Relation of α2-Antiplasmin Genotype and Genetic Determinants of Fibrinogen Synthesis and Fibrin Clot Formation with Vascular Endothelial Growth Factor Level in Axial Spondyloarthritis
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics and Genotype Distribution
2.2. Serum VEGF Levels in Dependence of A2AP Arg6Trp Genotype
2.3. Serum VEGF Levels in Dependence of Genetic Determinants Related to Fibrinogen Synthesis and Fibrin Clot Formation
2.4. Association of VEGF and Radiographic Spinal Progression in axSpA
3. Discussion
4. Materials and Methods
4.1. Patients and Clinical Assessment
4.2. Quantification of VEGF-A Levels
4.3. Genotyping
4.4. Statistical Analyses
4.5. Ethical Approval
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
95% CI | 95% confidence interval |
A2AP | α2-antiplasmin |
AS | ankylosing spondylitis |
axSpA | axial spondyloarthritis |
CRP | C-reactive protein |
F13A | factor XIII subunit-A |
F13B | factor XIII subunit-B |
FGA | α-fibrinogen |
FGB | β-fibrinogen |
FGG | γ-fibrinogen |
GESPIC | German Spondyloarthritis Inception Cohort |
mSASSS | modified Stoke Ankylosing Spondylitis Spinal Score |
nr-axSpA | non-radiographic axial spondyloarthritis |
NSAID | non-steroidal anti-inflammatory drugs |
OR | odds ratio |
r-axSpA | radiographic axial spondyloarthritis |
VEGF | vascular endothelial growth factor |
References
- Dardik, R.; Loscalzo, J.; Inbal, A. Factor XIII (FXIII) and angiogenesis. J. Thromb. Haemost. 2006, 4, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Hirade, K.; Ishisaki, A.; Nakajima, K.; Suga, H.; Into, T.; Matsushita, K.; Okada, K.; Matsuo, O.; Matsuno, H. Lack of alpha2-antiplasmin improves cutaneous wound healing via over-released vascular endothelial growth factor-induced angiogenesis in wound lesions. J. Thromb. Haemost. 2006, 4, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, H.; Ishisaki, A.; Nakajima, K.; Okada, K.; Ueshima, S.; Matsuo, O.; Kozawa, O. Lack of α2-antiplasmin promotes re-endothelialization via over-release of VEGF after vascular injury in mice. Blood 2003, 102, 3621–3628. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.; Piekarek, M.; Paulsson, M.; Christ, H.; Bloch, W.; Krieg, T.; Davidson, J.M.; Eming, S.A. Plasmin Modulates Vascular Endothelial Growth Factor-A-Mediated Angiogenesis during Wound Repair. Am. J. Pathol. 2006, 168, 670–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, B.; Dörner, T. Coagulation and the fibrin network in rheumatic disease: A role beyond haemostasis. Nat. Rev. Rheumatol. 2012, 8, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Petzelbauer, P.; Zacharowski, P.A.; Miyazaki, Y.; Friedl, P.; Wickenhauser, G.; Castellino, F.J.; Gröger, M.; Wolff, K.; Zacharowski, K. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat. Med. 2005, 11, 298–304. [Google Scholar] [CrossRef]
- Yakovlev, S.; Gao, Y.; Cao, C.; Chen, L.; Strickland, D.K.; Zhang, L.; Medved, L. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrin-derived fragments. J. Thromb. Haemost. 2011, 9, 1847–1855. [Google Scholar] [CrossRef] [Green Version]
- Eming, S.A.; Krieg, T. Molecular mechanisms of VEGF-A action during tissue repair. J. Investig. Dermatol. Symp. Proc. 2006, 11, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.-L.; Chen, P.-K.; Huang, W.-K.; Kuo, C.-H.; Cho, C.-F.; Wang, K.-C.; Shi, G.-Y.; Wu, H.-L.; Lai, C.-H. Plasminogen/thrombomodulin signaling enhances VEGF expression to promote cutaneous wound healing. J. Mol. Med. 2018, 96, 1333–1344. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Kanoh, H.; Matsuda, A.; Seishima, M. α2AP regulates vascular alteration by inhibiting VEGF signaling in systemic sclerosis: The roles of α2AP in vascular dysfunction in systemic sclerosis. Arthritis Res. Ther. 2017, 19, 22. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Olsen, B.R. Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev. Dyn. 2017, 246, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Mosesson, M.W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 2005, 3, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Sieper, J.; Poddubnyy, D. Axial spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef]
- Poddubnyy, D.; Sieper, J. Mechanism of New Bone Formation in Axial Spondyloarthritis. Curr. Rheumatol. Rep. 2017, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Poddubnyy, D.; Conrad, K.; Haibel, H.; Syrbe, U.; Appel, H.; Braun, J.; Rudwaleit, M.; Sieper, J. Elevated serum level of the vascular endothelial growth factor predicts radiographic spinal progression in patients with axial spondyloarthritis. Ann. Rheum. Dis. 2013, 73, 2137–2143. [Google Scholar] [CrossRef]
- Christiansen, V.J.; Jackson, K.W.; Lee, K.N.; McKee, P.A. The effect of a single nucleotide polymorphism on human α2-antiplasmin activity. Blood 2007, 109, 5286–5292. [Google Scholar] [CrossRef]
- Jacquemin, B.; Antoniades, C.; Nyberg, F.; Plana, E.; Muller, M.; Greven, S. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: The AIRGENE study. J. Am. Coll. Cardiol. 2008, 52, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.P.; Carty, C.L.; Carlson, C.S.; Wan, J.Y.; Rieder, M.J.; Smith, J.D.; Rice, K.; Fornage, M.; Jaquish, C.E.; Williams, O.D.; et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: The Coronary Artery Risk Development in Young Adults (CARDIA) study. J. Thromb. Haemost. 2006, 4, 1279–1287. [Google Scholar] [CrossRef]
- Ariëns, R.A.; Lai, T.-S.; Weisel, J.W.; Greenberg, C.S.; Grant, P.J. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002, 100, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.C.; AriënsR, A.; Carter, A.M.; Weisel, J.W.; Grant, P.J. Genetic regulation of fibrin structure and function: Complex gene-environment interactions may modulate vascular risk. Lancet 2003, 361, 1424–1431. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A Coagulation Factor With Multiple Plasmatic and Cellular Functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovar, F.M.; Marsik, C.; Jilma, B.; Mannhalter, C.; Quehenberger, P.; Handler, S.; Wagner, O.; Endler, G. The fibrinogen −148 C/T polymorphism influences inflammatory response in experimental endotoxemia in vivo. Thromb. Res. 2007, 120, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Schwedler, C.; Edelmann, A.; Pistioli, A.; Poddubnyy, D.; Burmester, G.-R.; Häupl, T. Fibrinogen, factor XIII and α2-antiplasmin genotypes are associated with inflammatory activity and anti-citrullinated protein antibodies. Thromb. Res. 2020, 191, 90–96. [Google Scholar] [CrossRef]
- Collet, J.P.; Park, D.; Lesty, C.; Soria, J.; Soria, C.; Montalescot, G.; Weisel, J.W. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: Dynamic and structural approaches by confocal microscopy. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1354–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, S.R.; Booth, N.A.; Mutch, N.J. The antifibrinolytic function of factor XIII is exclusively expressed through α2-antiplasmin cross-linking. Blood 2011, 117, 6371–6374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolev, K.; Machovich, R. Molecular and cellular modulation of fibrinolysis. Thromb. Haemost. 2003, 89, 610–621. [Google Scholar] [CrossRef]
- Ariens, R.A.; Philippou, H.; Nagaswami, C.; Weisel, J.W.; Lane, D.A.; Grant, P.J. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000, 96, 988–995. [Google Scholar] [CrossRef]
- Tybjaerg-Hansen, A.; Agerholm-Larsen, B.; Humphries, S.E.; Abildgaard, S.; Schnohr, P.; Nordestgaard, B.G. A common mutation (G-455--> A) in the beta-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease. A study of 9127 individuals based on the Copenhagen City Heart Study. J. Clin. Investig. 1997, 99, 3034–3039. [Google Scholar] [CrossRef] [Green Version]
- Creemers, M.C.W.; Franssen, M.J.A.M.; Van’t Hof, M.A.; Gribnau, F.W.J.; Van de Putte, L.B.A.; Van Riel, P.L.C.M. Assessment of outcome in ankylosing spondylitis: An extended radiographic scoring system. Ann. Rheum. Dis. 2005, 64, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Poddubnyy, D.; Haibel, H.; Listing, J.; Märker-Hermann, E.; Zeidler, H.; Braun, J.; Sieper, J.; Rudwaleit, M. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 2012, 64, 1388–1398. [Google Scholar] [CrossRef]
- Dougados, M.; Paternotte, S.; Braun, J.; Burgos-Vargas, R.; Maksymowych, W.P.; Sieper, J.; Van Der Heijde, D. ASAS recommendations for collecting, analysing and reporting NSAID intake in clinical trials/epidemiological studies in axial spondyloarthritis. Ann. Rheum. Dis. 2010, 70, 249–251. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients (n = 186) | r-axSpA (n = 105) | nr-axSpA (n = 81) |
---|---|---|---|
Age, years | 37.1 ± 10.5 | 36.6 ± 11.3 | 37.8 ± 9.54 |
Duration of symptoms, years | 4.1 ± 2.7 | 5.0 ± 2.8 | 3.1 ± 2.1 |
Male sex, n (%) | 94 (50.5) | 67 (63.8) | 27 (33.3) |
Smoking, n (%) | 53 (28.5) | 34 (32.4) | 19 (23.5) |
HLA-B27 carrier, n (%) | 148 (80.0) | 87 (82.9) | 61 (76.3) |
A2AP 6Trp carrier, n (%) | 82 (44.1) | 50 (47.6) | 32 (39.5) |
VEGF, pg/mL | 409 ± 314 | 388 ± 252 | 436 ± 379 |
CRP, mg/L | 9.8 ± 15.7 | 11.9 ± 16.8 | 7.0 ± 13.7 |
mSASSS | 4.4 ± 8.7 | 6.0 ± 10.6 | 2.3 ± 4.5 |
Mean NSAID score (2 years) | 32.2 ± 27.4 | 32.2 ± 27.8 | 32.1 ± 27.0 |
A2AP 6Trp Carriage | |||
---|---|---|---|
All Patients | r-axSpA | nr-axSpA | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
VEGF ≥ 187 pg/mL | |||
univariate | 2.50 (1.10–5.95) | 1.54 (0.49–5.12) | 4.06 (1.13–18.2) |
multivariate | 2.37 (1.06–5.29) | 1.55 (0.52–4.60) | 3.56 (1.00–12.6) |
VEGF ≥ 600 pg/mL | |||
univariate | 1.33 (0.58–3.08) | 0.96 (0.27–3.31) | 2.00 (0.59–6.84) |
multivariate | 1.37 (0.62–3.04) | 1.00 (0.31–3.04) | 2.18 (0.69–6.82) |
VEGF levels [pg/mL] | Mean ± SD | Mean ± SD | Mean ± SD |
total | 410 ± 313 | 388 ± 252 | 438 ± 377 |
A2AP 6Arg/Arg | 373 ± 293 * | 367 ± 253 § | 379 ± 335 # |
A2AP 6Trp | 455 ± 334 * | 412 ± 251 § | 524 ± 429 # |
Genotype | VEGF ≥ 187 pg/mLOR (95% CI) | VEGF ≥ 600 pg/mLOR (95% CI) |
---|---|---|
FGB rs1800790 G>A | 0.52 (0.24–1.12) | 0.88 (0.36–2.05) |
FGB rs1800788 C>T | 1.26 (0.57–2.88) | 1.05 (0.43–2.45) |
FGA rs6050 A>G | 1.10 (0.51–2.36) | 0.74 (0.31–1.71) |
FGA rs2070006 G>A | 0.72 (0.29–1.69) | 0.94 (0.39–2.40) |
FGA rs2070016 T>C | 0.57 (0.26–1.29) | 0.83 (0.30–2.10) |
FGG rs1049636 T>C | 1.00 (0.47–2.17) | 0.80 (0.32–1.81) |
F13A rs5985 Val34Leu | 1.39 (0.64–3.09) | 0.52 (0.21–1.25) |
F13B rs6003 A>G | 1.34 (0.57–3.33) | 1.55 (0.63–3.66) |
Radiographic Spinal Progression (mSASSS ≥ 2) | ||
---|---|---|
Minor Allele | ||
Absent OR (95% CI) (n) | Present OR (95% CI) (n) | |
A2AP rs2070863 Arg6Trp | 2.67 (0.39–13.5) (104) | 3.30 (0.70–14.0) (82) |
FGB rs1800790 G>A | 2.28 (0.45–9.40) (111) | 4.67 (0.77–24.7) (74) |
FGB rs1800788 C>T | 3.07 (0.81–10.6) (118) | 3.53 (0.26–34.3) |
FGA rs6050 A>G | 5.74 * (1.54–20.7) (99) | 0 * (0–3.61) (87) |
FGA rs2070006 G>A | 10.5 # (1.57–69.9) (56) | 1.39 # (0.23–5.98) (130) |
FGA rs2070016 T>C | 1.8 § (0.38–6.87) (134) | 10.0 § (1.25–76.5) (52) |
FGG rs1049636 T>C | 3.38 (0.62–15.9) (107) | 3.22 (0.58–15.2) (79) |
F13A rs5985 Val34Leu | 4.32 (1.13–15.9) (104) | 1.02 (0.02–9.6) (81) |
F13B rs6003 A>G | 3.03 (0.72–11.1) (131) | 3.25 (0.39–22.6) (55) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppe, B.; Schwedler, C.; Haibel, H.; Verba, M.; Proft, F.; Protopopov, M.; Heuft, H.-G.; Rios Rodriguez, V.; Edelmann, A.; Rudwaleit, M.; et al. Relation of α2-Antiplasmin Genotype and Genetic Determinants of Fibrinogen Synthesis and Fibrin Clot Formation with Vascular Endothelial Growth Factor Level in Axial Spondyloarthritis. Int. J. Mol. Sci. 2020, 21, 9383. https://doi.org/10.3390/ijms21249383
Hoppe B, Schwedler C, Haibel H, Verba M, Proft F, Protopopov M, Heuft H-G, Rios Rodriguez V, Edelmann A, Rudwaleit M, et al. Relation of α2-Antiplasmin Genotype and Genetic Determinants of Fibrinogen Synthesis and Fibrin Clot Formation with Vascular Endothelial Growth Factor Level in Axial Spondyloarthritis. International Journal of Molecular Sciences. 2020; 21(24):9383. https://doi.org/10.3390/ijms21249383
Chicago/Turabian StyleHoppe, Berthold, Christian Schwedler, Hildrun Haibel, Maryna Verba, Fabian Proft, Mikhail Protopopov, Hans-Gert Heuft, Valeria Rios Rodriguez, Anke Edelmann, Martin Rudwaleit, and et al. 2020. "Relation of α2-Antiplasmin Genotype and Genetic Determinants of Fibrinogen Synthesis and Fibrin Clot Formation with Vascular Endothelial Growth Factor Level in Axial Spondyloarthritis" International Journal of Molecular Sciences 21, no. 24: 9383. https://doi.org/10.3390/ijms21249383
APA StyleHoppe, B., Schwedler, C., Haibel, H., Verba, M., Proft, F., Protopopov, M., Heuft, H. -G., Rios Rodriguez, V., Edelmann, A., Rudwaleit, M., Sieper, J., & Poddubnyy, D. (2020). Relation of α2-Antiplasmin Genotype and Genetic Determinants of Fibrinogen Synthesis and Fibrin Clot Formation with Vascular Endothelial Growth Factor Level in Axial Spondyloarthritis. International Journal of Molecular Sciences, 21(24), 9383. https://doi.org/10.3390/ijms21249383