Terminal Phase Components of the Clotting Cascade in Patients with End-Stage Renal Disease Undergoing Hemodiafiltration or Hemodialysis Treatment
Abstract
:1. Introduction
2. Results
2.1. Plasma Fibrinogen and CRP Concentration of ESRD Patients
2.2. Factor XIII Activity and Antigen Concentration in the Plasma of ESRD Patients
2.3. α2-Plasmin Inhibitor Activity in the Plasma of ESRD Patients
2.4. Changes of Plasma Fibrinogen Concentration during Hemodiafiltration and Hemodialysis Treatments of ESRD Patients
2.5. Changes of Plasma FXIII Activity during Hemodiafiltration and Hemodialysis Treatments of ESRD Patients
2.6. Changes of Plasma α2-Plasmin Inhibitor Activity during Hemodiafiltration and Hemodialysis Treatments of ESRD Patients
3. Discussion
4. Materials and Methods
4.1. Patients and Blood Sampling
4.2. Laboratory Measurements
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
α2PI | α2-plasmin inhibitor |
CRP | C-reactive protein |
ESRD | end-stage renal disease |
FXIII | blood coagulation factor XIII |
FXIII-A | FXIII A subunit |
FXIII-B | FXIII B subunit |
HD | hemodialysis |
HDF | hemodiafiltration |
IQR | interquartile range |
References
- Canaud, B.; Chenine, L.; Henriet, D.; Leray, H. Online hemodiafiltration: A multipurpose therapy for improving quality of renal replacement therapy. Contrib. Nephrol. 2008, 161, 191–198. [Google Scholar] [PubMed]
- Vanholder, R.; Meert, N.; Schepers, E.; Glorieux, G. From uremic toxin retention to removal by convection: Do we know enough? Contrib. Nephrol. 2008, 161, 125–131. [Google Scholar] [PubMed]
- Pavord, S.; Myers, B. Bleeding and thrombotic complications of kidney disease. Blood Rev. 2011, 25, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.; Menke, J.; Sollinger, D.; Schinzel, H.; Thurmel, K. Haemostasis in chronic kidney disease. Nephrol. Dial. Transplant. 2014, 29, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becs, G.; Hudak, R.; Fejes, Z.; Debreceni, I.B.; Bhattoa, H.P.; Balla, J.; Kappelmayer, J. Haemodiafiltration elicits less platelet activation compared to haemodialysis. BMC Nephrol. 2016, 17, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gackler, A.; Rohn, H.; Lisman, T.; Benko, T.; Witzke, O.; Kribben, A.; Saner, F.H. Evaluation of hemostasis in patients with end-stage renal disease. PLoS ONE 2019, 14, e0212237. [Google Scholar] [CrossRef]
- Acedillo, R.R.; Shah, M.; Devereaux, P.J.; Li, L.; Iansavichus, A.V.; Walsh, M.; Garg, A.X. The risk of perioperative bleeding in patients with chronic kidney disease: A systematic review and meta-analysis. Ann. Surg. 2013, 258, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Montagnana, M.; Meschi, T.; Borghi, L.; Lippi, G. Thrombosis and occlusion of vascular access in hemodialyzed patients. Semin. Thromb. Hemost. 2011, 37, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Casserly, L.F.; Dember, L.M. Thrombosis in end-stage renal disease. Semin. Dial. 2003, 16, 245–256. [Google Scholar] [CrossRef]
- Ocak, G.; Vossen, C.Y.; Rotmans, J.I.; Lijfering, W.M.; Rosendaal, F.R.; Parlevliet, K.J.; Krediet, R.T.; Boeschoten, E.W.; Dekker, F.W.; Verduijn, M. Venous and arterial thrombosis in dialysis patients. Thromb. Haemost. 2011, 106, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Liao, K.M. Increased risk of deep vein thrombosis in end-stage renal disease patients. BMC Nephrol. 2018, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.L.; Bouchard, B.A.; Cushman, M. Venous thromboembolism, factor VIII and chronic kidney disease. Thromb. Res. 2018, 170, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Opatrny, K., Jr.; Zemanova, P.; Opatrna, S.; Vit, L. Fibrinolysis in chronic renal failure, dialysis and renal transplantation. Ann. Transplant. 2002, 7, 34–43. [Google Scholar] [PubMed]
- Hasuike, Y.; Kakita, N.; Aichi, M.; Masachika, S.; Kantou, M.; Ikeda Takahashi, S.; Nanami, M.; Nagasawa, Y.; Kuragano, T.; Nakanishi, T. Imbalance of coagulation and fibrinolysis can predict vascular access failure in patients on hemodialysis after vascular access intervention. J. Vasc. Surg. 2019, 69, 174–180. [Google Scholar] [CrossRef]
- Nelson, K.; Thethi, I.; Cunanan, J.; Hoppensteadt, D.; Bajwa, R.; Fareed, J.; Bansal, V. Upregulation of surrogate markers of inflammation and thrombogenesis in patients with ESRD: Pathophysiologic and therapeutic implications. Clin. Appl. Thromb. Hemost. 2011, 17, 302–304. [Google Scholar] [CrossRef]
- Molino, D.; De Santo, N.G.; Marotta, R.; Anastasio, P.; Mosavat, M.; De Lucia, D. Plasma levels of plasminogen activator inhibitor type 1, factor VIII, prothrombin activation fragment 1 + 2, anticardiolipin, and antiprothrombin antibodies are risk factors for thrombosis in hemodialysis patients. Semin. Nephrol. 2004, 24, 495–501. [Google Scholar] [CrossRef]
- Winter, W.E.; Greene, D.N.; Beal, S.G.; Isom, J.A.; Manning, H.; Wilkerson, G.; Harris, N. Clotting factors: Clinical biochemistry and their roles as plasma enzymes. Adv. Clin. Chem. 2020, 94, 31–84. [Google Scholar]
- Vilar, R.; Fish, R.J.; Casini, A.; Neerman-Arbez, M. Fibrin(ogen) in human disease: Both friend and foe. Haematologica 2020, 105, 284–296. [Google Scholar] [CrossRef] [Green Version]
- de Vries, J.J.; Snoek, C.J.M.; Rijken, D.C.; de Maat, M.P.M. Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 554–569. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komaromi, I.; Katona, E. Factor XIII: A coagulation factor with multiple plasmatic and cellular functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef] [Green Version]
- Bagoly, Z.; Koncz, Z.; Harsfalvi, J.; Muszbek, L. Factor XIII, clot structure, thrombosis. Thromb. Res. 2012, 129, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Urano, T.; Suzuki, Y.; Iwaki, T.; Sano, H.; Honkura, N.; Castellino, F.J. Recognition of Plasminogen Activator Inhibitor Type 1 as the Primary Regulator of Fibrinolysis. Curr. Drug Targets 2019, 20, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, F.; Mariani, G.; Palla, R.; Fusani, L.; Bionda, A.; Molea, N.; Bianchi, R. Coagulation factor XIII in patients with acute and chronic renal disease. Nephron 1980, 25, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Gonzales, E.C.; Wang, J.; Said, S. Blood coagulation, fibrinolytic, and inhibitory proteins in end-stage renal disease: Effect of hemodialysis. Am. J. Kidney Dis. 1994, 23, 828–835. [Google Scholar] [CrossRef]
- Kolb, G.; Fischer, W.; Seitz, R.; Muller, T.; Egbring, R.; Lange, H.; Havemann, K. Hemodialysis and blood coagulation: The effect of hemodialysis on coagulation factor XIII and thrombin-antithrombin III complex. Nephron 1991, 58, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Erdem, Y.; Haznedaroglu, I.C.; Celik, I.; Yalcin, A.U.; Yasavul, U.; Turgan, C.; Caglar, S. Coagulation, fibrinolysis and fibrinolysis inhibitors in haemodialysis patients: Contribution of arteriovenous fistula. Nephrol. Dial. Transplant. 1996, 11, 1299–1305. [Google Scholar] [CrossRef]
- Prinsen, B.H.; Rabelink, T.J.; Beutler, J.J.; Kaysen, G.A.; De Boer, J.; Boer, W.H.; Hagen, E.C.; Berger, R.; De Sain-Van Der Velden, M.G. Increased albumin and fibrinogen synthesis rate in patients with chronic renal failure. Kidney Int. 2003, 64, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- Zoccali, C.; Mallamaci, F.; Tripepi, G.; Cutrupi, S.; Parlongo, S.; Malatino, L.S.; Bonanno, G.; Rapisarda, F.; Fatuzzo, P.; Seminara, G.; et al. Fibrinogen, mortality and incident cardiovascular complications in end-stage renal failure. J. Intern. Med. 2003, 254, 132–139. [Google Scholar] [CrossRef]
- Kaysen, G.A.; Dubin, J.A.; Muller, H.G.; Mitch, W.E.; Rosales, L.; Levin, N.W.; Group, H. Impact of albumin synthesis rate and the acute phase response in the dual regulation of fibrinogen levels in hemodialysis patients. Kidney Int. 2003, 63, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Fish, R.J.; Neerman-Arbez, M. Fibrinogen gene regulation. Thromb. Haemost. 2012, 108, 419–426. [Google Scholar] [CrossRef]
- Danesh, J.; Collins, R.; Appleby, P.; Peto, R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: Meta-analyses of prospective studies. JAMA 1998, 279, 1477–1482. [Google Scholar] [CrossRef]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, I.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fibrinogen Studies, C.; Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005, 294, 1799–1809. [Google Scholar]
- de Lau, L.M.; Leebeek, F.W.; de Maat, M.P.; Koudstaal, P.J.; Dippel, D.W. A review of hereditary and acquired coagulation disorders in the aetiology of ischaemic stroke. Int. J. Stroke 2010, 5, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, K.; Yamagami, S.; Katoh, Y.; Kishimoto, T.; Maekawa, M.; Okada, K.; Matsuo, O. Coagulation and fibrinolysis in chronic renal failure. Change in tissue-type plasminogen activator activity. ASAIO Trans. 1986, 32, 478–481. [Google Scholar] [CrossRef]
- Kirmizis, D.; Tsiandoulas, A.; Pangalou, M.; Koutoupa, E.; Rozi, P.; Protopappa, M.; Barboutis, K. Validity of plasma fibrinogen, D-dimer, and the von Willebrand factor as markers of cardiovascular morbidity in patients on chronic hemodialysis. Med. Sci. Monit. 2006, 12, CR55–CR62. [Google Scholar] [CrossRef]
- Raj, D.S.; Dominic, E.A.; Wolfe, R.; Shah, V.O.; Bankhurst, A.; Zager, P.G.; Ferrando, A. Coordinated increase in albumin, fibrinogen, and muscle protein synthesis during hemodialysis: Role of cytokines. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E658–E664. [Google Scholar] [CrossRef] [Green Version]
- Sabovic, M.; Salobir, B.; Preloznik Zupan, I.; Bratina, P.; Bojec, V.; Buturovic Ponikvar, J. The influence of the haemodialysis procedure on platelets, coagulation and fibrinolysis. Pathophysiol. Haemost. Thromb. 2005, 34, 274–278. [Google Scholar] [CrossRef]
- Derosa, G.; Libetta, C.; Esposito, P.; Borettaz, I.; Tinelli, C.; D’Angelo, A.; Maffioli, P. Effects of two different dialytic treatments on inflammatory markers in people with end-stage renal disease with and without type 2 diabetes mellitus. Cytokine 2017, 92, 75–79. [Google Scholar] [CrossRef]
- Khatib-Massalha, E.; Michelis, R.; Trabelcy, B.; Gerchman, Y.; Kristal, B.; Ariel, A.; Sela, S. Free circulating active elastase contributes to chronic inflammation in patients on hemodialysis. Am. J. Physiol. Renal. Physiol. 2018, 314, F203–F209. [Google Scholar] [CrossRef]
- Bagoly, Z.; Fazakas, F.; Komaromi, I.; Haramura, G.; Toth, E.; Muszbek, L. Cleavage of factor XIII by human neutrophil elastase results in a novel active truncated form of factor XIII A subunit. Thromb. Haemost. 2008, 99, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Beckers, C.M.L.; Simpson, K.R.; Griffin, K.J.; Brown, J.M.; Cheah, L.T.; Smith, K.A.; Vacher, J.; Cordell, P.A.; Kearney, M.T.; Grant, P.J.; et al. Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katona, E.; Haramura, G.; Karpati, L.; Fachet, J.; Muszbek, L. A simple, quick one-step ELISA assay for the determination of complex plasma factor XIII (A2B2). Thromb. Haemost. 2000, 83, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, C.S.; Shuman, M.A. The zymogen forms of blood coagulation factor XIII bind specifically to fibrinogen. J. Biol. Chem. 1982, 257, 6096–6101. [Google Scholar]
- Siebenlist, K.R.; Meh, D.A.; Mosesson, M.W. Plasma factor XIII binds specifically to fibrinogen molecules containing gamma chains. Biochemistry 1996, 35, 10448–10453. [Google Scholar] [CrossRef] [PubMed]
- Aleman, M.M.; Byrnes, J.R.; Wang, J.G.; Tran, R.; Lam, W.A.; Di Paola, J.; Mackman, N.; Degen, J.L.; Flick, M.J.; Wolberg, A.S. Factor XIII activity mediates red blood cell retention in venous thrombi. J. Clin. Investig. 2014, 124, 3590–3600. [Google Scholar] [CrossRef] [Green Version]
- Mezei, Z.A.; Katona, E.; Kallai, J.; Bereczky, Z.; Molnar, E.; Kovacs, B.; Ajzner, E.; Bagoly, Z.; Miklos, T.; Muszbek, L. Regulation of plasma factor XIII levels in healthy individuals; a major impact by subunit B intron K, c. 1952 + 144 C > G polymorphism. Thromb. Res. 2016, 148, 101–106. [Google Scholar] [CrossRef]
- Bereczky, Z.; Balogh, E.; Katona, E.; Czuriga, I.; Edes, I.; Muszbek, L. Elevated factor XIII level and the risk of myocardial infarction in women. Haematologica 2007, 92, 287–288. [Google Scholar] [CrossRef] [Green Version]
- Shemirani, A.H.; Szomjak, E.; Csiki, Z.; Katona, E.; Bereczky, Z.; Muszbek, L. Elevated factor XIII level and the risk of peripheral artery disease. Haematologica 2008, 93, 1430–1432. [Google Scholar] [CrossRef] [Green Version]
- Balogh, L.; Katona, E.; Mezei, Z.A.; Kallai, J.; Gindele, R.; Edes, I.; Muszbek, L.; Papp, Z.; Bereczky, Z. Effect of factor XIII levels and polymorphisms on the risk of myocardial infarction in young patients. Mol. Cell Biochem. 2018, 448, 199–209. [Google Scholar] [CrossRef]
- Mezei, Z.A.; Katona, E.; Kallai, J.; Bereczky, Z.; Somodi, L.; Molnar, E.; Kovacs, B.; Miklos, T.; Ajzner, E.; Muszbek, L. Factor XIII levels and factor XIII B subunit polymorphisms in patients with venous thromboembolism. Thromb. Res. 2017, 158, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Reed, G.L.; Houng, A.K.; Singh, S.; Wang, D. alpha2-Antiplasmin: New Insights and Opportunities for Ischemic Stroke. Semin. Thromb. Hemost. 2017, 43, 191–199. [Google Scholar] [PubMed] [Green Version]
- Jain, S.; Acharya, S.S. Inherited disorders of the fibrinolytic pathway. Transfus. Apher. Sci. 2019, 58, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, M.E.; Doggen, C.J.; de Groot, P.G.; Rosendaal, F.R.; Lisman, T. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood 2010, 116, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, M.F.; Yamagishi, K.; Aleksic, N.; Hannan, P.J.; Folsom, A.R. Novel hemostatic factor levels and risk of ischemic stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc. Dis. 2010, 29, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.L.; Houng, A.K.; Wang, D. Microvascular thrombosis, fibrinolysis, ischemic injury, and death after cerebral thromboembolism are affected by levels of circulating alpha2-antiplasmin. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2586–2593. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, H.; Okada, K.; Ueshima, S.; Matsuo, O.; Kozawa, O. Alpha2-antiplasmin plays a significant role in acute pulmonary embolism. J. Thromb. Haemost. 2003, 1, 1734–1739. [Google Scholar] [CrossRef]
- Nakamura, Y.; Chida, Y.; Tomura, S. Enhanced coagulation-fibrinolysis in patients on regular hemodialysis treatment. Nephron 1991, 58, 201–204. [Google Scholar] [CrossRef]
- Karpati, L.; Penke, B.; Katona, E.; Balogh, I.; Vamosi, G.; Muszbek, L. A modified, optimized kinetic photometric assay for the determination of blood coagulation factor XIII activity in plasma. Clin. Chem. 2000, 46, 1946–1955. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pénzes, K.; Hurják, B.; Katona, É.; Becs, G.; Balla, J.; Muszbek, L. Terminal Phase Components of the Clotting Cascade in Patients with End-Stage Renal Disease Undergoing Hemodiafiltration or Hemodialysis Treatment. Int. J. Mol. Sci. 2020, 21, 8426. https://doi.org/10.3390/ijms21228426
Pénzes K, Hurják B, Katona É, Becs G, Balla J, Muszbek L. Terminal Phase Components of the Clotting Cascade in Patients with End-Stage Renal Disease Undergoing Hemodiafiltration or Hemodialysis Treatment. International Journal of Molecular Sciences. 2020; 21(22):8426. https://doi.org/10.3390/ijms21228426
Chicago/Turabian StylePénzes, Krisztina, Boglárka Hurják, Éva Katona, Gergely Becs, József Balla, and László Muszbek. 2020. "Terminal Phase Components of the Clotting Cascade in Patients with End-Stage Renal Disease Undergoing Hemodiafiltration or Hemodialysis Treatment" International Journal of Molecular Sciences 21, no. 22: 8426. https://doi.org/10.3390/ijms21228426
APA StylePénzes, K., Hurják, B., Katona, É., Becs, G., Balla, J., & Muszbek, L. (2020). Terminal Phase Components of the Clotting Cascade in Patients with End-Stage Renal Disease Undergoing Hemodiafiltration or Hemodialysis Treatment. International Journal of Molecular Sciences, 21(22), 8426. https://doi.org/10.3390/ijms21228426