Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss
Abstract
:1. Introduction
2. Results
2.1. Circadian Oscillation Was Present in the Cochlea
2.2. LL Dysregulated Cochlear Circadian Oscillation
2.3. LL Did Not Affect Baseline Auditory Thresholds and Neural Response Amplitudes
2.4. LL Did Not Affect Low-Intensity Noise-Induced Temporary Threshold Shift (TTS) and ABR Wave I Amplitudes Changes
2.5. LL Augmented High-Intensity Noise-Induced Permanent Threshold Shift (PTS) and Outer Hair Cell (OHC) Loss
2.6. LL Increased High-Intensity Noise-Induced Reduction of Synaptic Ribbons
2.7. LL Increased High-Intensity Noise-Induced 4-Hydroxynonenal (4-HNE) in OHCs
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Control and Alteration of the Light–Dark Cycle
4.3. Noise Exposure
4.4. Assessment of Auditory Brainstem Response (ABR) and Distortion Product Otoacoustic Emission (DPOAE)
4.5. Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR) Assay of mRNA Expression
4.6. Surface Preparation of the Cochlear Sensory Epithelium
4.7. Immunocytochemistry for Outer Hair Cell (OHC) Counts
4.8. Immunocytochemistry for Synaptic Ribbon Counts and 4-Hydroxynonenal (4-HNE)
4.9. Immunohistochemistry for Cryosections
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LD | light/dark |
LL | constant light |
DD | constant dark |
ZT | Zeitgeber time |
CT | circadian time |
ABR | auditory brainstem response |
DPOAE | distortion product otoacoustic emission |
TTS | temporary threshold shift |
PTS | permanent threshold shift |
OHC | outer hair cell |
IHC | inner hair cell |
SCN | suprachiasmatic nucleus |
BBN | broadband noise |
qRT-PCR | real-time quantitative polymerase chain reaction |
4-HNE | 4-hydroxynonenal |
References
- Young, M.W.; Kay, S.A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2001, 2, 702–715. [Google Scholar] [CrossRef]
- Buijs, R.M.; Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2001, 2, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre, A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002, 309, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15, R271–R277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabot, C.C.; Taylor, D.H. Circadian modulation of the rat acoustic startle response. Behav. Neurosci. 1992, 106, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Frankland, P.W.; Ralph, M.R. Circadian modulation in the rat acoustic startle circuit. Behav. Neurosci. 1995, 109, 43–48. [Google Scholar] [CrossRef]
- Yonovitz, A.; Fisch, J.E. Circadian rhythm dependent kanamycin-induced hearing loss in rodents assessed by auditory brainstem responses. Acta Otolaryngol. 1991, 111, 1006–1012. [Google Scholar] [CrossRef]
- Meltser, I.; Cederroth, C.R.; Basinou, V.; Savelyev, S.; Lundkvist, G.S.; Canlon, B. TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr. Biol. 2014, 24, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Cederroth, C.R.; Basinou, V.; Meltser, I.; Lundkvist, G.; Canlon, B. Identification of a Circadian Clock in the Inferior Colliculus and Its Dysregulation by Noise Exposure. J. Neurosci. 2016, 36, 5509–5519. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Cederroth, C.R.; Basinou, V.; Sweetapple, L.; Buijink, R.; Lundkvist, G.B.; Michel, S.; Canlon, B. Differential Phase Arrangement of Cellular Clocks along the Tonotopic Axis of the Mouse Cochlea Ex Vivo. Curr. Biol. 2017, 27, 2623–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loudon, A.S. Hearing damage and deafness: A role for the circadian clock. Curr. Biol. 2014, 24, R232–R234. [Google Scholar] [CrossRef] [Green Version]
- Basinou, V.; Park, J.S.; Cederroth, C.R.; Canlon, B. Circadian regulation of auditory function. Hear. Res. 2017, 347, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Smolensky, M.H.; Hermida, R.C.; Reinberg, A.; Sackett-Lundeen, L.; Portaluppi, F. Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol. Int. 2016, 33, 1101–1119. [Google Scholar] [CrossRef] [PubMed]
- Turek, F.W. From circadian rhythms to clock genes in depression. Int. Clin. Psychopharmacol. 2007, 22, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Marcheva, B.; Ramsey, K.M.; Buhr, E.D.; Kobayashi, Y.; Su, H.; Ko, C.H.; Ivanova, G.; Omura, C.; Mo, S.; Vitaterna, M.H.; et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.M.; Lin, S.F.; Lu, C.T.; Lin, P.M.; Yang, M.Y. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol. 2012, 33, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Portaluppi, F.; Tiseo, R.; Smolensky, M.H.; Hermida, R.C.; Ayala, D.E.; Fabbian, F. Circadian rhythms and cardiovascular health. Sleep Med. Rev. 2012, 16, 151–166. [Google Scholar] [CrossRef]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 2010, 11, 589–599. [Google Scholar] [CrossRef]
- Logan, R.W.; McClung, C.A. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2019, 20, 49–65. [Google Scholar] [CrossRef]
- Yang, C.H.; Hwang, C.F.; Lin, P.M.; Chuang, J.H.; Hsu, C.M.; Lin, S.F.; Yang, M.Y. Sleep Disturbance and Altered Expression of Circadian Clock Genes in Patients with Sudden Sensorineural Hearing Loss. Medicine 2015, 94, e978. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Schrepfer, T.; Schacht, J. Age-related hearing impairment and the triad of acquired hearing loss. Front. Cell. Neurosci. 2015, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Wang, X.; Hill, K.; Chen, J.; Lemasters, J.; Yang, S.M.; Sha, S.H. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid. Redox Signal. 2015, 22, 1308–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.; Yuan, H.; Wang, X.; Sha, S.H. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK. J. Neurosci. 2016, 36, 7497–7510. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, D.; Jiang, H.Y.; Schacht, J.; Miller, J.M. Delayed production of free radicals following noise exposure. Brain Res. 2004, 1019, 201–209. [Google Scholar] [CrossRef] [Green Version]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 2014, 15, 443–454. [Google Scholar] [CrossRef]
- Yan, L. Expression of clock genes in the suprachiasmatic nucleus: Effect of environmental lighting conditions. Rev. Endocr. Metab. Disord. 2009, 10, 301–310. [Google Scholar] [CrossRef]
- Karatsoreos, I.N.; Bhagat, S.; Bloss, E.B.; Morrison, J.H.; McEwen, B.S. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 1657–1662. [Google Scholar] [CrossRef] [Green Version]
- Hand, L.E.; Hopwood, T.W.; Dickson, S.H.; Walker, A.L.; Loudon, A.S.; Ray, D.W.; Bechtold, D.A.; Gibbs, J.E. The circadian clock regulates inflammatory arthritis. FASEB J. 2016, 30, 3759–3770. [Google Scholar] [CrossRef] [Green Version]
- Ebling, F.J.; Lincoln, G.A.; Wollnik, F.; Anderson, N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J. Biol. Rhythms 1988, 3, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Seo, D.O.; Bell, E.; von Gall, C.; Lee, C. Strong resetting of the mammalian clock by constant light followed by constant darkness. J. Neurosci. 2008, 28, 11839–11847. [Google Scholar] [CrossRef] [PubMed]
- Chabot, C.C.; Connolly, D.M.; Waring, B.B. The effects of lighting conditions and food restriction paradigms on locomotor activity of common spiny mice, Acomys cahirinus. J. Circadian Rhythms 2012, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Coomans, C.P.; van den Berg, S.A.; Houben, T.; van Klinken, J.B.; van den Berg, R.; Pronk, A.C.; Havekes, L.M.; Romijn, J.A.; van Dijk, K.W.; Biermasz, N.R.; et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013, 27, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, Y.; Tahara, Y.; Hitosugi, M.; Shibata, S. Impairment of Circadian Rhythms in Peripheral Clocks by Constant Light Is Partially Reversed by Scheduled Feeding or Exercise. J. Biol. Rhythms 2015, 30, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Sudo, M.; Sasahara, K.; Moriya, T.; Akiyama, M.; Hamada, T.; Shibata, S. Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience 2003, 121, 493–499. [Google Scholar] [CrossRef]
- Ohta, H.; Yamazaki, S.; McMahon, D.G. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 2005, 8, 267–269. [Google Scholar] [CrossRef]
- Matsumura, T.; Nakagawa, H.; Suzuki, K.; Ninomiya, C.; Ishiwata, T. Influence of circadian disruption on neurotransmitter levels, physiological indexes, and behaviour in rats. Chronobiol. Int. 2015, 32, 1449–1457. [Google Scholar] [CrossRef]
- Nordmann, A.S.; Bohne, B.A.; Harding, G.W. Histopathological differences between temporary and permanent threshold shift. Hear. Res. 2000, 139, 13–30. [Google Scholar] [CrossRef]
- Kurabi, A.; Keithley, E.M.; Housley, G.D.; Ryan, A.F.; Wong, A.C. Cellular mechanisms of noise-induced hearing loss. Hear. Res. 2017, 349, 129–137. [Google Scholar] [CrossRef]
- Ohinata, Y.; Miller, J.M.; Altschuler, R.A.; Schacht, J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res. 2000, 878, 163–173. [Google Scholar] [CrossRef]
- Wilking, M.; Ndiaye, M.; Mukhtar, H.; Ahmad, N. Circadian rhythm connections to oxidative stress: Implications for human health. Antioxid. Redox Signal. 2013, 19, 192–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.A.; Velingkaar, N.S.; Kondratov, R.V. Transcriptional control of antioxidant defense by the circadian clock. Antioxid. Redox Signal. 2014, 20, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Le Prell, C.G.; Yamashita, D.; Minami, S.B.; Yamasoba, T.; Miller, J.M. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear. Res. 2007, 226, 22–43. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.Q.; Zheng, H.W.; Schacht, J.; Sha, S.H. Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. PLoS ONE 2013, 8, e61999. [Google Scholar] [CrossRef]
- Subash, S.; Subramanian, P.; Sivaperumal, R.; Manivasagam, T.; Essa, M.M. Constant light influences the circadian oscillations of circulatory lipid peroxidation, antioxidants and some biochemical variables in rats. Biol. Rhythm Res. 2006, 37, 471–477. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, R. Long-term exposure to constant light induces dementia, oxidative stress and promotes aggregation of sub-pathological Aβ42 in Wistar rats. Pharmacol. Biochem. Behav. 2020, 192, 172892. [Google Scholar] [CrossRef]
- Sha, S.H.; Taylor, R.; Forge, A.; Schacht, J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear. Res. 2001, 155, 1–8. [Google Scholar] [CrossRef]
- Choung, Y.; Taura, A.; Pak, K.; Choi, S.; Masuda, M.; Ryan, A. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience 2009, 161, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Castanon-Cervantes, O.; Wu, M.; Ehlen, J.C.; Paul, K.; Gamble, K.L.; Johnson, R.L.; Besing, R.C.; Menaker, M.; Gewirtz, A.T.; Davidson, A.J. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 2010, 185, 5796–5805. [Google Scholar] [CrossRef] [Green Version]
- Sarlus, H.; Fontana, J.M.; Tserga, E.; Meltser, I.; Cederroth, C.R.; Canlon, B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear. Res. 2019, 377, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Circadian disruption: Potential implications in inflammatory and metabolic diseases associated with alcohol. Alcohol Res. 2013, 35, 87–96. [Google Scholar] [PubMed]
- Hirose, K.; Discolo, C.M.; Keasler, J.R.; Ransohoff, R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J. Comp. Neurol. 2005, 489, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Vethanayagam, R.R.; Yang, W.; Dong, Y.; Hu, B.H. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis. 2016, 7, e2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujioka, M.; Kanzaki, S.; Okano, H.J.; Masuda, M.; Ogawa, K.; Okano, H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J. Neurosci. Res. 2006, 83, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, K.; Fujioka, M.; Kanzaki, S.; Okano, H.J.; Shibata, S.; Yamashita, D.; Masuda, M.; Mihara, M.; Ohsugi, Y.; Ogawa, K.; et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci. Res. 2010, 66, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 2013, 154, 3817–3825. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.J.; Savenkova, M.I.; Karatsoreos, I.N. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav. Immun. 2015, 47, 14–23. [Google Scholar] [CrossRef]
- Cederroth, C.R.; Park, J.S.; Basinou, V.; Weger, B.D.; Tserga, E.; Sarlus, H.; Magnusson, A.K.; Kadri, N.; Gachon, F.; Canlon, B. Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids. Curr. Biol. 2019, 29, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Canlon, B.; Meltser, I.; Johansson, P.; Tahera, Y. Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear. Res. 2007, 226, 61–69. [Google Scholar] [CrossRef]
- Fischman, A.J.; Kastin, A.J.; Graf, M.V.; Moldow, R.L. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 1988, 47, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Fonken, L.K.; Workman, J.L.; Walton, J.C.; Weil, Z.M.; Morris, J.S.; Haim, A.; Nelson, R.J. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. USA 2010, 107, 18664–18669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltser, I.; Canlon, B. Protecting the auditory system with glucocorticoids. Hear. Res. 2011, 281, 47–55. [Google Scholar] [CrossRef]
- Rumanova, V.S.; Okuliarova, M.; Zeman, M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020, 21, 5478. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.M.; Colwell, C.S. How to fix a broken clock. Trends Pharmacol. Sci. 2013, 34, 605–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arble, D.M.; Ramsey, K.M.; Bass, J.; Turek, F.W. Circadian disruption and metabolic disease: Findings from animal models. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 785–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
LD Group | DD Group | LL Group | |
---|---|---|---|
Per1 | 0.000012 | 0.023638 | ns |
Per2 | <0.000001 | 0.001643 | ns |
Rev-erbα | <0.000001 | 0.008508 | ns |
Bmal1 | 0.000035 | ns | ns |
Clock | <0.000001 | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-H.; Hwang, C.-F.; Chuang, J.-H.; Lian, W.-S.; Wang, F.-S.; Huang, E.I.; Yang, M.-Y. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. Int. J. Mol. Sci. 2020, 21, 7535. https://doi.org/10.3390/ijms21207535
Yang C-H, Hwang C-F, Chuang J-H, Lian W-S, Wang F-S, Huang EI, Yang M-Y. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. International Journal of Molecular Sciences. 2020; 21(20):7535. https://doi.org/10.3390/ijms21207535
Chicago/Turabian StyleYang, Chao-Hui, Chung-Feng Hwang, Jiin-Haur Chuang, Wei-Shiung Lian, Feng-Sheng Wang, Ethan I. Huang, and Ming-Yu Yang. 2020. "Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss" International Journal of Molecular Sciences 21, no. 20: 7535. https://doi.org/10.3390/ijms21207535
APA StyleYang, C. -H., Hwang, C. -F., Chuang, J. -H., Lian, W. -S., Wang, F. -S., Huang, E. I., & Yang, M. -Y. (2020). Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. International Journal of Molecular Sciences, 21(20), 7535. https://doi.org/10.3390/ijms21207535