Identification of (Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material and Insects
3.3. Extraction and Isolation
3.4. Structure Elucidations of Alkenes
3.5. Preparation of Alkenes
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EAG | Electroantennography |
GC | Gas chromatography |
EAD | Electroantennographic detection |
SAD | Stearoyl-acyl carrier protein desaturase |
ACP | Acyl-carrier protein |
EIMS | Electron impact mass spectrometry |
GCMS | Gas chromatography mass spectrometry |
NMR | Nuclear magnetic resonance |
FID | Flame ionization detector |
HPLC | High-pressure liquid chromatography |
SPME | Solid-phase microextraction |
DVB | Divinyl benzene |
CAR | Carboxen |
PDMS | Polydimethylsiloxane |
DMDS | Dimethyl disulphide |
References
- Correvon, H.; Pouyanne, M.A. Un curieux cas de mimétisme chez les Ophrydées. Journal de la Société Naturelle Horticole de France 1916, 4, 29–47. [Google Scholar]
- Coleman, E. Pollination of the orchid Cryptostylis leptochila. Vic. Nat. 1927, 44, 20–23. [Google Scholar]
- Coleman, E. Pollination of an Australian orchid by the male ichneumonid Lissopimpla semipunctata Kirby. Trans. R. Entomol. Soc. Lond. 1929, 76, 533–539. [Google Scholar] [CrossRef]
- Bohman, B.; Flematti, G.R.; Barrow, R.A.; Pichersky, E.; Peakall, R. Pollination by sexual deception—It takes chemistry to work. Curr. Opin. Plant Biol. 2016, 32, 37–46. [Google Scholar] [CrossRef]
- Gaskett, A.C. Orchid pollination by sexual deception: Pollinator perspectives. Biol. Rev. 2011, 86, 33–75. [Google Scholar] [CrossRef]
- Phillips, R.D.; Scaccabarozzi, D.; Retter, B.A.; Hayes, C.; Brown, G.R.; Dixon, K.W.; Peakall, R. Caught in the act: Pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Ann. Bot. 2014, 113, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.G.; Johnson, S.D. Floral mimicry enhances pollen export: The evolution of pollination by sexual deceit outside of the Orchidaceae. Am. Nat. 2010, 176, E143–E151. [Google Scholar] [CrossRef]
- Vereecken, N.J.; Wilson, C.A.; Hötling, S.; Schulz, S.; Banketov, S.A.; Mardulyn, P. Pre-adaptations and the evolution of pollination by sexual deception: Cope’s rule of specialization revisited. Proc. R. Soc. B Biol. Sci. 2012, 279, 4786–4794. [Google Scholar] [CrossRef] [Green Version]
- Kullenberg, B. On the scents and colours of Ophrys flowers and their specific pollinators among the aculeate Hymenoptera. Svensk Botanisk Tidskrift 1956, 50, 25–46. [Google Scholar]
- Kullenberg, B. Studies in Ophrys pollination. Zoologiska Bidrag Från Uppsala 1961, 34, 1–340. [Google Scholar]
- Ågren, L.; Borg-Karlson, A.-K. Responses of Argogorytes (Hymenoptera: Sphecidae) males to odor signals from Ophrys insectifera (Orchidadeae). Preliminary EAG and chemical investigation. Nova Acta Regiae Soc. Sci. Ups. C Bot. Gen. Geol. Phys. Geogr. Palaeontol. Zool. 1984, 3, 111–117. [Google Scholar]
- Borg-Karlson, A.-K. Chemical basis for the relationship between Ophrys orchids and their pollinators I. Volatile compounds of Ophrys lutea and O. fusca as insect mimetic attractants/excitants. Chem. Scr. 1985, 25, 283–294. [Google Scholar]
- Borg-Karlson, A.K.; Tengö, J. Odor mimetism? J. Chem. Ecol. 1986, 12, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Erdmann, D.; Francke, W. Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. Sphegodes. J. Chem. Ecol. 1997, 23, 2881–2895. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Orchid pollination by sexual swindle. Nature 1999, 399, 421. [Google Scholar] [CrossRef]
- Mant, J.; Brändli, C.; Vereecken, N.J.; Schulz, C.M.; Francke, W.; Schiestl, F.P. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J. Chem. Ecol. 2005, 31, 1765–1787. [Google Scholar] [CrossRef] [PubMed]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Ibarra, F.; Francke, W. Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Schiestl, F.P.; Peakall, R.; Mant, J.G.; Ibarra, F.; Schulz, C.; Franke, S.; Francke, W. The chemistry of sexual deception in an orchid-wasp pollination system. Science 2003, 302, 437–438. [Google Scholar] [CrossRef]
- Bohman, B.; Jeffares, L.; Flematti, G.; Byrne, L.T.; Skelton, B.W.; Philips, R.D.; Dixon, K.W.; Peakall, R.; Barrow, R.A. Discovery of tetrasubstituted pyrazines as semiochemicals in a sexually deceptive orchid. J. Nat. Prod. 2012, 75, 1589–1594. [Google Scholar] [CrossRef]
- Bohman, B.; Jeffares, L.; Flematti, G.; Phillips, R.D.; Dixon, K.W.; Peakall, R.; Barrow, R.A. The discovery of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: A semiochemical in orchid pollination. Org. Lett. 2012, 14, 2576–2578. [Google Scholar] [CrossRef]
- Bohman, B.; Phillips, R.D.; Menz, M.H.M.; Berntsson, B.W.; Flematti, G.R.; Barrow, R.A.; Dixon, K.W.; Peakall, R. Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: Implications for the evolution of sexual deception. New Phytol. 2014, 203, 939–952. [Google Scholar] [CrossRef] [PubMed]
- Bohman, B.; Tan, M.; Phillips, R.; Scaffidi, A.; Sobolev, A.; Moggach, S.; Flematti, G.; Peakall, R. A specific blend of drakolide and hydroxymethylpyrazines—An unusual pollinator sexual attractant used by the endangered orchid Drakaea micrantha. Angew. Chem. Int. Ed. 2020, 59, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Bohman, B.; Phillips, R.D.; Flematti, G.R.; Barrow, R.A.; Peakall, R. The spider orchid Caladenia crebra produces sulfurous pheromone mimics to attract its male wasp pollinator. Angew. Chem. 2017, 56, 8455–8458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohman, B.; Phillips, R.D.; Flematti, G.R.; Peakall, R. (Methylthio)phenol semiochemicals are exploited by deceptive orchids as sexual attractants for Campylothynnus thynnine wasps. Fitoterapia 2018, 126, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Bohman, B.; Wong, D.C.J.; Rodriguez-Delgado, C.; Scaffidi, A.; Flematti, G.R.; Phillips, R.D.; Pichersky, E.; Peakall, R. Complex sexual deception in an orchid is achieved by co-opting two independent biosynthetic pathways for pollinator attraction. Curr. Biol. 2017, 27, 1867–1877.e5. [Google Scholar] [CrossRef] [Green Version]
- Bohman, B.; Weinstein, A.M.; Phillips, R.D.; Peakall, R.; Flematti, G.R. 2-(Tetrahydrofuran-2-yl)acetic acid and ester derivatives as long-range pollinator attractants in the sexually deceptive orchid Cryptostylis ovata. J. Nat. Prod. 2019, 82, 1107–1113. [Google Scholar] [CrossRef]
- Schlüter, P.M.; Schiestl, F.P. Molecular mechanisms of floral mimicry in orchids. Trends Plant Sci. 2008, 13, 228–235. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, P.M.; Xu, S.; Gagliardini, V.; Whittle, E.; Shanklin, J.; Grossniklaus, U.; Schiestl, F.P. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. Proc. Natl. Acad. Sci. USA 2011, 108, 5696–5701. [Google Scholar] [CrossRef] [Green Version]
- Sedeek, K.E.M.; Qi, W.; Schauer, M.A.; Gupta, A.K.; Poveda, L.; Xu, S.; Liu, Z.-J.; Grossniklaus, U.; Schiestl, F.P.; Schlüter, P.M. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids. PLoS ONE 2013, 8, e64621. [Google Scholar] [CrossRef]
- Xu, S.; Schlüter, P.M.; Grossniklaus, U.; Schiestl, F.P. The genetic basis of pollinator adaptation in a sexually deceptive orchid. PLOS Genet. 2012, 8, e1002889. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, K.E.; Whittle, E.; Guthörl, D.; Grossniklaus, U.; Shanklin, J.; Schlüter, P.M. Amino acid change in an orchid desaturase enables mimicry of the pollinator’s sex pheromone. Curr. Biol. 2016, 26, 1505–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitkopf, H.; Onstein, R.E.; Cafasso, D.; Schlüter, P.M.; Cozzolino, S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. New Phytol. 2015, 207, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Devey, D.S.; Bateman, R.M.; Fay, M.F.; Hawkins, J.A. Friends or relatives? Phylogenetics and species delimitation in the controversial European orchid genus Ophrys. Ann. Bot. 2008, 101, 385–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyteca, D.; Baguette, M. Ophrys (Orchidaceae) systematics—When molecular phylogenetics, morphology and biology reconcile. Berichte aus den Arbeitskreisen Heimische Ochideen 2017, 34, 37–103. [Google Scholar]
- Bateman, R.M. Two bees or not two bees? An overview of Ophrys systematics. Berichte aus den Arbeitskreisen Heimische Ochideen 2018, 35, 5–46. [Google Scholar]
- Piñeiro Fernández, L.; Byers, K.J.; Cai, J.; Sedeek, K.E.; Kellenberger, R.T.; Russo, A.; Qi, W.; Aquino Fournier, C.; Schlüter, P.M. A phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding european orchids, Ophrys and Gymnadenia. Front. Plant Sci. 2019, 10, 1553. [Google Scholar] [CrossRef]
- Borg-Karlson, A.-K. Chemical basis for the relationship between Ophrys orchids and their pollinators III. Volatile compounds of species in the Ophrys sections Fuciflorae and Bombyliflorae as insect mimetic attractants/excitants. Chem. Scr. 1987, 27, 313–325. [Google Scholar]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A 2000, 186, 567–574. [Google Scholar] [CrossRef]
- Bohman, B.; Peakall, R. Pyrazines attract Catocheilus thynnine wasps. Insects 2014, 5, 474–487. [Google Scholar] [CrossRef]
- Buser, H.R.; Arn, H.; Guerin, P.; Rauscher, S. Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal. Chem. 1983, 55, 818–822. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Ohshima, M.; Sato, M.; Kurosa, K.; Matsuyama, S.; Suzuki, T. Chemical ecology of astigmatid mites Xl Identification of the alarm pheromone and new C17 hydrocarbons from Tortonia sp., a pest attacking the nest of Osmia cornifrons. Appl. Entomol. Zool. 1995, 30, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Ko, E.J.; Savage, G.P.; Williams, C.M.; Tsanaktsidis, J. Reducing the cost, smell, and toxicity of the Barton reductive decarboxylation: Chloroform as the hydrogen atom source. Org. Lett. 2011, 13, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
- Cahiez, G.; Gager, O.; Buendia, J. Copper-catalyzed cross-coupling of alkyl and aryl grignard reagents with alkynyl halides. Angew. Chem. Int. Ed. 2010, 49, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Cross-coupling reaction of thermally stable titanium (ii)-alkyne complexes with aryl halides catalysed by a nickel complex. Chem. Commun. 2003, 2820–2821. [Google Scholar] [CrossRef] [PubMed]
Argogorytes mystaceus visiting Ophrys insectifera | Compound | Abundance in O. insectifera | Abundance in A. fargeii (Female) | EAD-Activity |
1 | ✔✔ | ✔✔ | ✔✔ | |
2 | ✔ | ✔✔ | ✔ | |
3 | – | ✔ | (✔) | |
4 | – | ✔ | (✔) | |
5 | – | ✔✔ | (✔) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohman, B.; Weinstein, A.M.; Mozuraitis, R.; Flematti, G.R.; Borg-Karlson, A.-K. Identification of (Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator. Int. J. Mol. Sci. 2020, 21, 620. https://doi.org/10.3390/ijms21020620
Bohman B, Weinstein AM, Mozuraitis R, Flematti GR, Borg-Karlson A-K. Identification of (Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator. International Journal of Molecular Sciences. 2020; 21(2):620. https://doi.org/10.3390/ijms21020620
Chicago/Turabian StyleBohman, Björn, Alyssa M. Weinstein, Raimondas Mozuraitis, Gavin R. Flematti, and Anna-Karin Borg-Karlson. 2020. "Identification of (Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator" International Journal of Molecular Sciences 21, no. 2: 620. https://doi.org/10.3390/ijms21020620
APA StyleBohman, B., Weinstein, A. M., Mozuraitis, R., Flematti, G. R., & Borg-Karlson, A. -K. (2020). Identification of (Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator. International Journal of Molecular Sciences, 21(2), 620. https://doi.org/10.3390/ijms21020620