. Post Mikrob. 2018, 57, 179–193. [Google Scholar]
- Quainoo, S.; Coolen, J.P.M.; van Hijum, S.A.F.T.; Huynen, M.A.; Melchers, W.J.G.; van Schaik, W.; Wertheim, H.F.L. Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clin. Microbiol. Rev. 2017, 30, 1015–1063. [Google Scholar] [CrossRef] [Green Version]
- Wołkowicz, T. The utility and perspectives of NGS-based methods in BSL-3 and BSL-4 laboratory–sequencing and analysis strategies. Briefings Funct. Genom. 2018, 17, 471–476. [Google Scholar] [CrossRef]
- Adams, M.D.; Bishop, B.; Wright, M.S. Quantitative assessment of insertion sequence impact on bacterial genome architecture. Microb. Genom. 2016, 2. [Google Scholar] [CrossRef]
- Baraniak, A.; Izdebski, R.; Żabicka, D.; Bojarska, K.; Górska, S.; Literacka, E.; Fiett, J.; Hryniewicz, W.; Gniadkowski, M. Multiregional dissemination of KPC-producing Klebsiella pneumoniae ST258/ST512 genotypes in Poland, 2010–2014. J. Antimicrob. Chemother. 2017, 72, 1610–1616. [Google Scholar] [CrossRef]
- Lev, A.I.; Astashkin, E.I.; Shaikhutdinova, R.Z.; Platonov, M.E.; Kartsev, N.N.; Volozhantsev, N.V.; Ershova, O.N.; Svetoch, E.A.; Fursova, N.K. Identification of IS1R and IS10R elements inserted into ompk36 porin gene of two multidrug-resistant Klebsiella pneumoniae hospital strains. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef]
- Lukácová, M.; Barák, I.; Kazár, J. Role of structural variations of polysaccharide antigens in the pathogenicity of Gram-negative bacteria. Clin. Microbiol. Infect. 2008, 14, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kintz, E.; Heiss, C.; Black, I.; Donohue, N.; Brown, N.; Davies, M.R.; Azadi, P.; Baker, S.; Kaye, P.M.; van der Woude, M. Salmonella enterica serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, E.; Whitfield, C. A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates. Can. J. Chem. 2016, 94, 883–893. [Google Scholar] [CrossRef]
- Westphal, O.; Lüderitz, O.; Bister, F. Über die extraktion von bakterien mit phenol/wasser. Z. Nat. B 1952, 7, 148–155. [Google Scholar] [CrossRef]
- Lukasiewicz, J.; Jachymek, W.; Niedziela, T.; Kenne, L.; Lugowski, C. Structural analysis of the lipid a isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides. J. Lipid Res. 2010, 51, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Szijártó, V.; Lukasiewicz, J.; Gozdziewicz, T.K.; Magyarics, Z.; Nagy, E.; Nagy, G. Diagnostic potential of monoclonal antibodies specific to the unique O-antigen of multidrug-resistant epidemic Escherichia coli clone ST131-O25b:H4. Clin. Vaccine Immunol. 2014, 21, 930–939. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Shift (ppm) | ||||||||
---|---|---|---|---|---|---|---|---|
Strain | Residue | Description | H1 C1 | H2 C2 | H3 C3 | H4 C4 | H5 C5 | H6a,b C6 |
BIDMC 7B | A | →3)-β-D-Galƒ-(1→ | 5.22 110.1 | 4.42 80.5 | 4.07 85.2 | 4.26 82.6 | 3.88 71.5 | 3.69nr 63.5 |
B | →3)-α-D-Galf-(1→ | 5.09 100.2 | 3.94 67.8 | 3.94 77.8 | 4.14 70.1 | 4.14 72.0 | 3.75nr 61.9 | |
ABC152 | A | →3)-β-D-Galƒ-(1→ | 5.22 110.0 | 4.42 80.4 | 4.07 85.2 | 4.26 82.6 | 3.88 71.5 | 3.69nr 63.5 |
B | →3)-α-D-Galf-(1→ | 5.09 100.1 | 3.94 67.9 | 3.94 77.8 | 4.14 70.0 | 4.14 72.0 | 3.75nr 61.9 |
Isolate | Assembly Accession Number | Sequence Type | Insertion Sequence | Gene | Position of the IS Element (From the First Nucleotide of CDS) |
---|---|---|---|---|---|
27097_7_178-2 | GCF_900776535.1_27097_7_178-2_genomic | ST11 | IS903 | wbbO | 228 bp |
kpneu028 | GCF_900607955.1_kpneu028_genomic | ST11 | ISR1 | wbbM | 47 bp |
ASM893134 | GCF_008931345.1_ASM893134v1_genomic | ST12 | IS903B | kfoC | 267 bp |
UCI 7 | GCF_000492535.1_Kleb_pneu_UCI_7_V1_genomic | ST17 | ISKpn26 | wbbO | 1014 bp |
ASM966157 | GCF_009661575.1_ASM966157v1_genomic | ST23 | ISR1 | wbbM | 1420 bp |
ASM170423 | GCF_001704235.1_ASM170423v1_genomic | ST34 | IS903B | gmlC | 7956 bp in rfb (CDS gmlC from 7996 bp) |
ASM307130 | GCF_003071305.1_ASM307130v1_genomic | ST34 | IS903B | wbbO | 130 bp |
IS903B | gmlC | 7956 bp in rfb (CDS gmlC from 7996 bp) | |||
ASM366018 | GCF_003660185.1_ASM366018v1_genomic | ST105 | IS903B | wbbO | 182 bp |
BIDMC 55 | GCF_000692955.1_Kleb_pneu_BIDMC_55_V1_genomic | ST105 | IS903B | glf | 105 bp |
ABC152 | GCA_014433645.1 | ST147 | ISR1 | gmlB | 818 bp |
BIDMC 7B | GCF_000567425.1_Kleb_pneu_BIDMC_7B_V2_genomic | ST258 | ISR1 | gmlB | 818 bp |
UCI 33 | GCF_000566865.1_Kleb_pneu_UCI_33_V1_genomic | ST258 | ISR1 | kfoC | 656 bp |
CHS 139 | GCF_001031785.1_Kleb_pneu_CHS139_V1_genomic | ST258 | ISR1 | wbbM | 1881 bp |
CHS 91 | GCF_001030945.1_Kleb_pneu_CHS91_V1_genomic | ST258 | ISR1 | wbbO | 165 bp |
CHS 57 | GCF_000694075.1_Kleb_pneu_CHS_57_V1_genomic | ST258 | ISKpn26 | gmlB | 4 bp |
UCI 38 | GCF_000566805.1_Kleb_pneu_UCI_38_V1_genomic | ST258 | ISKpn26 | gmlB | 453 bp |
IS1294 | wbbO | 900 bp | |||
BIDMC 13 | GCF_000567345.1_Kleb_pneu_BIDMC_13_V1_genomic | ST258 | ISKpn26 | gmlB | 453 bp |
ISKpn26 | wbbO | 490 bp | |||
CHS 71 | GCF_000694295.1_Kleb_pneu_CHS_71_V1_genomic | ST258 | ISKpn26 | wbbO | 1080 bp |
CHS 235 | GCF_001033335.1_Kleb_pneu_CHS235_V1_genomic | ST258 | ISKpn26 | wbbO | 641 bp |
ASM147162 | GCF_001471625.1_ASM147162v2_genomic | ST258 | ISKpn26 | wbbO | 1014 bp |
ISKpn26 | wbbM | 96 bp | |||
CHS 105 | GCF_001031225.1_Kleb_pneu_CHS105_V1_genomic | ST258 | ISKpn26 | wbbM | 1548 bp |
ASM386117 | GCF_003861175.1_ASM386117v1_genomic | ST258 | ISKpn26 | wbbM | 45 bp |
ISKpn26 | 2156 bp | ||||
CHS 165 | GCF_001032265.1_Kleb_pneu_CHS165_V1_genomic | ST258 | ISKpn26 | kfoC | 158 bp |
MGH 51 | GCF_000694435.1_Kleb_pneu_MGH_51_V1_genomic | ST258 | ISKpn26 | wzm | 315 bp |
CHS 99 | GCF_001031105.1_Kleb_pneu_CHS99_V1_genomic | ST258 | ISKpn26 | wzt | 470 bp |
ASM205647 | GCF_002056475.1_ASM205647v1_genomic | ST258 | ISKpn14 | kfoC | 782 bp |
ASM80749 | GCF_000807495.1_ASM80749v2_genomic | ST258 | ISKpn14 | kfoC | 440 bp |
18174_7_5 | GCF_900515885.1_18174_7_5_genomic | ST258 | ISKpn14 | wbbO | 377 bp |
BIDMC 54 | GCF_000692935.1_Kleb_pneu_BIDMC_54_V1_genomic | ST258 | IS1294 | kfoC | 1186 bp |
CHS 46 | GCF_000693875.1_Kleb_pneu_CHS_46_V1_genomic | ST258 | ISF1 | wbbM | 1138 bp |
ASM195291 | GCF_001952915.1_ASM195291v1_genomic | ST258 | ISVsa5 | wbbN | 133 bp |
ASM303004 | GCF_003030045.1_ASM303004v1_genomic | ST512 | ISKpn26 | wbbO | 1014 bp |
UCI 8 | GCF_000492515.1_Kleb_pneu_UCI_8_V1_genomic | ST1198 | IS9033 | wbbM | 1667 bp |
IS39 | GCF_000529425.1_IS39v1_genomic | unknown | IS102 | gmlC | 7933 bp in rfb (CDS gmlC from 7996 bp) |
Isolate | Assembly Accession Number | Sequence Type | Insertion Sequence | Gene | Position of the IS Element (From the First Nucleotide of CDS) |
---|---|---|---|---|---|
ASM492431 | GCF_004924315.1_ASM492431v1_genomic | ST23 | IS102 | gmlC | 1217 bp |
ASM275277 | GCF_002752775.1_ASM275277v1_genomic | ST29 | IS102 | gmlB | 472 bp |
IS903B | gmlC | 526 bp | |||
ASM296687 | GCF_002966875.1_ASM296687v1_genomic | ST34 | IS5 | wzm | 315 bp |
IS903B | wbbM | 465 bp | |||
IS903B | gmlB | 926 bp | |||
IS903B | gmlC | 143 bp | |||
ASM290977 | GCF_002909775.1_ASM290977v2_genomic | ST231 | ISKpn14 | gmlA | 95 bp |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artyszuk, D.; Izdebski, R.; Maciejewska, A.; Kaszowska, M.; Herud, A.; Szijártó, V.; Gniadkowski, M.; Lukasiewicz, J. The Impact of Insertion Sequences on O-Serotype Phenotype and Its O-Locus-Based Prediction in Klebsiella pneumoniae O2 and O1. Int. J. Mol. Sci. 2020, 21, 6572. https://doi.org/10.3390/ijms21186572
Artyszuk D, Izdebski R, Maciejewska A, Kaszowska M, Herud A, Szijártó V, Gniadkowski M, Lukasiewicz J. The Impact of Insertion Sequences on O-Serotype Phenotype and Its O-Locus-Based Prediction in Klebsiella pneumoniae O2 and O1. International Journal of Molecular Sciences. 2020; 21(18):6572. https://doi.org/10.3390/ijms21186572
Chicago/Turabian StyleArtyszuk, Daria, Radosław Izdebski, Anna Maciejewska, Marta Kaszowska, Aleksandra Herud, Valeria Szijártó, Marek Gniadkowski, and Jolanta Lukasiewicz. 2020. "The Impact of Insertion Sequences on O-Serotype Phenotype and Its O-Locus-Based Prediction in Klebsiella pneumoniae O2 and O1" International Journal of Molecular Sciences 21, no. 18: 6572. https://doi.org/10.3390/ijms21186572
APA StyleArtyszuk, D., Izdebski, R., Maciejewska, A., Kaszowska, M., Herud, A., Szijártó, V., Gniadkowski, M., & Lukasiewicz, J. (2020). The Impact of Insertion Sequences on O-Serotype Phenotype and Its O-Locus-Based Prediction in Klebsiella pneumoniae O2 and O1. International Journal of Molecular Sciences, 21(18), 6572. https://doi.org/10.3390/ijms21186572