Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases
Abstract
:1. Introduction
2. The Phenotypes of TFIIH Mutants in Drosophila and Their Relationships with Human Syndromes
3. Involvement of TFIIH in Cell-Cycle Control, Chromosome Instability and Cancer in Drosophila
4. Analysis of TFIIH Complex Dynamics at the Onset of Transcription at the Mid-Blastula Transition
5. Concluding Remarks and Perspectives
Funding
Conflicts of Interest
References
- Cramer, P. Organization and regulation of gene transcription. Nature 2019, 573, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Schilbach, S.; Hantsche, M.; Tegunov, D.; Dienemann, C.; Wigge, C.; Urlaub, H.; Cramer, P. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017, 551, 204–209. [Google Scholar] [CrossRef]
- Nogales, E.; Louder, R.K.; He, Y. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Annu. Rev. Biophys. 2017, 2, 59–83. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.M.; Liang, Y.; Leggett, A.; Park, W.D.; Li, L.; Mills, C.E.; Elsarrag, S.Z.; Ficarro, S.B.; Zhang, T.; Düster, R.; et al. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chem. Biol. 2019, 26, 792–803. [Google Scholar] [CrossRef]
- Greber, B.; Toso, D.B.; Fang, J.; Nogales, E. The complete structure of the human TFIIH core complex. Elife 2019, 12, 8. [Google Scholar] [CrossRef]
- Fisher, R.P. Cdk7: A kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 2019, 10, 47–56. [Google Scholar] [CrossRef]
- Compe, E.; Egly, J.M. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond. Annu. Rev. Biochem. 2016, 85, 265–290. [Google Scholar] [CrossRef] [PubMed]
- Dienemann, C.; Schwalb, B.; Schilbach, S.; Cramer, P. Promoter Distortion and Opening in the RNA Polymerase II Cleft. Mol. Cell 2019, 73, 97–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devos, M.; Mommaerts, E.; Migeot, V.; Van Bakel, H.; Hermand, D. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities. Mol. Cell. Biol. 2015, 35, 1480–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, C.R.; Cho, E.J.; Keogh, M.C.; Moore, C.L.; Greenleaf, A.L.; Buratowski, S. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol. Cell. Biol. 2000, 20, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimel, J.K.; Taatjes, D.J. The essential and multifunctional TFIIH complex. Protein Sci. 2018, 27, 1018–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titov, D.V.; Gilman, B.; He, Q.L.; Bhat, S.; Low, W.K.; Dang, Y.; Smeaton, M.; Demain, A.L.; Miller, P.S.; Kugel, J.F.; et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat. Chem. Biol. 2011, 7, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coin, F.; Egly, J.M. Revisiting the Function of CDK7 in Transcription by Virtue of a Recently Described TFIIH Kinase Inhibitor. Mol. Cell 2015, 59, 513–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chipumuro, E.; Marco, E.; Christensen, C.L.; Kwiatkowski, N.; Zhang, T.; Hatheway, C.M.; Abraham, B.J.; Sharma, B.; Yeung, C.; Altabef, A.; et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014, 159, 1126–1139. [Google Scholar] [CrossRef] [Green Version]
- Villicaña, C.; Cruz, G.; Zurita, M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int. 2014, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Zurita, M.; Cruz-Becerra, G. TFIIH: New Discoveries Regarding its Mechanisms and Impact on Cancer Treatment. J. Cancer 2016, 7, 2258–2265. [Google Scholar] [CrossRef] [Green Version]
- Houten, B.V.; Kuper, J.; Kisker, C. Role of XPD in cellular functions: To TFIIH and beyond. DNA Repair 2016, 44, 136–142. [Google Scholar] [CrossRef]
- Naegeli, H.; Sugasawa, K. The xeroderma pigmentosum pathway: Decision tree analysis of DNA quality. DNA Repair 2011, 10, 673–683. [Google Scholar] [CrossRef]
- Yan, C.; Dodd, T.; He, Y.; Tainer, J.A.; Tsutakawa, S.E.; Ivanov, I. Transcription preinitiation complex structure and dynamics provide insight into genetic diseases. Nat. Struct. Mol. Biol. 2019, 26, 397–406. [Google Scholar] [CrossRef]
- Orioli, D.; Compe, E.; Nardo, T.; Mura, M.; Giraudon, C.; Botta, E.; Arrigoni, L.; Peverali, F.A.; Egly, J.M.; Stefanini, M. XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression. Hum. Mol. Genet. 2013, 22, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Cruz, R.; Zadorin, A.S.; Coin, F.; Egly, J.M. Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells. Proc. Natl. Acad. Sci. USA 2013, 110, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesnikova, O.; Radu, L.; Poterszman, A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. Adv. Protein Chem. Struct. Biol. 2019, 115, 21–26. [Google Scholar]
- Giglia-Mari, G.; Coin, F.; Ranish, J.A.; Hoogstraten, D.; Theil, A.; Wijgers, N.; Jaspers, N.G.; Raams, A.; Argentini, M.; Van der Spek, P.J.; et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 2004, 36, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, M.; Botta, E.; Lanzafame, M.; Orioli, D. Trichothiodystrophy: From basic mechanisms to clinical implications. DNA Repair 2010, 9, 2–10. [Google Scholar] [CrossRef]
- Stefanini, M.; Botta, E.; Lanzafame, M.; Orioli, D. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J. Biol. Chem. 2000, 275, 2532–2538. [Google Scholar]
- Singh, A.; Compe, E.; Le May, N.; Egly, J.M. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am. J. Hum. Genet. 2015, 96, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theil, A.F.; Nonnekens, J.; Steurer, B.; Mari, P.O.; De Wit, J.; Lemaitre, C.; Marteijn, J.A.; Raams, A.; Maas, A.; Vermeij, M.; et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet. 2013, 9, e1003431. [Google Scholar] [CrossRef] [Green Version]
- Andressoo, J.O.; Weeda, G.; De Wit, J.; Mitchell, J.R.; Beems, R.B.; Van Steeg, H.; Van der Horst, G.T.; Hoeijmakers, J.H. An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol. Cell. Biol. 2009, 29, 1276–1290. [Google Scholar] [CrossRef] [Green Version]
- Andressoo, J.O.; Mitchell, J.R.; De Wit, J.; Hoogstraten, D.; Volker, M.; Toussaint, W.; Speksnijder, E.; Beems, R.B.; Van Steeg, H.; Jans, J.; et al. An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 2006, 10, 121–132. [Google Scholar] [CrossRef] [Green Version]
- De Boer, J.; De Wit, J.; Van Steeg, H.; Berg, R.J.; Morreau, H.; Visser, P.; Lehmann, A.R.; Duran, M.; Hoeijmakers, J.H.; Weeda, G. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1998, 1, 981–990. [Google Scholar] [CrossRef]
- Van de Ven, M.; Andressoo, J.O.; Van der Horst, G.T.; Hoeijmakers, J.H.; Mitchell, J.R. Effects of compound heterozygosity at the Xpd locus on cancer and ageing in mouse models. DNA Repair 2012, 11, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Mounkes, L.C.; Jones, R.S.; Liang, B.C.; Gelbart, W.; Fuller, M.T. A Drosophila model for xeroderma pigmentosum and Cockayne’s syndrome: Haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell 1992, 71, 925–937. [Google Scholar] [CrossRef]
- Mounkes, L.C.; Fuller, M.T. Molecular characterization of mutant alleles of the DNA repair/basal transcription factor haywire/ERCC3 in Drosophila. Genetics 1999, 152, 291–297. [Google Scholar] [PubMed]
- Merino, C.; Reynaud, E.; Vázquez, M.; Zurita, M. DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development. Mol. Biol. Cell 2002, 13, 3246–3256. [Google Scholar] [CrossRef] [Green Version]
- Fregoso, M.; Lainé, J.P.; Aguilar-Fuentes, J.; Mocquet, V.; Reynaud, E.; Coin, F.; Egly, J.M.; Zurita, M. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol. Cell. Biol. 2007, 27, 3640–3650. [Google Scholar] [CrossRef] [Green Version]
- Villicaña, C.; Cruz, G.; Zurita, M. The genetic depletion or the triptolide inhibition of TFIIH in p53-deficient cells induces a JNK-dependent cell death in Drosophila. J. Cell Sci. 2013, 126, 2502–2515. [Google Scholar] [CrossRef] [Green Version]
- Theil, A.F.; Hoeijmakers, J.H.; Vermeulen, W. TTDA: Big impact of a small protein. Exp. Cell Res. 2014, 329, 61–68. [Google Scholar] [CrossRef]
- Ranish, J.A.; Hahn, S.; Lu, Y.; Yi, E.C.; Li, X.J.; Eng, J.; Aebersold, R. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat. Genet. 2004, 36, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Cruz, M.; Cruz, G.; Valadez-Graham, V.; Fregoso-Lomas, M.; Villicaña, C.; Vázquez, M.; Reynaud, E.; Zurita, M. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J. Biol. Chem. 2012, 287, 33567–33580. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Becerra, G.; Juárez, M.; Valadez-Graham, V.; Zurita, M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol. 2016, 6, 160222. [Google Scholar] [CrossRef] [Green Version]
- Larochelle, S.; Pandur, J.; Fisher, R.P.; Salz, H.K.; Suter, B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 1998, 12, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, V.; Raisin, S.; Léopold, P. Dominant-negative mutants reveal a role for the Cdk7 kinase at the mid-blastula transition in Drosophila embryos. EMBO J. 2000, 19, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Larochelle, S.; Li, X.; Suter, B. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 2003, 424, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Urwyler, O.; Suter, B. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet. 2010, 6, e1000876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Tan, L.J.; Andoh, D.; Narita, T.; Seki, M.; Hirano, Y.; Narita, K.; Kuraoka, I.; Hiraoka, Y.; Tanaka, K. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol. Cell 2010, 39, 632–640. [Google Scholar] [CrossRef]
- Yeom, E.; Hong, S.T.; Choi, K.W. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene 2015, 34, 2777–2789. [Google Scholar] [CrossRef]
- Nag, R.N.; Niggli, S.; Sousa-Guimarães, S.; Vazquez-Pianzola, P.; Suter, B. Mms19 is a mitotic gene that permits Cdk7 to be fully active as a Cdk-activating kinase. Development 2018, 145, dev156802. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Becerra, G.; Valerio-Cabrera, S.; Juárez, M.; Bucio-Mendez, A.; Zurita, M. TFIIH localization is highly dynamic during zygotic genome activation in Drosophila, and its depletion causes catastrophic mitosis. J. Cell. Sci. 2018, 131, jcs211631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stettler, K.; Li, X.; Sandrock, B.; Braga-Lagache, S.; Heller, M.; Dümbgen, L.; Suter, B. A Drosophila XPD model links cell cycle coordination with neuro-development and suggests links to cancer. Dis. Models Mech. 2015, 8, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Levens, D. Tuning the MYC response. Elife 2016, 5, e18871. [Google Scholar] [CrossRef]
- Zaytseva, O.; Quinn, L.M. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes 2017, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.M.; Dickins, R.A.; Coombe, M.; Hime, G.R.; Bowtell, D.D.; Richardson, H. Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development 2004, 131, 1411–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E.; Mitchell, N.C.; Zaytseva, O.; Chahal, A.; Mendis, P.; Cartier-Michaud, A.; Parsons, L.M.; Poortinga, G.; Levens, D.L.; Hannan, R.D.; et al. Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nat. Commun. 2015, 6, 7404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noel, P.; Von Hoff, D.D.; Saluja, A.K.; Velagapudi, M.; Borazanci, E.; Han, H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol. Sci. 2019, 40, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, N.; Zhang, T.; Rahl, P.B.; Abraham, B.J.; Reddy, J.; Ficarro, S.B.; Dastur, A.; Amzallag, A.; Ramaswamy, S.; Tesar, B.; et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014, 511, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, C.L.; Kwiatkowski, N.; Abraham, B.J.; Carretero, J.; Al-Shahrour, F.; Zhang, T.; Chipumuro, E.; Herter-Sprie, G.S.; Akbay, E.A.; Altabef, A.; et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 2014, 26, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Jonkers, I.; Kwak, H.; Lis, J.T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 2014, 3, e02407. [Google Scholar] [CrossRef]
- Shao, W.; Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 2017, 49, 1045–1051. [Google Scholar] [CrossRef]
- Hariharan, I.K.; Bilder, D. Regulation of imaginal disc growth by tumor suppressor genes in Drosophila. Annu. Rev. Genet. 2006, 40, 335–361. [Google Scholar] [CrossRef]
- Vastenhouw, N.L.; Cao, W.X.; Lipshitz, H.D. The maternal-to-zygotic transition revisited. Development 2019, 146, dev161471. [Google Scholar] [CrossRef] [Green Version]
- Hamm, D.C.; Harrison, M.M. Regulatory principles governing the maternal-to- zygotic transition: Insights from Drosophila melanogaster. Open Biol. 2018, 8, 180183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Johnston, J.; Shao, W.; Meier, S.; Staber, C.; Zeitlinger, J. A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife 2013, 13, e00861. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.N.; Bondra, E.R.; Moshe, A.; Villalta, J.E.; Lieb, J.D.; Kaplan, T.; McKay, D.J.; Harrison, M.M. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res. 2015, 25, 1715–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lindquist, S. Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response. Development 1998, 125, 4841–4850. [Google Scholar] [PubMed]
- Aguilar-Fuentes, J.; Valadez-Graham, V.; Reynaud, E.; Zurita, M. TFIIH trafficking and its nuclear assembly during early Drosophila embryo development. J. Cell. Sci. 2006, 119, 3866–3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zurita, M.; Murillo-Maldonado, J.M. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int. J. Mol. Sci. 2020, 21, 630. https://doi.org/10.3390/ijms21020630
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. International Journal of Molecular Sciences. 2020; 21(2):630. https://doi.org/10.3390/ijms21020630
Chicago/Turabian StyleZurita, Mario, and Juan Manuel Murillo-Maldonado. 2020. "Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases" International Journal of Molecular Sciences 21, no. 2: 630. https://doi.org/10.3390/ijms21020630
APA StyleZurita, M., & Murillo-Maldonado, J. M. (2020). Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. International Journal of Molecular Sciences, 21(2), 630. https://doi.org/10.3390/ijms21020630