Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility
Abstract
:1. Introduction
2. Aptamers
3. GnRH Aptamers
4. LH Aptamers
5. Potential Applications of GnRH/LH Aptamers
6. Challenges
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hazum, E.; Conn, P.M. Molecular Mechanism of Gonadotropin Releasing Hormone (GnRH) Action. I. The GnRH Receptor. Endocr. Rev. 1988, 9, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.; Skorupskaite, K.; George, J.T.; Anderson, R.A. Physiology of GNRH and Gonadotropin Secretion; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Knobil, E.; Plant, T.; Wildt, L.; Belchetz, P.; Marshall, G. Control of the rhesus monkey menstrual cycle: Permissive role of hypothalamic gonadotropin-releasing hormone. Science 1980, 207, 1371–1373. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, D.J.; Swerdloff, R.S. Pharmacokinetics of Gonadotropin-Releasing Hormone and Its Analogs. Endocr. Rev. 1986, 7, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Huseman, C.A.; Kelch, R.P. Gonadotropin Responses and Metabolism of Synthetic Gonadotropin-Releasing Hormone (GnRH) during Constant Infusion of GnRH in Men and Boys with Delayed Adolescence. J. Clin. Endocrinol. Metab. 1978, 47, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J.; Cummins, J.T. Increased Gonadotropin-Releasing Hormone Pulse Frequency Associated with Estrogen-Induced Luteinizing Hormone Surges in Ovariectomized Ewes. Endocrinology 1985, 116, 2376–2383. [Google Scholar] [CrossRef]
- Boyar, R.; Finkelstein, J.; Roffwarg, H.; Kapen, S.; Weitzman, E.; Hellman, L. Synchronization of Augmented Luteinizing Hormone Secretion with Sleep during Puberty. New Engl. J. Med. 1972, 287, 582–586. [Google Scholar] [CrossRef]
- Izzi-Engbeaya, C.; Jones, S.; Crustna, Y.; Machenahalli, P.C.; Papadopoulou, D.; Modi, M.; Panayi, C.; Starikova, J.; Eng, P.C.; Phylactou, M.; et al. Effects of Glucagon-like Peptide-1 on the Reproductive Axis in Healthy Men. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef] [Green Version]
- Prague, J.K.; Voliotis, M.; Clarke, S.; Comninos, A.N.; Abbara, A.; Jayasena, C.N.; Roberts, R.E.; Yang, L.; Veldhuis, J.D.; Tsaneva-Atanasova, K.; et al. Determining the Relationship Between Hot Flushes and LH Pulses in Menopausal Women Using Mathematical Modeling. J. Clin. Endocrinol. Metab. 2019, 104, 3628–3636. [Google Scholar] [CrossRef] [Green Version]
- Young, J.; Xu, C.; Papadakis, G.E.; Acierno, J.S.; Maione, L.; Hietamäki, J.; Raivio, T.; Pitteloud, N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr. Rev. 2019, 40, 669–710. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.C.W.; Butler, G.E.; Kelnar, C.J.H.; Stirling, H.F.; Huhtaniemi, I. Patterns of Pulsatile Luteinizing Hormone and Follicle-Stimulating Hormone Secretion in Prepubertal (Midchildhood) Boys and Girls and Patients with Idiopathic Hypogonadotropic Hypogonadism (Kallmann’s Syndrome): A Study Using an Ultrasensitive Time-Resolved Immunofluorometric Assay. J. Clin. Endocrinol. Metab. 1991, 72, 1229–1237. [Google Scholar] [CrossRef]
- Pitteloud, N.; Hayes, F.J.; Boepple, P.A.; DeCruz, S.; Seminara, S.B.; MacLaughlin, D.T.; Crowley, W.F., Jr. The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in elucidating the phenotypic heterogeneity of idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2002, 87, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmina, E.; Fruzzetti, F.; Lobo, R.A. Increased anti-Mullerian hormone levels and ovarian size in a subgroup of women with functional hypothalamic amenorrhea: Further identification of the link between polycystic ovary syndrome and functional hypothalamic amenorrhea. Am. J. Obs. Gynecol. 2016, 214, 714.e1–714.e6. [Google Scholar] [CrossRef]
- Jayasena, C.; Abbara, A.; Veldhuis, J.D.; Comninos, A.N.; Ratnasabapathy, R.; De Silva, A.; Nijher, G.M.K.; Ganiyu-Dada, Z.; Mehta, A.; Todd, C.; et al. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of Kisspeptin-54. J. Clin. Endocrinol. Metab. 2014, 99, E953–E961. [Google Scholar] [CrossRef]
- Coutinho, E.A.; Kauffman, A.S. The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Med. Sci. 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.G. Quality Issues of Research Antibodies. Anal. Chem. Insights 2016, 11, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nat. Cell Biol. 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Chai, Z.; Guo, L.; Jin, H.; Li, Y.; Du, S.; Shi, Y.; Wang, C.; Shi, W.; He, J. TBA loop mapping with 3’-inverted-deoxythymidine for fine-tuning of the binding affinity for alpha-thrombin. Org. Biomol. Chem. 2019, 17, 2403–2412. [Google Scholar] [CrossRef]
- Wilbanks, B.; Smestad, J.; Heider, R.M.; Warrington, A.E.; Rodriguez, M.; Maher, L.J. Optimization of a 40-mer Antimyelin DNA Aptamer Identifies a 20-mer with Enhanced Properties for Potential Multiple Sclerosis Therapy. Nucleic Acid 2019, 29, 126–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruta, K.; Otaki, N.; Nagamine, M.; Kayo, T.; Sasaki, A.; Hiramoto, S.; Takahashi, M.; Hota, K.; Sato, H.; Yamazaki, H. A Novel PEGylation Method for Improving the Pharmacokinetic Properties of Anti-Interleukin-17A RNA Aptamers. Nucleic Acid 2017, 27, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.-S.; Sekhon, S.S.; Shin, W.-R.; Kim, H.C.; Min, J.; Ahn, J.-Y.; Kim, Y.-H. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017, 22, 825. [Google Scholar] [CrossRef] [Green Version]
- Virgilio, A.; Amato, T.; Petraccone, L.; Esposito, F.; Grandi, N.; Tramontano, E.; Romero, R.; Haider, S.; Gomez-Monterrey, I.; Novellino, E.; et al. Improvement of the activity of the anti-HIV-1 integrase aptamer T30175 by introducing a modified thymidine into the loops. Sci. Rep. 2018, 8, 7447. [Google Scholar] [CrossRef] [PubMed]
- Sczepanski, J.T.; Joyce, G.F. Binding of a Structured d-RNA Molecule by an l-RNA Aptamer. J. Am. Chem. Soc. 2013, 135, 13290–13293. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Han, L.; Wang, J.; Xie, J.; Gao, Y.; Xie, F.; Jia, L. In vivo inhibition of circulating tumor cells by two apoptosis-promoting circular aptamers with enhanced specificity. J. Control. Release 2018, 280, 99–112. [Google Scholar] [CrossRef]
- Cho, M.; Oh, S.S.; Nie, J.; Stewart, R.; Radeke, M.J.; Eisenstein, M.; Coffey, P.J.; Thomson, J.A.; Soh, H.T. Array-based Discovery of Aptamer Pairs. Anal. Chem. 2014, 87, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Fukaya, T.; Abe, K.; Savory, N.; Tsukakoshi, K.; Yoshida, W.; Ferri, S.; Sode, K.; Ikebukuro, K. Improvement of the VEGF binding ability of DNA aptamers through in silico maturation and multimerization strategy. J. Biotechnol. 2015, 212, 99–105. [Google Scholar] [CrossRef]
- Liang, S.; Kinghorn, A.B.; Voliotis, M.; Prague, J.K.; Veldhuis, J.D.; Tsaneva-Atanasova, K.; McArdle, C.A.; Li, R.H.W.; Cass, A.E.G.; Dhillo, W.S.; et al. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat. Commun. 2019, 10, 852. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, T.; Zhou, L.; Offenhäusser, A.; Mayer, D. Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors. Materials 2020, 13, 2577. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Z.; Fu, J.; Zhao, W.; Guo, Y.; Sun, X.; Zhang, H. Ratiometric electrochemical aptasensor based on ferrocene and carbon nanofibers for highly specific detection of tetracycline residues. Sci. Rep. 2017, 7, 14729. [Google Scholar] [CrossRef] [PubMed]
- Le Floch, F.; Ho, H.A.; Leclerc, M. Label-Free Electrochemical Detection of Protein Based on a Ferrocene-Bearing Cationic Polythiophene and Aptamer. Anal. Chem. 2006, 78, 4727–4731. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.K.H.; Ge, B.; Yu, H.-Z. Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme. Anal. Chem. 2007, 79, 5158–5164. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Luzi, E.; Mascini, M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005, 67, 135–141. [Google Scholar] [CrossRef]
- Shan, W.; Pan, Y.; Fang, H.; Guo, M.; Nie, Z.; Huang, Y.; Yao, S. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta 2014, 126, 130–135. [Google Scholar] [CrossRef]
- Kovačič, M.; Podbevšek, P.; Tateishi-Karimata, H.; Takahashi, S.; Sugimoto, N.; Plavec, J. Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Res. 2020, 48, 3975–3986. [Google Scholar] [CrossRef]
- Li, H.; Bai, X.; Wang, N.; Chen, X.; Li, J.; Zhang, Z.; Tang, J. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin. Talanta 2016, 146, 727–731. [Google Scholar] [CrossRef]
- Yamamoto, R.; Kumar, P.K. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 2000, 5, 389–396. [Google Scholar] [CrossRef]
- Nutiu, R.; Li, Y. Structure-Switching Signaling Aptamers. J. Am. Chem. Soc. 2003, 125, 4771–4778. [Google Scholar] [CrossRef]
- Ratajczak, K.; Lukasiak, A.; Grel, H.; Dworakowska, B.; Jakiela, S.; Stobiecka, M. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent “On-Off” switching DNA aptamer. Anal. Bioanal. Chem. 2019, 411, 6899–6911. [Google Scholar] [CrossRef] [Green Version]
- Duchardt-Ferner, E.; Juen, M.; Bourgeois, B.; Madl, T.; Kreutz, C.; Ohlenschläger, O.; Wöhnert, J. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine. Nucleic Acids Res. 2020, 48, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Cheng, L. Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules. Anal. Bioanal. Chem. 2013, 405, 8233–8239. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, K.; Dhakal, S. FRET-Based Aptasensor for the Selective and Sensitive Detection of Lysozyme. Sensors 2020, 20, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, T.A.; Narovec, C.M.; Whelan, R.J. Effects of Cationic Proteins on Gold Nanoparticle/Aptamer Assays. ACS Omega 2017, 2, 8222–8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Huang, R.; Yu, Y.; Su, R.; Qi, W.; He, Z. Gold Nanoparticle-Aptamer-Based LSPR Sensing of Ochratoxin A at a Widened Detection Range by Double Calibration Curve Method. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; You, T.; Jang, H.; Ryu, H.; Lee, E.-S.; Oh, M.-H.; Huh, Y.S.; Kim, S.M.; Jeon, T.-J. Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. Sensors 2020, 20, 3124. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Xu, H.; Zhao, Y.; Han, Y.; Zhang, Y.; Zhang, J.; Xu, C.; Wang, W.; Guo, Q.; Ge, J. Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Bradbury, A.; Plückthun, A. Reproducibility: Standardize antibodies used in research. Nat. Cell Biol. 2015, 518, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Egelhofer, T.A.; Minoda, A.; Klugman, S.; Lee, K.; Kolasinska-Zwierz, P.; Alekseyenko, A.A.; Cheung, M.-S.; Day, D.S.; Gadel, S.; Gorchakov, A.A.; et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 2010, 18, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Long, H.A.; Brooks, J.; Harvie, M.; Maxwell, A.; French, D.P. How do women experience a false-positive test result from breast screening? A systematic review and thematic synthesis of qualitative studies. Br. J. Cancer 2019, 121, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Csordas, A.T.; Wang, J.; Oh, S.S.; Eisenstein, M.S.; Soh, H.T. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano 2016, 10, 7558–7565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, F.; Mayer, G. Selection and Biosensor Application of Aptamers for Small Molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Kim, J.; Zhu, Y.; Yang, J.; Lee, G.-H.; Lee, S.; Yu, J.; Pei, R.; Liu, G.; Nuckolls, C.; et al. An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers. Biosens. Bioelectron. 2015, 71, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.-T.; Kwon, Y.S.; Gu, M. Aptamer-based environmental biosensors for small molecule contaminants. Curr. Opin. Biotechnol. 2017, 45, 15–23. [Google Scholar] [CrossRef]
- Wlotzka, B.; Leva, S.; Eschgfäller, B.; Burmeister, J.; Kleinjung, F.; Kaduk, C.; Muhn, P.; Hess-Stumpp, H.; Klussmann, S. In vivo properties of an anti-GnRH Spiegelmer: An example of an oligonucleotide-based therapeutic substance class. Proc. Natl. Acad. Sci. USA 2002, 99, 8898–8902. [Google Scholar] [CrossRef] [Green Version]
- Dirkzwager, R.M.; Liang, S.; Tanner, J.A. Development of Aptamer-Based Point-of-Care Diagnostic Devices for Malaria Using Three-Dimensional Printing Rapid Prototyping. ACS Sens. 2016, 1, 420–426. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Shen, X. Development Of A Nucleic Acid Lateral Flow Strip For Detection Of Hepatitis C Virus (Hcv) Core Antigen. Nucleos. Nucleot. Nucl. Acids 2013, 32, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Kasoju, A.; Shahdeo, D.; Khan, A.A.; Shrikrishna, N.S.; Mahari, S.; Alanazi, A.M.; Bhat, M.A.; Giri, J.; Gandhi, S. Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers. Sci. Rep. 2020, 10, 4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, T.; Xiang, Y.; Lu, Y. Detection of protein biomarker using a blood glucose meter. Breast Cancer 2015, 1256, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 2011, 3, 697–703. [Google Scholar] [CrossRef]
- Taylor, I.M.; Du, Z.; Bigelow, E.T.; Eles, J.R.; Horner, A.R.; Catt, K.A.; Weber, S.G.; Jamieson, B.G.; Cui, X.T. Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. J. Mater. Chem. B. 2017, 5, 2445–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo-Curras, N.; Somerson, J.; Vieira, P.A.; Ploense, K.L.; Kippin, T.E.; Plaxco, K.W. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl. Acad. Sci. USA 2017, 114, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 2010, 5, e15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coenen-Stass, A.M.L.; McClorey, G.; Manzano, R.; Betts, C.; Blain, A.; Saleh, A.F.; Gait, M.J.; Lochmüller, H.; Wood, M.; Roberts, T.C. Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Sci. Rep. 2015, 5, 17014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Z.; Pan, X.; Parlayan, C.; Ojima, H.; Kondo, T. Proteomic study of hepatocellular carcinoma using a novel modified aptamer-based array (SOMAscan™) platform. Biochim. Biophys. Acta Prot. Proteom. 2017, 1865, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Ganz, P.; Heidecker, B.; Hveem, K.; Jonasson, C.; Kato, S.; Segal, M.R.; Sterling, D.G.; Williams, S.A. Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients With Stable Coronary Heart Disease. JAMA 2016, 315, 2532–2541. [Google Scholar] [CrossRef] [PubMed]
- Leva, S.; Lichte, A.; Burmeister, J.; Muhn, P.; Jahnke, B.; Fesser, D.; Erfurth, J.; Burgstaller, P.; Klussmann, S. GnRH binding RNA and DNA Spiegelmers: A novel approach toward GnRH antagonism. Chem. Biol. 2002, 9, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Seeber, S.; Ros, F.; Thorey, I.; Tiefenthaler, G.; Kaluza, K.; Lifke, V.; Fischer, J.A.A.; Klostermann, S.; Endl, J.; Kopetzki, E.; et al. A Robust High Throughput Platform to Generate Functional Recombinant Monoclonal Antibodies Using Rabbit B Cells from Peripheral Blood. PLoS ONE 2014, 9, e86184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragoudas, E.; Adamis, A.P.; Cunningham, E.T.; Feinsod, M.; Guyer, D.R. Pegaptanib for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, D.J. VEGF inhibition study in ocular neovascularization (VISION): Second year efficacy data. Investig. Ophth. Vis. Sci. 2005, 46, 2309. [Google Scholar]
- Zhao, X.X.; Dong, T.T.; Yang, Z.Z.; Karlsen, H.; Haakon, K. Aptamer-NASBA LOC as a prospective tool for systemic therapy of cancer: Quantitative detection on signaling molecular profiling. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Institute of Electrical and Electronics Engineers (IEEE), San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 578–581. [Google Scholar]
- Veldhuis, J.D.; Keenan, D.M.; Pincus, S.M. Motivations and Methods for Analyzing Pulsatile Hormone Secretion. Endocr. Rev. 2008, 29, 823–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchill, S.A.; Perebolte, L.; Johnston, C.; Top, B.; Selby, P. Comparison of the RNA-amplification based methods RT–PCR and NASBA for the detection of circulating tumour cells. Br. J. Cancer 2002, 86, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivier, C.; Rivier, J.; Vale, W. Stress-induced inhibition of reproductive functions: Role of endogenous corticotropin-releasing factor. Science 1986, 231, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A.E.; Breen, K.M.; Clarke, I.J.; Karsch, F.J.; Wagenmaker, E.R.; Tilbrook, A.J. Cortisol Reduces Gonadotropin-Releasing Hormone Pulse Frequency in Follicular Phase Ewes: Influence of Ovarian Steroids. Endocrinology 2008, 150, 341–349. [Google Scholar] [CrossRef]
- Thomas, A.; Geyer, H.; Kamber, M.; Schänzer, W.; Thevis, M. Mass spectrometric determination of gonadotrophin-releasing hormone (GnRH) in human urine for doping control purposes by means of LC–ESI-MS/MS. J. Mass Spectrom. 2008, 43, 908–915. [Google Scholar] [CrossRef]
- Palmer, D.; Rademaker, K.; Martin, I.; Hessell, J.; Howitt, R. Identification of gonadotropin-releasing hormone metabolites in greyhound urine. Drug Test. Anal. 2017, 9, 1499–1505. [Google Scholar] [CrossRef]
- Richards, S.; Cawley, A.; Cavicchioli, R.; Suann, C.; Pickford, R.; Raftery, M. Aptamer based peptide enrichment for quantitative analysis of gonadotropin-releasing hormone by LC–MS/MS. Talanta 2016, 150, 671–680. [Google Scholar] [CrossRef]
- Hayes, F.J.; McNicholl, D.J.; Schoenfeld, D.; Marsh, E.E.; Hall, J.E. Free alpha-subunit is superior to luteinizing hormone as a marker of gonadotropin-releasing hormone despite desensitization at fast pulse frequencies. J. Clin. Endocrinol. Metab. 1999, 84, 1028–1036. [Google Scholar]
- Hale, G.E.; Robertson, D.M.; Burger, H.G. The perimenopausal woman: Endocrinology and management. J. Steroid Biochem. Mol. Biol. 2014, 142, 121–131. [Google Scholar] [CrossRef]
- Candia, J.; Cheung, F.; Kotliarov, Y.; Fantoni, G.; Sellers, B.; Griesman, T.; Huang, J.; Stuccio, S.; Zingone, A.; Ryan, B.M.; et al. Assessment of Variability in the SOMAscan Assay. Sci. Rep. 2017, 7, 14248. [Google Scholar] [CrossRef] [Green Version]
- Adcock, C.J.; Ogilvy-Stuart, A.L.; Robinson, I.C.A.F.; Lewin, J.E.; Holly, J.M.P.; Harris, D.A.; Watts, A.P.; Doyle, K.L.; Matthews, D.R.; Wilkinson, A.R.; et al. The Use of an Automated Microsampling System for the Characterization of Growth Hormone Pulsatility in Newborn Babies. Pediatr. Res. 1997, 42, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henley, D.E.; Leendertz, J.A.; Russell, G.; Wood, S.A.; Taheri, S.; Woltersdorf, W.W.; Lightman, S.L. Development of an automated blood sampling system for use in humans. J. Med. Eng. Technol. 2009, 33, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Samant, P.P.; Prausnitz, M.R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl. Acad. Sci. USA 2018, 115, 4583–4588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, D. Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes. Diabetes Technol. 2017, 19, S25. [Google Scholar] [CrossRef]
- Kimoto, M.; Lim, Y.W.S.; Hirao, I. Molecular affinity rulers: Systematic evaluation of DNA aptamers for their applicabilities in ELISA. Nucleic Acids Res. 2019, 47, 8362–8374. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Jacobs, T.M.; McCallen, J.D.; Moore, D.T.; Huckaby, J.T.; Edelstein, J.N.; Lai, S.K. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal. Chem. 2016, 88, 11804–11812. [Google Scholar] [CrossRef]
- Moreno, A.; Pitoc, G.A.; Ganson, N.J.; Layzer, J.M.; Hershfield, M.S.; Tarantal, A.F.; Sullenger, B.A. Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers. Cell Chem. Biol. 2019, 26, 634–644.e3. [Google Scholar] [CrossRef]
- Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.; Hershfield, M.S. Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 2016, 137, 1610–1613.e7. [Google Scholar] [CrossRef] [Green Version]
- Majerfeld, I.; Yarus, M. An RNA pocket for an aliphatic hydrophobe. Nat. Struct. Mol. Biol. 1994, 1, 287–292. [Google Scholar] [CrossRef]
- Morris, K.N.; Tarasow, T.M.; Julin, C.M.; Simons, S.L.; Hilvert, D.; Gold, L. Enrichment for RNA molecules that bind a Diels-Alder transition state analog. Proc. Natl. Acad. Sci. USA 1994, 91, 13028–13032. [Google Scholar] [CrossRef] [Green Version]
- Aptagen, LLC. Available online: https://docs.google.com/viewerng/viewer?url=http://aptagenllc.wpengine.com/wp-content/uploads/Cost-Benefit-Analysis.pdf&hl=en (accessed on 28 September 2020).
- Hammerschmidt, N.; Tscheliessnig, A.; Sommer, R.; Helk, B.; Jungbauer, A. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation. Biotechnol. J. 2014, 9, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Vanschoenbeek, K.; Vanbrabant, J.; Hosseinkhani, B.; Vermeeren, V.; Michiels, L. Aptamers targeting different functional groups of 17 beta-estradiol. J. Steroid. Biochem. 2015, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Alsager, O.A.; Kumar, S.; Willmott, G.R.; McNatty, K.P.; Hodgkiss, J.M. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. Biosens. Bioelectron. 2014, 57, 262–268. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzi-Engbeaya, C.; Abbara, A.; Cass, A.; Dhillo, W.S. Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int. J. Mol. Sci. 2020, 21, 7394. https://doi.org/10.3390/ijms21197394
Izzi-Engbeaya C, Abbara A, Cass A, Dhillo WS. Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. International Journal of Molecular Sciences. 2020; 21(19):7394. https://doi.org/10.3390/ijms21197394
Chicago/Turabian StyleIzzi-Engbeaya, Chioma, Ali Abbara, Anthony Cass, and Waljit S Dhillo. 2020. "Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility" International Journal of Molecular Sciences 21, no. 19: 7394. https://doi.org/10.3390/ijms21197394
APA StyleIzzi-Engbeaya, C., Abbara, A., Cass, A., & Dhillo, W. S. (2020). Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. International Journal of Molecular Sciences, 21(19), 7394. https://doi.org/10.3390/ijms21197394