The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia
Abstract
:1. Introduction
2. Results
2.1. Hypercholesterolemia Aggravates Renal Function Through Increased Kidney Lipid Accumulation, Xanthine Oxidase Activity, and Oxidative Stress
2.2. Effects of Hypercholesterolemia on Genes Related to Cellular Cholesterol Transport and Synthesis in the Unilateral Kidney
2.3. Effects of LDL on Cholesterol Metabolism and Oxidative Stress in HK-2 Cells
2.4. XO Inhibition Reduces Hypercholesterolemia-Associated Kidney Inflammation and Fibrosis in CKD Mice
3. Discussion
4. Materials and Methods
4.1. Animals, Diets, and Specimen Collections
4.2. Serum Chemistry
4.3. Histopathology
4.4. Oil Red O Staining
4.5. Cell Treatments
4.6. Hydrogen Peroxide Determination
4.7. Intracellular ROS Measurement
4.8. Determination of Intracellular Total Cholesterol
4.9. Transfection of HK-2 with XDH siRNA
4.10. Quantitative Real-Time Polymerase Chain Reactions
4.11. Immunoblot Analysis
4.12. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABCA1 | ATP Binding Cassette Subfamily A Member 1 |
ABCG1 | ATP-binding cassette super-family G Member 1 |
ApoE KO | Apolipoprotein E Knockout |
BUN | Blood urea nitrogen |
CD68 | Cluster of Differentiation 68 |
CKD | Chronic kidney disease |
DCFDA | Dichlorodihydrofluorescein diacetate |
HC | High-cholesterol |
HMGCR | 3-Hydroxy-3-Methylglutaryl-CoA Reductase |
Il-1 | Interleukin-1 |
LCAT | Lecithin-cholesterol acyltransferase |
LDL | Low-density lipoprotein |
LDLR | Low density lipoprotein receptor |
LXRα | Liver X receptor α |
MSR1 | Macrophage scavenger receptor types I |
NR1H3 | Nuclear receptor subfamily 1 group H member 3 |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-κB | Nuclear Factor-kappaB |
NLRP3 | NOD-, LRR- and pyrin domain-containing protein 3 |
NOX | NADPH oxidase |
PAS | Periodic acid-Schiff |
ROS | Reactive oxygen species |
siXDH | Small interfering RNA against XDH |
SCARB1 | Scavenger receptor class B type 1 |
SREBF | Sterol regulatory element binding transcription factor |
TC | Total cholesterol |
TG | Triglyceride |
TNF-α | Tumor necrosis factor α |
TP | Topiroxostat |
XO | Xanthine oxidase |
α-SMA | Alpha-smooth muscle actin |
References
- Gelber, R.P.; Kurth, T.; Kausz, A.T.; Manson, J.E.; Buring, J.E.; Levey, A.S.; Gaziano, J.M. Association between body mass index and CKD in apparently healthy men. Am. J. Kidney Dis. 2005, 46, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Voloshyna, I.; De Leon, J.; Miyawaki, N.; Mattana, J. Cholesterol Metabolism in CKD. Am. J. Kidney Dis. 2015, 66, 1071–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, J.E.; Reed, R.D.; Massie, A.; MacLennan, P.A.; Sawinski, D.; Kumar, V.; Mehta, S.; Mannon, R.B.; Gaston, R.; Lewis, C.E.; et al. Obesity increases the risk of end-stage renal disease among living kidney donors. Kidney Int. 2017, 91, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzaale, A.D.; Massie, A.B.; Wang, M.C.; Montgomery, R.A.; McBride, M.A.; Wainright, J.L.; Segev, D.L. Risk of end-stage renal disease following live kidney donation. JAMA 2014, 311, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Amiya, E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J. Cardiol. 2016, 8, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Bobulescu, I.A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens. 2010, 19, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, H.M.; Kim, Y.J.; Oh, E.J.; Oh, S.H.; Choi, J.Y.; Cho, J.H.; Kim, C.D.; Park, S.H.; Kim, Y.L. Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells. J. Cell Mol. Med. 2016, 20, 2160–2172. [Google Scholar] [CrossRef] [Green Version]
- Gai, Z.; Hiller, C.; Chin, S.H.; Hofstetter, L.; Stieger, B.; Konrad, D.; Kullak-Ublick, G.A. Uninephrectomy augments the effects of high fat diet induced obesity on gene expression in mouse kidney. Biochim. Biophys. Acta 2014, 1842, 1870–1878. [Google Scholar] [CrossRef] [Green Version]
- Bro, S.; Bentzon, J.F.; Falk, E.; Andersen, C.B.; Olgaard, K.; Nielsen, L.B. Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice. J. Am. Soc. Nephrol. 2003, 14, 2466–2474. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Choi, S.Y.; Choi, H.J.; Ryu, H.M.; Kim, Y.J.; Jung, H.Y.; Cho, J.H.; Kim, C.D.; Park, S.H.; Kwon, T.H.; et al. The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia. FASEB J. 2019, 33, 7301–7314. [Google Scholar] [CrossRef]
- Gwinner, W.; Scheuer, H.; Haller, H.; Brandes, R.P.; Groene, H.J. Pivotal role of xanthine oxidase in the initiation of tubulointerstitial renal injury in rats with hyperlipidemia. Kidney Int. 2006, 69, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, H.; Yang, K.; Rock, K.L. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung. Eur. J. Pharmacol. 2015, 746, 174–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 2006, 58, 87–114. [Google Scholar] [CrossRef]
- Nomura, J.; Busso, N.; Ives, A.; Matsui, C.; Tsujimoto, S.; Shirakura, T.; Tamura, M.; Kobayashi, T.; So, A.; Yamanaka, Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandona, P.; Ghanim, H.; Brooks, D.P. Antioxidant activity of carvedilol in cardiovascular disease. J. Hypertens. 2007, 25, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Pascoe, E.M.; Tiku, A.; Boudville, N.; Brown, F.G.; Cass, A.; Clarke, P.; Dalbeth, N.; Day, R.O.; de Zoysa, J.R.; et al. Effects of Allopurinol on the Progression of Chronic Kidney Disease. N. Engl. J. Med. 2020, 382, 2504–2513. [Google Scholar] [CrossRef] [PubMed]
- Janabi, M.; Yamashita, S.; Hirano, K.; Sakai, N.; Hiraoka, H.; Matsumoto, K.; Zhang, Z.; Nozaki, S.; Matsuzawa, Y. Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol. 2000, 20, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Cases, A.; Coll, E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. Suppl. 2005, 68, S87–S93. [Google Scholar] [CrossRef] [Green Version]
- Moorhead, J.; El-Nahas, M.; Chan, M.; Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 1982, 320, 1309–1311. [Google Scholar] [CrossRef]
- Scarpioni, R.; Ricardi, M.; Albertazzi, V.; Melfa, L. Treatment of dyslipidemia in chronic kidney disease: Effectiveness and safety of statins. World J. Nephrol. 2012, 1, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.S.; Machado, R.M.; Lavrador, M.S.; Quintao, E.C.R.; Moore, K.J.; Lottenberg, A.M. Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients 2018, 10, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, X.Z.; Moorhead, J.F.; Fernando, R.Y.; Wheeler, D.C.; Powis, S.H. PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J. Am. Soc. Nephrol. 2003, 14, 593–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelissen, I.C.; Harris, M.; Rye, K.A.; Quinn, C.; Brown, A.J.; Kockx, M.; Cartland, S.; Packianathan, M.; Kritharides, L.; Jessup, W. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arter. Thromb. Vasc. Biol. 2006, 26, 534–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks-Wilson, A.; Marcil, M.; Clee, S.M.; Zhang, L.-H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J.A.; Molhuizen, H.O. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 1999, 22, 337. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yancey, P.; Castro, I.; Khan, W.N.; Motojima, M.; Ichikawa, I.; Fogo, A.B.; Linton, M.F.; Fazio, S.; Kon, V. Renal dysfunction potentiates foam cell formation by repressing ABCA1. Arter. Thromb. Vasc. Biol. 2009, 29, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.; Freeman, L.; Brewer, H.B., Jr.; Santamarina-Fojo, S. Study of ABCA1 function in transgenic mice. Arter. Thromb. Vasc. Biol. 2003, 23, 965–971. [Google Scholar] [CrossRef]
- Hsieh, V.; Kim, M.J.; Gelissen, I.C.; Brown, A.J.; Sandoval, C.; Hallab, J.C.; Kockx, M.; Traini, M.; Jessup, W.; Kritharides, L. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem. 2014, 289, 7524–7536. [Google Scholar] [CrossRef] [Green Version]
- Wellington, C.L.; Walker, E.K.; Suarez, A.; Kwok, A.; Bissada, N.; Singaraja, R.; Yang, Y.-Z.; Zhang, L.-H.; James, E.; Wilson, J.E. ABCA1 mRNA and Protein Distribution Patterns Predict Multiple Different Roles and Levels of Regulation. Regulation 2002, 82, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Eom, M.; Hudkins, K.L.; Alpers, C.E. Foam cells and the pathogenesis of kidney disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 245–251. [Google Scholar] [CrossRef]
- Kushiyama, A.; Tanaka, K.; Hara, S.; Kawazu, S. Linking uric acid metabolism to diabetic complications. World J. Diabetes 2014, 5, 787–795. [Google Scholar] [CrossRef]
- Nomura, J.; Busso, N.; Ives, A.; Tsujimoto, S.; Tamura, M.; So, A.; Yamanaka, Y. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS ONE 2013, 8, e75527. [Google Scholar] [CrossRef] [PubMed]
- Klisic, A.; Kocic, G.; Kavaric, N.; Jovanovic, M.; Stanisic, V.; Ninic, A. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population. Eat. Weight Disord. 2020, 25, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.; Nomura, J.; Martinon, F.; Roger, T.; LeRoy, D.; Miner, J.N.; Simon, G.; Busso, N.; So, A. Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat. Commun. 2015, 6, 6555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, T.; Hirakawa, Y.; Nangaku, M. The role of oxidative stress and hypoxia in renal disease. Kidney Res Clin Pract. 2019, 38, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.Z.; Moorhead, J.F.; Varghese, Z. Lipid redistribution in renal dysfunction. Kidney Int. 2008, 74, 407–409. [Google Scholar] [CrossRef] [Green Version]
- Laurencikiene, J.; van Harmelen, V.; Arvidsson Nordstrom, E.; Dicker, A.; Blomqvist, L.; Naslund, E.; Langin, D.; Arner, P.; Ryden, M. NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J. Lipid Res. 2007, 48, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, W.; Li, H.; Tang, L.; Sun, H.; Liu, Q.; Zhang, L. Synergistic action of inflammation and lipid dysmetabolism on kidney damage in rats. Ren. Fail. 2018, 40, 175–182. [Google Scholar] [CrossRef]
- Mizuno, Y.; Yamamotoya, T.; Nakatsu, Y.; Ueda, K.; Matsunaga, Y.; Inoue, M.K.; Sakoda, H.; Fujishiro, M.; Ono, H.; Kikuchi, T.; et al. Xanthine Oxidase Inhibitor Febuxostat Exerts an Anti-Inflammatory Action and Protects against Diabetic Nephropathy Development in KK-Ay Obese Diabetic Mice. Int. J. Mol. Sci. 2019, 20, 4680. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y. Antioxidants in Sepsis. Korean J. Crit. Care Med. 2010, 25, 57–60. [Google Scholar] [CrossRef]
- Fu, H.; Hu, Z.; Di, X.; Zhang, Q.; Zhou, R.; Du, H. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway. Eur. J. Pharmacol. 2016, 791, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenijevic, D.; Cajot, J.-F.; Dulloo, A.G.; Montani, J.-P. Uninephrectomy in rats on a fixed food intake results in adipose tissue lipolysis implicating spleen cytokines. Front. Physiol. 2015, 6, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
Mouse Msr1 | CAC GGG ACG CTT CCA GAA T | TGG ACT GAC GAA ATC AAG GAA TT |
Mouse Scarb1 | GGC CTG TTT GTT GGG ATG AA | CGT TCC ATT TGT CCA CCA GAT |
Mouse Lcat | AGC CTT GGC TGT CTG CAT GT | CCCGAGAGAGATAAAACCATCAA |
Mouse Srebf1 | GGC TAT TCC GTG AAC ATC TCC TA | ATC CAA GGG CAT CTG AGA ACT C |
Mouse Srebf2 | GGT CCT CCA TCA ACG ACA AAA T | TAA TCA ATG GCC TTC CTC AGA AC |
Mouse Nr1h3 | GAG TGT CGA CTT CGC AAA TGC | CCT CTT CTT GCC GCT TCA GT |
Mouse Abca1 | GGC AAT GAG TGT GCC AGA GTT A | TAG TCA CAT GTG GCA CCG TTT T |
Mouse Ldlr | CCAAATGGCATCACACTAGATCTT | CCGATTGCCCCCATTG |
Mouse Hmgcr | GGG CCC CAC ATT CAC TCT T | GCC GAA GCA GCA CAT GAT CT |
Mouse Il-1β | TCG TGC TGT CGG ACC CAT AT | GGTTCTCCTTGTACAAAGCTCATG |
Mouse Nlrp3 | TCTCCCGCATCTCCATTTGTA | CGC GCG TTC CTG TCC TT |
Mous Il-18 | GACAACTTTGGCCGACTTCAC | TCCTCGAACACAGGCTGTCTT |
Mouse Acta2 | CTGACAGAGGCACCACTG | CATCTCCAGAGTCCAGCA |
Mouse Cdh | GCAGTTCTGCCAGAGAAACC | TGGATCCAAGATGGTGATGA |
Mouse Fn1 | CCA TTC TCC TTC TTC AAG TTT GC | AGG AAT GGC TGT CAG GAT GGT |
Mouse Col1 | ACA ACC GCT TTG CCA CTT CT | CGT AAG TCA CGG GCA CGT T |
Mouse Gapdh | TAA AGG GCA TCC TGG GCT ACA CT | TTA CTC CTT GGA GGC CAT GTA GG |
Human LDLR | AGT TGG CTG CGT TAA TGT GAC A | TCT CTA GCC ATG TTG CAG ACT TTG |
Human SREBF1 | GCT CCT CCA TCA ATG ACA AAA TC | TGC AGA AAG CGA ATG TAG TCG AT |
Human SREBF2 | AGG CGG ACA ACC CAT AAT ATC A | CTT GTG CAT CTT GGC GTC TGT |
Human ABCA1 | GAC ATC GTG GCG TTT TTG G | CGA GAT ATG GTC CGG ATT GC |
Human HMGCR | GGA CAG GAT GCA GCA CAG AA | GCATGGTGCAGCTGATATATAAATCT |
Human NR1H3 | CAC CTA CAT GCG TCG CAA GT | CAG GCG GAT CTG TTC TTC TGA |
Human NOX1 | TGCCTAGAAGGGCTCCAAAC | ACATTCAGCCCTAACCAAACAAC |
Human NOX2 | AGGGTCAAGAACAGGCTAAGGA | TTCTCCACCTCCAACCCTCTTT |
Human p47phox | GGCAGGACCTGTCGGAGAA | ATCGCCCCTGCCTCAATAG |
Human p22phox | ACTTTGGTGCCTACTCCATTGTG | TGTCCCCAGCGCTCCAT |
Human XDH | GAAGGCCATCTATGCATCGAA | GAAGGCCATCTATGCATCGAA |
Human GAPDH | TTCACCACCATGGAGAAGGCT | TGGTTCACACCCATGACGAAC |
Antibodies | Cat. No. | Company |
---|---|---|
LXRα | Ab176323 | abcam |
HMGCR | Ab174830 | abcam |
ABCA1 | Ab18180 | abcam |
α-SMA | Ab5694 | abcam |
Fibronectin | Ab2413 | abcam |
IL-1β | 12242 | Cell signaling |
NLRP3 | 13158 | Cell signaling |
NF-kappaB p65 | 8242S | Cell signaling |
NF-kappaBphos-p65 | 3036S | Cell signaling |
NF-kappaBp105/p50 | 3035S | Cell signaling |
GAPDH | 2118S | Cell signaling |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Oh, S.-H.; Ahn, J.-S.; Yook, J.-M.; Kim, C.-D.; Park, S.-H.; Cho, J.-H.; Kim, Y.-L. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int. J. Mol. Sci. 2020, 21, 7444. https://doi.org/10.3390/ijms21207444
Kim Y-J, Oh S-H, Ahn J-S, Yook J-M, Kim C-D, Park S-H, Cho J-H, Kim Y-L. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. International Journal of Molecular Sciences. 2020; 21(20):7444. https://doi.org/10.3390/ijms21207444
Chicago/Turabian StyleKim, You-Jin, Se-Hyun Oh, Ji-Sun Ahn, Ju-Min Yook, Chan-Duck Kim, Sun-Hee Park, Jang-Hee Cho, and Yong-Lim Kim. 2020. "The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia" International Journal of Molecular Sciences 21, no. 20: 7444. https://doi.org/10.3390/ijms21207444
APA StyleKim, Y. -J., Oh, S. -H., Ahn, J. -S., Yook, J. -M., Kim, C. -D., Park, S. -H., Cho, J. -H., & Kim, Y. -L. (2020). The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. International Journal of Molecular Sciences, 21(20), 7444. https://doi.org/10.3390/ijms21207444