Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri
Abstract
:1. Introduction
2. Results and Discussion
2.1. Component J-CRC and Fitting
2.2. Mixture J-CRC, CTC and Isobole
2.3. Relationship between Mixture Toxicity and Component Molarity Proportions
2.4. Significance, Limitation and Implications
3. Materials and Methods
3.1. Chemicals
3.2. Photobacterium Toxicity Test
3.3. Experimental Design and Toxicity Evaluation of Mixtures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTCC | Chlortetracycline hydrochloride |
OTCC | Oxytetracycline hydrochloride |
AVF | Aliivibrio fischeri |
CA | Concentration addition |
SCA | Segmented concentration addition |
IA | Independent action |
CRC | Concentration-response curve |
J/U/S-CRC | J/U/S-shaped concentration-response curve |
PBZ | Predictive blind zone |
CTC | Co-toxicity coefficient |
CI | Confidence interval |
CTCICI | Co-toxicity coefficient integrated with confidence interval method |
EquRay | Direct equipartition ray design |
Pi | Component concentration proportion |
BP | Biphasic model |
BPL | J-CRC left segment model |
BPR | J-CRC right segment model |
f | Function |
R2 | Coefficient of determination |
RMSE | Root-mean-square error |
ECm | Maximum stimulatory effect concentration |
Em | Maximum stimulatory effect |
CP | Cross point between mixture observed J-CRC and CA predicted J-CRC |
ECCP | Concentration at the cross point |
ECP | Effect at the cross point |
ECx | x%-effect concentration |
EC−x | −x%-effect concentration |
EC−xR | −x%-effect concentration on the right of the lowest point of J-CRC |
EC−xL | −x%-effect concentration on the left of the lowest point of J-CRC |
pECx | Negative logarithm of the x%-effect concentration |
References
- Calabrese, E.J.; Baldwin, L.A. Defining hormesis. Hum. Exp. Toxicol. 2002, 21, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kudryasheva, S.N.; Kovel, S.E. Monitoring of low-intensity exposures via luminescent bioassays of different complexity: Cells, enzyme reactions, and fluorescent proteins. Int. J. Mol. Sci. 2019, 20, 4451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgers, J.D.M.; Van Lieverloo, R.J.; Van der Pas, L.J.T.; Van den Brink, P.J. Effects of the herbicide 2,4-D on the growth of nine aquatic macrophytes. Aquat. Bot. 2007, 86, 260–268. [Google Scholar] [CrossRef]
- Randall, W.A.; Price, C.W.; Welch, H. Demonstration of hormesis (increase in fatality rate) by penicillin. Am. J. Public Health Nation Health 1947, 37, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Welch, H.; Price, C.W.; Randall, W.A. Increase in fatality rate of E. typhosa for white mice by streptomycin. J. Am. Pharmac. Assoc. 1946, 35, 155–158. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Hoffmann, G.R.; Stanek, E.J.; Nascarella, M.A. Hormesis in high-throughput screening of antibacterial compounds in E. coli. Hum. Exp. Toxicol. 2010, 29, 667–677. [Google Scholar] [CrossRef]
- Calabrese, E.J. Overcompensation stimulation: A mechanism for hormetic effects. Crit. Rev. Toxicol. 2001, 31, 425–470. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Path and progression to significance. Int. J. Mol. Sci. 2018, 19, 2871. [Google Scholar] [CrossRef] [Green Version]
- Iavicoli, I.; Leso, V.; Fontana, L.; Calabrese, E.J. Nanoparticle exposure and hormetic dose–responses: An update. Int. J. Mol. Sci. 2018, 19, 805. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tang, L.; Luan, F.; Cordeiro, M.N.D.S. Prediction of the toxicity of binary mixtures by QSAR approach using the hypothetical descriptors. Int. J. Mol. Sci. 2018, 19, 3423. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.L.; Liu, S.S.; Zhu, X.W.; Liu, H.L.; Wang, L.J. Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model. Environ. Sci. Technol. 2011, 45, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, E.; Labudda, M. Dual role of metallic trace elements in stress biology—from negative to beneficial impact on plants. Int. J. Mol. Sci. 2019, 20, 3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2008, 43, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Christensen, A.M.; Ingerslev, F.; Baun, A. Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ. Toxicol. Chem. 2006, 25, 2208–2215. [Google Scholar] [CrossRef]
- Gürbay, A.; Gonthier, B.; Barret, L.; Favier, A.; Hıncal, F. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by vitamin E. Toxicology 2007, 229, 54–61. [Google Scholar] [CrossRef]
- Hincal, F.; Gürbay, A.; Favier, A. Biphasic response of ciprofloxacin in human fibroblast cell cultures. Nonlinear. Bio. Toxicol. Med. 2003, 1, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Migliore, L.; Godeas, F.; De Filippis, S.P.; Mantovi, P.; Barchi, D.; Testa, C.; Rubattu, N.; Brambilla, G. Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays. Environ. Pollut. 2010, 158, 129–134. [Google Scholar] [CrossRef]
- Pomati, F.; Netting, A.G.; Calamari, D.; Neilan, B.A. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat. Toxicol. 2004, 67, 387–396. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Hormesis as a biological hypothesis. Environ. Health Perspect. 1998, 106, 357–362. [Google Scholar]
- Migliore, L.; Rotini, A.; Thaller, M.C. Low doses of tetracycline trigger the E. Coli growth: A case of hormetic response. Dose-Response 2013, 11, 550–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA 2006, 103, 19484–19489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.Q.; Lin, Z.F.; Zou, X.M.; Yao, Z.F.; Tian, D.Y.; Wang, D.L.; Yin, D.Q. Model of hormesis and its toxicity mechanism based on quorum sensing: A case study on the toxicity of sulfonamides to Photobacterium phosphoreum. Environ. Sci. Technol. 2012, 46, 7746–7754. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Lin, Z.; Deng, Z.; Yin, D. Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere 2013, 90, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 2010, 29, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L.H. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat. Toxicol. 2003, 63, 43–63. [Google Scholar] [CrossRef]
- Backhaus, T.; Arrhenius, A.; Blanck, H. Toxicity of a mixture of dissimilarly acting substances to natural algal communities: Predictive power and limitations of independent action and concentration addition. Environ. Sci. Technol. 2004, 38, 6363–6370. [Google Scholar] [CrossRef]
- Altenburger, R.; Nendza, M.; Schuurmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 2003, 22, 1900–1915. [Google Scholar] [CrossRef]
- Ge, H.; Zhou, M.; Lv, D.; Wang, M.; Dong, C.; Wan, Y.; Zhang, Z.; Wang, S. New insight regarding the relationship between enantioselective toxicity difference and enantiomeric toxicity interaction from chiral ionic liquids. Int. J. Mol. Sci. 2019, 20, 6163. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Pan, Y.; Gu, Y.; Lin, Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. Sci. Total Environ. 2018, 630, 11–19. [Google Scholar] [CrossRef]
- Sun, H.; Pan, Y.; Chen, X.; Jiang, W.; Lin, Z.; Yin, C. Regular time-dependent cross-phenomena induced by hormesis: A case study of binary antibacterial mixtures to Aliivibrio fischeri. Ecotox. Environ. Saf. 2020, 187, 109823. [Google Scholar] [CrossRef] [PubMed]
- Martin-Betancor, K.; Ritz, C.; Fernández-Piñas, F.; Leganés, F.; Rodea-Palomares, I. Defining an additivity framework for mixture research in inducible whole-cell biosensors. Sci. Rep. 2015, 5, 17200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belz, R.G.; Cedergreen, N.; Sorensen, H. Hormesis in mixtures—Can it be predicted? Sci. Total Environ. 2008, 404, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ohisson, A.; Cedergreen, N.; Oskarsson, A.; Ulleras, E. Mixture effects of imidazole fungicides on cortisol and aldosterone secretion in human adrenocortical H295R cells. Toxicology 2010, 275, 21–28. [Google Scholar] [CrossRef]
- Qu, R.; Liu, S.; Zheng, Q.; Li, T. Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound. Sci. Rep. 2017, 7, 43473. [Google Scholar] [CrossRef] [Green Version]
- Scholze, M.; Boedeker, W.; Faust, M.; Backhaus, T.; Altenburger, R.; Grimme, L.H. A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ. Toxicol. Chem. 2001, 20, 448–457. [Google Scholar] [CrossRef]
- Qin, L.T.; Liu, S.S.; Liu, H.L.; Zhang, Y.H. Support vector regression and least squares support vector regression for hormetic dose-response curves fitting. Chemosphere 2010, 78, 327–334. [Google Scholar] [CrossRef]
- Brain, P.; Cousens, R. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 1989, 29, 93–96. [Google Scholar] [CrossRef]
- Zhu, X.W.; Liu, S.S.; Qin, L.T.; Chen, F.; Liu, H.L. Modeling non-monotonic dose–response relationships: Model evaluation and hormetic quantities exploration. Ecotox. Environ. Saf. 2013, 89, 130–136. [Google Scholar] [CrossRef]
- Schabenberger, O.; Tharp, B.E.; Kells, J.J.; Penner, D. Statistical tests for hormesis and effective dosages in herbicide dose response. Agron. J. 1999, 91, 713–721. [Google Scholar] [CrossRef]
- Belz, R.G.; Cedergreen, N. Parthenin hormesis in plants depends on growth conditions. Environ. Exp. Bot. 2010, 69, 293–301. [Google Scholar] [CrossRef]
- Bjergager, M.-B.A.; Hanson, M.L.; Solomon, K.R.; Cedergreen, N. Synergy between prochloraz and esfenvalerate in Daphnia magna from acute and subchronic exposures in the laboratory and microcosms. Aquat. Toxicol. 2012, 110–111, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Beckon, W.N.; Parkins, C.; Maximovich, A.; Beckon, A.V. A general approach to modeling biphasic relationships. Environ. Sci. Technol. 2008, 42, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Qu, R. JSFit: A method for the fitting and prediction of J- and S-shaped concentration–response curves. RSC Adv. 2018, 8, 6572–6580. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.Q.; Liu, S.S.; Wang, Z.J.; Li, K.; Qu, R. Commercial personal care product mixtures exhibit hormetic concentration-responses to Vibrio qinghaiensis sp.-Q67. Ecotox. Environ. Saf. 2018, 162, 304–311. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J. mixtox: An R package for mixture toxicity assessment. R J. 2016, 8, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short, G.F., III; Staunton, J.E.; Jin, X.; et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef]
- Kunz, P.Y.; Fent, K. Estrogenic activity of ternary UV filter mixtures in fish (Pimephales promelas) - An analysis with nonlinear isobolograms. Toxicol. Appl. Pharmacol. 2009, 234, 77–88. [Google Scholar] [CrossRef]
- Ge, H.L.; Tao, S.S.; Zhou, M.; Han, B.J.; Yuan, H.Q. Integrative assessment of mixture toxicity of three ionic liquids on acetylcholinesterase using a progressive approach from 1D point, 2D curve, to 3D surface. Int. J. Mol. Sci. 2019, 20, 5330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Liu, S.S.; Song, X.Q.; Ge, H.L. Prediction for the mixture toxicity of six organophosphorus pesticides to the luminescent bacterium Q67. Ecotox. Environ. Saf. 2008, 71, 880–888. [Google Scholar] [CrossRef]
- Zhu, X.W.; Liu, S.S.; Ge, H.L.; Liu, Y. Comparison between two confidence intervals of dose-response relationships. China Environ. Sci. 2009, 29, 113–117. [Google Scholar]
- Dou, R.N.; Liu, S.S.; Mo, L.Y.; Liu, H.L.; Deng, F.C. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos. Environ. Sci. Pollut. Res. 2011, 18, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Johnson, E.R. Analysis of joint action of insecticides against house flies. J. Econ. Entomol. 1960, 53, 887–892. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, W.; Hu, H.; Ma, X.; Li, Q.; Song, X.; Ren, X.; Ma, Y. Joint toxicity of methoxyfenozide and lufenuron on larvae of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 2019, 22, 795–801. [Google Scholar] [CrossRef]
CTCC | OTCC | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |
---|---|---|---|---|---|---|---|---|---|
C0 | 1.28 × 10−3 | 1.22 × 10−3 | 1.28 × 10−3 | 1.27 × 10−3 | 1.26 × 10−3 | 1.25 × 10−3 | 1.25 × 10−3 | 1.24 × 10−3 | 1.23 × 10−3 |
Molar Ratio (CTCC:OTCC) | 12:1 | 10:3 | 8:5 | 1:1 | 5:8 | 3:10 | 1:12 | ||
d | −0.8941 | −0.8026 | |||||||
k | 6.634 × 10−6 | 8.775 × 10−6 | |||||||
R2 (Hill) | 0.966 | 0.954 | |||||||
RMSE (Hill) | 0.031 | 0.035 | |||||||
m | −0.4371 | −80.26 | −0.4783 | −0.3467 | −0.3678 | −0.3967 | −0.5370 | −1.196 | −76.32 |
a | 1.683 × 10−6 | −1.791 × 10−5 | 2.085 × 10−6 | 2.240 × 10−6 | 2.658 × 10−6 | 2.633 × 10−6 | 5.823 × 10−6 | −8.300 × 10−7 | −4.627 × 10−5 |
p | 5.156 × 10−5 | −1.042 × 10−3 | 5.649 × 10−5 | 6.923 × 10−5 | 8.129 × 10−5 | 9.964 × 10−5 | 1.241 × 10−4 | 8.442 × 10−5 | −1.064 × 10−3 |
b | 531630 | 120853 | 553767 | 852676 | 1064074 | 1326084 | 196214 | 182580 | 43150 |
q | 28869 | 1669 | 25904 | 29086 | 28456 | 15435 | 8527 | 2411 | 1576 |
R2 (BP) | 0.999 | 0.985 | 0.997 | 0.992 | 0.994 | 0.998 | 0.996 | 0.975 | 0.914 |
RMSE (BP) | 0.022 | 0.049 | 0.034 | 0.058 | 0.048 | 0.028 | 0.033 | 0.062 | 0.112 |
ECm | 5.75 × 10−6 | 1.24 × 10−5 | 6.00 × 10−6 | 6.00 × 10−6 | 5.50 × 10−6 | 4.75 × 10−6 | 1.55 × 10−5 | 1.15 × 10−5 | 2.70 × 10−5 |
Em/% | −36.9 | −37.1 | −40.6 | −32.7 | −35.8 | −35.0 | −36.8 | −31.0 | −39.6 |
ECm,SCA | 4.94 × 10−6 | 5.28 × 10−6 | 5.68 × 10−6 | 6.02 × 10−6 | 6.40 × 10−6 | 6.97 × 10−6 | 7.72 × 10−6 | ||
Em,SCA/% | −37.5 | −37.6 | −37.8 | −37.9 | −38.0 | −38.2 | −38.5 | ||
ECCP | 3.01 × 10−6 | 1.97 × 10−5 | 1.18 × 10−5 | 1.82 × 10−5 | 1.32 × 10−5 | 3.40 × 10−5 | 2.05 × 10−5 | ||
ECP/% | −30.1L | −29.8R | −35.3R | −32.3R | −35.5L | −25.0R | −33.8L | ||
EC80 | 7.93 × 10−5 | 5.20 × 10−4 | 8.83 × 10−5 | 9.73 × 10−5 | 1.10 × 10−4 | 1.52 × 10−4 | 2.24 × 10−4 | 4.99 × 10−4 | 5.80 × 10−4 |
EC50 | 6.11 × 10−5 | 2.81 × 10−4 | 7.13 × 10−5 | 7.72 × 10−5 | 9.02 × 10−5 | 1.16 × 10−4 | 1.61 × 10−4 | 3.04 × 10−4 | 3.24 × 10−4 |
EC20 | 4.81 × 10−5 | 1.58 × 10−4 | 5.35 × 10−5 | 6.29 × 10−5 | 7.52 × 10−5 | 9.07 × 10−5 | 1.19 × 10−4 | 1.84 × 10−4 | 1.93 × 10−4 |
EC0 | 3.89 × 10−5 | 9.90 × 10−5 | 4.41 × 10−5 | 5.31 × 10−5 | 6.55 × 10−5 | 7.27 × 10−5 | 9.16 × 10−5 | 1.16 × 10−4 | 1.30 × 10−4 |
EC−20R | 2.70 × 10−5 | 5.09 × 10−5 | 3.16 × 10−5 | 3.72 × 10−5 | 5.04 × 10−5 | 4.81 × 10−5 | 5.88 × 10−5 | 5.06 × 10−5 | 7.93 × 10−5 |
EC−30R | 1.77 × 10−5 | 2.97 × 10−5 | 2.30 × 10−5 | 1.93 × 10−5 | 3.58 × 10−5 | 2.64 × 10−5 | 3.71 × 10−5 | 1.71 × 10−5 | 5.63 × 10−5 |
EC−30L | 2.88 × 10−6 | 5.28 × 10−6 | 2.95 × 10−6 | 3.52 × 10−6 | 3.42 × 10−6 | 3.38 × 10−6 | 9.44 × 10−6 | 8.28 × 10−6 | 1.24 × 10−5 |
EC−20L | 1.93 × 10−6 | 2.98 × 10−6 | 2.18 × 10−6 | 2.50 × 10−6 | 2.76 × 10−6 | 2.78 × 10−6 | 7.03 × 10−6 | 4.00 × 10−6 | 7.89 × 10−6 |
EC−10L | 1.14 × 10−6 | 1.64 × 10−6 | 1.49 × 10−6 | 1.87 × 10−6 | 2.27 × 10−6 | 2.43 × 10−6 | 5.24 × 10−6 | 2.41 × 10−6 | 4.98 × 10−6 |
Mixtures | EC80 | EC50 | EC20 | EC0 | EC−20R | EC−30R | EC−30L | EC−20L | EC−10L | |
---|---|---|---|---|---|---|---|---|---|---|
CTC | 96 | 91 | 95 | 93 | 89 | 79 | 101 | 91 | 78 | |
CTCUL | 100 | 100 | 104 | 103 | 115 | 178 | 131 | 123 | 173 | |
CTCLL | 81 | 84 | 90 | 85 | 73 | 61 | 61 | 68 | 55 | |
M1 | Interaction | ADD | ADD | ADD | ADD | ADD | ADD | ADD | ADD | ADD |
CTC | 101 | 97 | 91 | 85 | 81 | 101 | 91 | 84 | 66 | |
CTCUL | 114 | 105 | 105 | 110 | NA | NA | 155 | 149 | NA | |
CTCLL | 72 | 85 | 78 | 72 | 62 | 47 | NA | NA | 41 | |
M2 | Interaction | ADD | ADD | ADD | ADD | ADD | ADD | ADD | ADD | ANT |
CTC | 107 | 97 | 87 | 78 | 65 | 59 | 102 | 81 | 57 | |
CTCUL | 113 | 106 | 91 | 91 | 108 | NA | 135 | 113 | NA | |
CTCLL | 84 | 86 | 83 | 71 | 54 | 39 | NA | 50 | 43 | |
M3 | Interaction | ADD | ADD | ANT | ANT | ADD | ANT | ADD | ADD | ANT |
CTC | 90 | 86 | 81 | 77 | 73 | 84 | 110 | 84 | 55 | |
CTCUL | 97 | 89 | 88 | 87 | 100 | NA | 128 | 92 | 70 | |
CTCLL | 75 | 78 | 75 | 71 | 60 | 53 | NA | 74 | 48 | |
M4 | Interaction | ANT | ANT | ANT | ANT | ADD | ADD | ADD | ANT | ANT |
CTC | 74 | 73 | 71 | 68 | 65 | 64 | 42 | 35 | 27 | |
CTCUL | 79 | 80 | 78 | 80 | 99 | NA | 55 | 45 | 39 | |
CTCLL | 60 | 64 | 64 | 59 | 52 | 42 | NA | 26 | 20 | |
M5 | Interaction | ANT | ANT | ANT | ANT | ANT | ANT | ANT | ANT | ANT |
CTC | 46 | 50 | 56 | 63 | 83 | 150 | 53 | 66 | 62 | |
CTCUL | 61 | 65 | 79 | 113 | NA | NA | 147 | 144 | 179 | |
CTCLL | 33 | 38 | 42 | 42 | 41 | 37 | NA | NA | 26 | |
M6 | Interaction | ANT | ANT | ANT | ADD | ADD | ADD | ADD | ADD | ADD |
CTC | 63 | 68 | 70 | 68 | 60 | 50 | 40 | 36 | 32 | |
CTCUL | 109 | 111 | 122 | 151 | NA | NA | 141 | 177 | NA | |
CTCLL | 39 | 36 | 41 | 39 | 30 | 22 | NA | NA | NA | |
M7 | Interaction | ADD | ADD | ADD | ADD | ANT | ANT | ADD | ADD | ANT |
Chemicals | Abbreviation | CAS No. | Molecular Structure | Purity | Molecular Weight |
---|---|---|---|---|---|
Chlortetracycline hydrochloride | CTCC | 64-72-2 | 94.6% | 515.34 | |
Oxytetracycline hydrochloride | OTCC | 2058-46-0 | 95.6% | 496.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Zhou, M.; Lv, D.; Wang, M.; Xie, D.; Yang, X.; Dong, C.; Li, S.; Lin, P. Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. Int. J. Mol. Sci. 2020, 21, 481. https://doi.org/10.3390/ijms21020481
Ge H, Zhou M, Lv D, Wang M, Xie D, Yang X, Dong C, Li S, Lin P. Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. International Journal of Molecular Sciences. 2020; 21(2):481. https://doi.org/10.3390/ijms21020481
Chicago/Turabian StyleGe, Huilin, Min Zhou, Daizhu Lv, Mingyue Wang, Defang Xie, Xinfeng Yang, Cunzhu Dong, Shuhuai Li, and Peng Lin. 2020. "Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri" International Journal of Molecular Sciences 21, no. 2: 481. https://doi.org/10.3390/ijms21020481
APA StyleGe, H., Zhou, M., Lv, D., Wang, M., Xie, D., Yang, X., Dong, C., Li, S., & Lin, P. (2020). Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. International Journal of Molecular Sciences, 21(2), 481. https://doi.org/10.3390/ijms21020481