Disease Ionomics: Understanding the Role of Ions in Complex Disease
Abstract
:1. Introduction
2. An Overview of Ionomics and Its Application in Mammals
2.1. Ionome Measurement Techniques and Relevant Resources
2.2. Bioinformatic Approaches for Ionomic Data Analysis
2.3. Application of Ionomics in Mammals
3. Ionomics of Complex Disease
3.1. Diabetes
3.2. Neurodegenerative Diseases
3.3. Cancer
3.4. Other Complex Diseases
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ICP-MS | Inductively coupled plasma mass spectrometry |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
XRF | X-ray fluorescence |
PiiMS | Purdue Ionomics Information Management System |
ANN | Artificial neural network |
CSF | Cerebrospinal fluid |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
GD | Gestational diabetes |
HD | Huntington’s disease |
ALS | Amyotrophic lateral sclerosis |
Aβ | Beta-amyloid |
3xTg-AD | Triple-transgenic AD |
PC | Prostate cancer |
LC | Lung cancer |
NSCLC | Non-small cell lung cancer |
BALF | Bronchoalveolar lavage fluid |
PaC | Pancreatic cancer |
PDAC | Pancreatic ductal adenocarcinoma |
CRC | Colorectal cancer |
ESCC | Esophageal squamous cell carcinoma |
GBC | Gallbladder cancer |
ESRD | End-stage renal disease |
IHD | Ischemia heart disease |
AKI | Acute kidney injury |
References
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Mertz, W. The essential trace elements. Science 1981, 213, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, Y.M. Trace elements in health and diseases. Biomed. Environ. Sci. 1996, 9, 130–136. [Google Scholar] [PubMed]
- Mertz, W. Review of the scientific basis for establishing the essentiality of trace elements. Biol. Trace Elem. Res. 1998, 66, 185–191. [Google Scholar] [CrossRef]
- Pratush, A.; Kumar, A.; Hu, Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review. Int. Microbiol. 2018, 21, 97–106. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Iron Deficiency Anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simao, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019, 74, 230–241. [Google Scholar] [CrossRef]
- Sandstrom, B. Micronutrient interactions: Effects on absorption and bioavailability. Br. J. Nutr. 2001, 85 (Suppl. 2), S181–S185. [Google Scholar] [CrossRef]
- Bremner, I.; Beattie, J.H. Copper and zinc metabolism in health and disease: Speciation and interactions. Proc. Nutr. Soc. 1995, 54, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019, 11, 1885. [Google Scholar] [CrossRef] [Green Version]
- West, C.E.; Hautvast, J.G. Nutrition. From ‘whither’ to ‘wither’ micronutrient malnutrition? Lancet 1997, 350 (Suppl. 3), Siii15. [Google Scholar] [CrossRef]
- Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: The concept and methodology. Chem. Soc. Rev. 2009, 38, 1119–1138. [Google Scholar] [CrossRef]
- Salt, D.E.; Baxter, I.; Lahner, B. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 2008, 59, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, I. Ionomics: The functional genomics of elements. Brief Funct. Genom. 2010, 9, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eide, D.J.; Clark, S.; Nair, T.M.; Gehl, M.; Gribskov, M.; Guerinot, M.L.; Harper, J.F. Characterization of the yeast ionome: A genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol. 2005, 6, R77. [Google Scholar] [CrossRef] [Green Version]
- Danku, J.M.; Lahner, B.; Yakubova, E.; Salt, D.E. Large-scale plant ionomics. Methods Mol. Biol. 2013, 953, 255–276. [Google Scholar] [CrossRef] [PubMed]
- Malinouski, M.; Hasan, N.M.; Zhang, Y.; Seravalli, J.; Lin, J.; Avanesov, A.; Lutsenko, S.; Gladyshev, V.N. Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat. Commun. 2014, 5, 3301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.Y.; Salt, D.E. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. Mol. Plant 2016, 9, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konz, T.; Migliavacca, E.; Dayon, L.; Bowman, G.; Oikonomidi, A.; Popp, J.; Rezzi, S. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome. J. Proteome Res. 2017, 16, 2080–2090. [Google Scholar] [CrossRef]
- de Jesus, J.R.; da Costa, L.F.; Lehmann, E.L.; Galazzi, R.M.; Madrid, K.C.; Arruda, M.A.Z. Chemical Speciation and Metallomics. Adv. Exp. Med. Biol. 2018, 1055, 183–211. [Google Scholar] [CrossRef]
- Mahan, B.; Chung, R.S.; Pountney, D.L.; Moynier, F.; Turner, S. Isotope metallomics approaches for medical research. Cell. Mol. Life Sci. 2020, 77, 3293–3309. [Google Scholar] [CrossRef]
- Gibson, G. Decanalization and the origin of complex disease. Nat. Rev. Genet. 2009, 10, 134–140. [Google Scholar] [CrossRef]
- Narimatsu, H. Gene-Environment Interactions in Preventive Medicine: Current Status and Expectations for the Future. Int. J. Mol. Sci. 2017, 18, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franks, P.W.; Pare, G. Putting the Genome in Context: Gene-Environment Interactions in Type 2 Diabetes. Curr. Diab. Rep. 2016, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Collery, P. Strategies for the development of selenium-based anticancer drugs. J. Trace Elem. Med. Biol. 2018, 50, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sanchez, G.; Salas-Salvado, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary supplements and disease prevention-a global overview. Nat. Rev. Endocrinol. 2016, 12, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Dragan, S.; Buleu, F.; Christodorescu, R.; Cobzariu, F.; Iurciuc, S.; Velimirovici, D.; Xiao, J.; Luca, C.T. Benefits of multiple micronutrient supplementation in heart failure: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 965–981. [Google Scholar] [CrossRef]
- Zhang, Y. Trace Elements and Healthcare: A Bioinformatics Perspective. Adv. Exp. Med. Biol. 2017, 1005, 63–98. [Google Scholar] [CrossRef]
- Ying, H.M.; Zhang, Y. Progress on ionomics of complex diseases. Sheng Li Xue Bao 2018, 70, 413–423. [Google Scholar] [CrossRef]
- Lahner, B.; Gong, J.; Mahmoudian, M.; Smith, E.L.; Abid, K.B.; Rogers, E.E.; Guerinot, M.L.; Harper, J.F.; Ward, J.M.; McIntyre, L.; et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol. 2003, 21, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Baxter, I. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? J. Exp. Bot. 2015, 66, 2127–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, B.B.; Reichman, S.M.; Chen, S. The guard cell ionome: Understanding the role of ions in guard cell functions. Prog. Biophys. Mol. Biol. 2019, 146, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Bulska, E.; Wagner, B. Quantitative aspects of inductively coupled plasma mass spectrometry. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, A.; Nonell, A.; Todoli Torro, J.L.; Bresson, C.; Vio, L.; Vercouter, T.; Chartier, F. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: A tutorial review. Part II. Practical considerations. Anal. Chim. Acta 2015, 885, 57–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Danku, J.M.; Baxter, I.; Kim, S.; Vatamaniuk, O.K.; Vitek, O.; Ouzzani, M.; Salt, D.E. High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genom. 2012, 13, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Lee, S.G.; Kim, E.B.; Park, T.J.; Seluanov, A.; Gorbunova, V.; Buffenstein, R.; Seravalli, J.; Gladyshev, V.N. Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity. Cell Rep. 2015, 13, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Lu, K.; Zhao, F.J.; Xie, W.; Ramakrishna, P.; Wang, G.; Du, Q.; Liang, L.; Sun, C.; Zhao, H.; et al. Genome-Wide Association Studies Reveal the Genetic Basis of Ionomic Variation in Rice. Plant Cell 2018, 30, 2720–2740. [Google Scholar] [CrossRef] [Green Version]
- Rudman, S.M.; Goos, J.M.; Burant, J.B.; Brix, K.V.; Gibbons, T.C.; Brauner, C.J.; Jeyasingh, P.D. Ionome and elemental transport kinetics shaped by parallel evolution in threespine stickleback. Ecol. Lett. 2019, 22, 645–653. [Google Scholar] [CrossRef]
- Zhang, B.; Podolskiy, D.I.; Mariotti, M.; Seravalli, J.; Gladyshev, V.N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 2020, 19, e13119. [Google Scholar] [CrossRef] [Green Version]
- Punshon, T.; Guerinot, M.L.; Lanzirotti, A. Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann. Bot. 2009, 103, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punshon, T.; Ricachenevsky, F.K.; Hindt, M.; Socha, A.L.; Zuber, H. Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: Examples from Arabidopsis thaliana. Metallomics 2013, 5, 1133–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopittke, P.M.; Punshon, T.; Paterson, D.J.; Tappero, R.V.; Wang, P.; Blamey, F.P.C.; van der Ent, A.; Lombi, E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiol. 2018, 178, 507–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streli, C.; Rauwolf, M.; Turyanskaya, A.; Ingerle, D.; Wobrauschek, P. Elemental imaging of trace elements in bone samples using micro and nano-X-ray fluorescence spectrometry. Appl. Radiat. Isot. 2019, 149, 200–205. [Google Scholar] [CrossRef]
- Baxter, I.; Ouzzani, M.; Orcun, S.; Kennedy, B.; Jandhyala, S.S.; Salt, D.E. Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol. 2007, 143, 600–611. [Google Scholar] [CrossRef] [Green Version]
- Colmsee, C.; Mascher, M.; Czauderna, T.; Hartmann, A.; Schluter, U.; Zellerhoff, N.; Schmitz, J.; Brautigam, A.; Pick, T.R.; Alter, P.; et al. OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol. 2012, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Cavey, T.; Ropert, M.; Loreal, O.; Bendavid, C.; Peoc’h, K. Metals: Common clinical applications in inductively coupled plasma mass spectrometry. Ann. Biol. Clin. 2019, 77, 495–504. [Google Scholar] [CrossRef]
- Chłopicka, J.; Zachwieja, Z.; Zagrodzki, P.; Frydrych, J.; Słota, P.; Krośniak, M. Lead and cadmium in the hair and blood of children from a highly industrial area in Poland. Biol. Trace Elem. Res. 1998, 62, 229–234. [Google Scholar] [CrossRef]
- Nakaona, L.; Maseka, K.K.; Hamilton, E.M.; Watts, M.J. Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps. Environ. Geochem. Health 2020, 42, 1197–1209. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Vestergren, R.; Zhou, Z.; Liang, Y.; Cai, Y. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances. Sci. Total Environ. 2018, 636, 383–391. [Google Scholar] [CrossRef]
- Emmett, S.E. ICP-MS: A new look at trace elements in Alzheimer’s disease. Prog. Clin. Biol. Res. 1989, 317, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Krachler, M.; Lindschinger, M.; Eber, B.; Watzinger, N.; Wallner, S. Trace elements in coronary heart disease: Impact of intensified lifestyle modification. Biol. Trace Elem. Res. 1997, 60, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Alimonti, A.; Bocca, B.; Pino, A.; Ruggieri, F.; Forte, G.; Sancesario, G. Elemental profile of cerebrospinal fluid in patients with Parkinson’s disease. J. Trace Elem. Med. Biol. 2007, 21, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.R.; Puga, M.P.; Wrobel, K.; Garay Sevilla, M.E.; Wrobel, K. Trace elements status in diabetes mellitus type 2: Possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res. Clin. Pract. 2011, 91, 333–341. [Google Scholar] [CrossRef]
- Ilbäck, N.G.; Frisk, P.; Tallkvist, J.; Gadhasson, I.L.; Blomberg, J.; Friman, G. Gastrointestinal uptake of trace elements are changed during the course of a common human viral (Coxsackievirus B3) infection in mice. J. Trace Elem. Med. Biol. 2008, 22, 120–130. [Google Scholar] [CrossRef]
- Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; Macias, V.; Gao, W.; Liang, W.M.; Beam, C.; Gray, M.A.; Kajdacsy-Balla, A.A. Prostate cancer outcome and tissue levels of metal ions. Prostate 2011, 71, 1231–1238. [Google Scholar] [CrossRef]
- Vinceti, M.; Michalke, B.; Malagoli, C.; Eichmüller, M.; Filippini, T.; Tondelli, M.; Bargellini, A.; Vinceti, G.; Zamboni, G.; Chiari, A. Selenium and selenium species in the etiology of Alzheimer’s dementia: The potential for bias of the case-control study design. J. Trace Elem. Med. Biol. 2019, 53, 154–162. [Google Scholar] [CrossRef]
- Holanda, M.T.; Mediano, M.F.F.; Hasslocher-Moreno, A.M.; Xavier, S.S.; Saraiva, R.M.; Sousa, A.S.; Maciel, E.R.; Carneiro, F.M.; da Silva, P.S.; Sangenis, L.H.C.; et al. A protocol update for the Selenium Treatment and Chagasic Cardiomyopathy (STCC) trial. Trials 2018, 19, 507. [Google Scholar] [CrossRef]
- Skalnaya, M.G.; Demidov, V.A. Hair trace element contents in women with obesity and type 2 diabetes. J. Trace Elem. Med. Biol. 2007, 21 (Suppl. 1), 59–61. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Huang, T.; An, P.; Yu, D.; Yu, Z.; Li, H.; Sheng, H.; Cai, L.; Xue, J.; et al. Associations between ionomic profile and metabolic abnormalities in human population. PLoS ONE 2012, 7, e38845. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Sun, L.; Pan, A.; Zhu, M.; Li, Z.; Wang, Z.; Liu, X.; Ye, X.; Li, H.; Zheng, H.; et al. Nickel exposure is associated with the prevalence of type 2 diabetes in Chinese adults. Int. J. Epidemiol. 2015, 44, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Yu, P.F.; Gao, Y.; Guo, W.H.; Wang, J.; Liu, X.; Gu, A.H.; Ji, G.X.; Dong, Q.; Wang, B.S.; et al. Association between Plasma Metal Levels and Diabetes Risk: A Case-control Study in China. Biomed. Environ. Sci. 2017, 30, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Morsy, R.; Soliman, H.; Elnimr, T. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis. J. Trace Elem. Med. Biol. 2016, 33, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Marín-Martínez, L.; Molino-Pagán, D.; López-Jornet, P. Trace elements in saliva and plasma of patients with type 2 diabetes: Association to metabolic control and complications. Diabetes Res. Clin. Pract. 2019, 157, 107871. [Google Scholar] [CrossRef] [PubMed]
- Temurer Afşar, Z.; Ayçiçek, B.; Tütüncü, Y.; Çavdar, Ü.; Sennaroğlu, E. Relationships between microvascular complications of diabetes mellitus and levels of macro and trace elements. Minerva Endocrinol. 2020. [Google Scholar] [CrossRef]
- Hansen, A.F.; Simic, A.; Asvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace elements in early phase type 2 diabetes mellitus-A population-based study. The HUNT study in Norway. J. Trace Elem. Med. Biol. 2017, 40, 46–53. [Google Scholar] [CrossRef]
- Forte, G.; Bocca, B.; Peruzzu, A.; Tolu, F.; Asara, Y.; Farace, C.; Oggiano, R.; Madeddu, R. Blood metals concentration in type 1 and type 2 diabetics. Biol. Trace Elem. Res. 2013, 156, 79–90. [Google Scholar] [CrossRef]
- Squitti, R.; Negrouk, V.; Perera, M.; Llabre, M.M.; Ricordi, C.; Rongioletti, M.C.A.; Mendez, A.J. Serum copper profile in patients with type 1 diabetes in comparison to other metals. J. Trace Elem. Med. Biol. 2019, 56, 156–161. [Google Scholar] [CrossRef]
- Roverso, M.; Berte, C.; Di Marco, V.; Lapolla, A.; Badocco, D.; Pastore, P.; Visentin, S.; Cosmi, E. The metallome of the human placenta in gestational diabetes mellitus. Metallomics 2015, 7, 1146–1154. [Google Scholar] [CrossRef]
- Roverso, M.; Di Marco, V.; Badocco, D.; Pastore, P.; Calanducci, M.; Cosmi, E.; Visentin, S. Maternal, placental and cordonal metallomic profiles in gestational diabetes mellitus. Metallomics 2019, 11, 676–685. [Google Scholar] [CrossRef]
- Gerhardsson, L.; Lundh, T.; Minthon, L.; Londos, E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2008, 25, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dominguez, R.; Garcia-Barrera, T.; Gomez-Ariza, J.L. Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics 2014, 6, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, E.; Koseoglu, R.; Kendirci, M.; Saraymen, R.; Saraymen, B. Trace metal concentrations in hair and nails from Alzheimer’s disease patients: Relations with clinical severity. J. Trace Elem. Med. Biol. 2017, 39, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Bocca, B.; Senofonte, O.; Petrucci, F.; Brusa, L.; Stanzione, P.; Zannino, S.; Violante, N.; Alimonti, A.; Sancesario, G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J. Neural. Transm. 2004, 111, 1031–1040. [Google Scholar] [CrossRef]
- Hegde, M.L.; Shanmugavelu, P.; Vengamma, B.; Rao, T.S.; Menon, R.B.; Rao, R.V.; Rao, K.S. Serum trace element levels and the complexity of inter-element relations in patients with Parkinson’s disease. J. Trace Elem. Med. Biol. 2004, 18, 163–171. [Google Scholar] [CrossRef]
- Zhao, H.W.; Lin, J.; Wang, X.B.; Cheng, X.; Wang, J.Y.; Hu, B.L.; Zhang, Y.; Zhang, X.; Zhu, J.H. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS ONE 2013, 8, e83060. [Google Scholar] [CrossRef]
- Sanyal, J.; Ahmed, S.S.; Ng, H.K.; Naiya, T.; Ghosh, E.; Banerjee, T.K.; Lakshmi, J.; Guha, G.; Rao, V.R. Metallomic Biomarkers in Cerebrospinal fluid and Serum in patients with Parkinson’s disease in Indian population. Sci. Rep. 2016, 6, 35097. [Google Scholar] [CrossRef] [Green Version]
- Squadrone, S.; Brizio, P.; Abete, M.C.; Brusco, A. Trace elements profile in the blood of Huntington’ disease patients. J. Trace Elem. Med. Biol. 2020, 57, 18–20. [Google Scholar] [CrossRef]
- Roos, P.M.; Vesterberg, O.; Syversen, T.; Flaten, T.P.; Nordberg, M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol. Trace Elem. Res. 2013, 151, 159–170. [Google Scholar] [CrossRef] [Green Version]
- De Benedetti, S.; Lucchini, G.; Del Bo, C.; Deon, V.; Marocchi, A.; Penco, S.; Lunetta, C.; Gianazza, E.; Bonomi, F.; Iametti, S. Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster. Biometals 2017, 30, 355–365. [Google Scholar] [CrossRef]
- Oggiano, R.; Solinas, G.; Forte, G.; Bocca, B.; Farace, C.; Pisano, A.; Sotgiu, M.A.; Clemente, S.; Malaguarnera, M.; Fois, A.G.; et al. Trace elements in ALS patients and their relationships with clinical severity. Chemosphere 2018, 197, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Deng, W.; Zhang, L.; Li, C.; Wu, P.; Mao, P. Prediction of prostate cancer using hair trace element concentration and support vector machine method. Biol. Trace Elem. Res. 2007, 116, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, M.A.; Shah, M.H. Comparative study of trace elements in blood, scalp hair and nails of prostate cancer patients in relation to healthy donors. Biol. Trace Elem. Res. 2014, 162, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Karimi, G.; Shahar, S.; Homayouni, N.; Rajikan, R.; Abu Bakar, N.F.; Othman, M.S. Association between trace element and heavy metal levels in hair and nail with prostate cancer. Asian Pac. J. Cancer Prev. 2012, 13, 4249–4253. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.T.; Tan, Y.Q.; Valeri, L.; Lee, J.; Geok, P.P.; Chia, S.E.; Ong, C.N.; Seow, W.J. Association between serum heavy metals and prostate cancer risk - A multiple metal analysis. Environ. Int. 2019, 132, 105109. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef]
- Benderli Cihan, Y.; Ozturk Yildirim, S. A discriminant analysis of trace elements in scalp hair of healthy controls and stage-IIIB non-small cell lung cancer (NSCLC) patients. Biol. Trace Elem. Res. 2011, 144, 272–294. [Google Scholar] [CrossRef] [PubMed]
- Callejón-Leblic, B.; Gómez-Ariza, J.L.; Pereira-Vega, A.; García-Barrera, T. Metal dyshomeostasis based biomarkers of lung cancer using human biofluids. Metallomics 2018, 10, 1444–1451. [Google Scholar] [CrossRef] [Green Version]
- Qayyum, M.A.; Farooq, Z.; Yaseen, M.; Mahmood, M.H.; Irfan, A.; Zafar, M.N.; Khawaja, M.; Naeem, K.; Kisa, D. Statistical Assessment of Toxic and Essential Metals in the Serum of Female Patients with Lung Carcinoma from Pakistan. Biol. Trace Elem. Res. 2020, 197, 367–383. [Google Scholar] [CrossRef]
- Amaral, A.F.; Porta, M.; Silverman, D.T.; Milne, R.L.; Kogevinas, M.; Rothman, N.; Cantor, K.P.; Jackson, B.P.; Pumarega, J.A.; Lopez, T.; et al. Pancreatic cancer risk and levels of trace elements. Gut 2012, 61, 1583–1588. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.; Larner, F.; Saad, A.; Roberts, R.; Kocher, H.M.; Blyuss, O.; Halliday, A.N.; Crnogorac-Jurcevic, T. Urine metallomics signature as an indicator of pancreatic cancer. Metallomics 2020, 12, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lavilla, I.; Costas, M.; Miguel, P.S.; Millos, J.; Bendicho, C. Elemental fingerprinting of tumorous and adjacent non-tumorous tissues from patients with colorectal cancer using ICP-MS, ICP-OES and chemometric analysis. Biometals 2009, 22, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, M.; Gholami, A.; Azar, M.H.; Yaghoobi, M.; Shahi, M.M.; Shirmardi, S.; Nikkhah, M.; Kohi, Z.; Salehpour, D.; Khoonsari, M.R.; et al. Trace Element and Heavy Metal Levels in Colorectal Cancer: Comparison Between Cancerous and Non-cancerous Tissues. Biol. Trace Elem. Res. 2018, 183, 1–8. [Google Scholar] [CrossRef]
- Kohzadi, S.; Sheikhesmaili, F.; Rahehagh, R.; Parhizkar, B.; Ghaderi, E.; Loqmani, H.; Shahmoradi, B.; Mohammadi, E.; Maleki, A. Evaluation of trace element concentration in cancerous and non-cancerous tissues of human stomach. Chemosphere 2017, 184, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Liu, T.; Lin, Y.; Zhang, C.; Yan, L.; Chen, Z.; He, Z.; Wang, J. Serum levels of chemical elements in esophageal squamous cell carcinoma in Anyang, China: A case-control study based on machine learning methods. BMJ Open 2017, 7, e015443. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Lin, J.; Sui, K.; Huang, Z.; Chen, Z.; Hang, W. Differential diagnosis of multielements in cancerous and non-cancerous esophageal tissues. Talanta 2019, 196, 585–591. [Google Scholar] [CrossRef]
- Golasik, M.; Jawień, W.; Przybyłowicz, A.; Szyfter, W.; Herman, M.; Golusiński, W.; Florek, E.; Piekoszewski, W. Classification models based on the level of metals in hair and nails of laryngeal cancer patients: Diagnosis support or rather speculation? Metallomics 2015, 7, 455–465. [Google Scholar] [CrossRef]
- Burton, C.; Dan, Y.; Donovan, A.; Liu, K.; Shi, H.; Ma, Y.; Bosnak, C.P. Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin. Chim. Acta 2016, 452, 142–148. [Google Scholar] [CrossRef]
- Lee, M.H.; Gao, Y.T.; Huang, Y.H.; McGee, E.E.; Lam, T.; Wang, B.; Shen, M.C.; Rashid, A.; Pfeiffer, R.M.; Hsing, A.W.; et al. A Metallomic Approach to Assess Associations of Serum Metal Levels with Gallstones and Gallbladder Cancer. Hepatology 2020, 71, 917–928. [Google Scholar] [CrossRef]
- Prodanchuk, M.; Makarov, O.; Pisarev, E.; Sheiman, B.; Kulyzkiy, M. Disturbances of trace element metabolism in ESRD patients receiving hemodialysis and hemodiafiltration. Cent. Eur. J. Urol. 2014, 66, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.; Golasik, M.; Piekoszewski, W.; Walas, S.; Napierala, M.; Wyganowska-Swiatkowska, M.; Kurhanska-Flisykowska, A.; Wozniak, A.; Florek, E. Essential and Toxic Metals in Oral Fluid-a Potential Role in the Diagnosis of Periodontal Diseases. Biol. Trace Elem. Res. 2016, 173, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edvinsson, M.; Ilback, N.G.; Frisk, P.; Thelin, S.; Nystrom-Rosander, C. Trace Element Changes in Thoracic Aortic Dissection. Biol. Trace Elem. Res. 2016, 169, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Shah, M.H. Disparities of Selected Metal Levels in the Blood and Scalp Hair of Ischemia Heart Disease Patients and Healthy Subjects. Biol. Trace Elem. Res. 2017, 180, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Lin, J.; Teng, J.; Zhuang, Y.; Zhang, H.; Wang, C.; Zhang, Y.; Ding, X.; Zhang, X. Association of urinary ionomic profiles and acute kidney injury and mortality in patients after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2020, 159, 918–926.e5. [Google Scholar] [CrossRef]
- Inzucchi, S.E. Diagnosis of diabetes. N. Engl. J. Med. 2013, 368, 193. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Simic, A.; Hansen, A.F.; Asvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace element status in patients with type 2 diabetes in Norway: The HUNT3 Survey. J. Trace Elem. Med. Biol. 2017, 41, 91–98. [Google Scholar] [CrossRef]
- Yang, A.M.; Hu, X.B.; Liu, S.; Cheng, N.; Zhang, D.S.; Li, J.S.; Li, H.Y.; Ren, X.W.; Li, N.; Sheng, X.P.; et al. Occupational exposure to heavy metals, alcohol intake, and risk of type 2 diabetes and prediabetes among Chinese male workers. Chronic Dis. Transl. Med. 2019, 5, 97–104. [Google Scholar] [CrossRef]
- Peruzzu, A.; Solinas, G.; Asara, Y.; Forte, G.; Bocca, B.; Tolu, F.; Malaguarnera, L.; Montella, A.; Madeddu, R. Association of trace elements with lipid profiles and glycaemic control in patients with type 1 diabetes mellitus in northern Sardinia, Italy: An observational study. Chemosphere 2015, 132, 101–107. [Google Scholar] [CrossRef]
- Slanzi, A.; Iannoto, G.; Rossi, B.; Zenaro, E.; Constantin, G. In vitro Models of Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020, 8, 328. [Google Scholar] [CrossRef]
- Yegambaram, M.; Manivannan, B.; Beach, T.G.; Halden, R.U. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res. 2015, 12, 116–146. [Google Scholar] [CrossRef]
- Kawahara, M.; Kato-Negishi, M.; Tanaka, K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2017, 9, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Cicero, C.E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.S.; Ferrante, M.; Zappia, M.; Nicoletti, A. Metals and neurodegenerative diseases. A systematic review. Environ. Res. 2017, 159, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Hofer, T.; Nurchi, V.M.; Aaseth, J. Iron and other metals in the pathogenesis of Parkinson’s disease: Toxic effects and possible detoxification. J. Inorg. Biochem. 2019, 199, 110717. [Google Scholar] [CrossRef] [PubMed]
- Sussulini, A.; Hauser-Davis, R.A. Metallomics Applied to the Study of Neurodegenerative and Mental Diseases. Adv. Exp. Med. Biol. 2018, 1055, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Amirrad, F.; Bousoik, E.; Shamloo, K.; Al-Shiyab, H.; Nguyen, V.V.; Montazeri Aliabadi, H. Alzheimer’s Disease: Dawn of a New Era? J. Pharm. Pharm. Sci. 2017, 20, 184–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.G. Research Progress in the Pathogenesis of Alzheimer’s Disease. Chin. Med. J. 2018, 131, 1618–1624. [Google Scholar] [CrossRef]
- Spinello, A.; Bonsignore, R.; Barone, G.; Keppler, B.K.; Terenzi, A. Metal Ions and Metal Complexes in Alzheimer’s Disease. Curr. Pharm. Des. 2016, 22, 3996–4010. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev. 2017, 35, 265–290. [Google Scholar] [CrossRef]
- Gerhardsson, L.; Blennow, K.; Lundh, T.; Londos, E.; Minthon, L. Concentrations of metals, beta-amyloid and tau-markers in cerebrospinal fluid in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2009, 28, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Church, S.J.; Patassini, S.; Begley, P.; Kellett, K.A.B.; Vardy, E.; Unwin, R.D.; Hooper, N.M.; Cooper, G.J.S. Plasma metals as potential biomarkers in dementia: A case-control study in patients with sporadic Alzheimer’s disease. Biometals 2018, 31, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, D.J.R.; Ayton, S.; Bush, A.I. Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms. J. Alzheimers Dis. 2018, 64, S379–S395. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Korshavn, K.J.; Kochi, A.; Derrick, J.S.; Lim, M.H. Cholesterol and metal ions in Alzheimer’s disease. Chem. Soc. Rev. 2014, 43, 6672–6682. [Google Scholar] [CrossRef]
- Bonda, D.J.; Lee, H.G.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 2011, 3, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Ciavardelli, D.; Consalvo, A.; Caldaralo, V.; Di Vacri, M.L.; Nisi, S.; Corona, C.; Frazzini, V.; Sacchetta, P.; Urbani, A.; Di Ilio, C.; et al. Characterisation of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP-MS. Metallomics 2012, 4, 1321–1332. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, H.Z.; Wang, B.T.; Zhao, Q.H.; Du, X.B.; Zheng, Y.; Jiang, L.; Ni, J.Z.; Zhang, Y.; Liu, Q. Sodium selenate regulates the brain ionome in a transgenic mouse model of Alzheimer’s disease. Sci. Rep. 2016, 6, 39290. [Google Scholar] [CrossRef] [Green Version]
- van Eersel, J.; Ke, Y.D.; Liu, X.; Delerue, F.; Kril, J.J.; Götz, J.; Ittner, L.M. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl. Acad. Sci. USA 2010, 107, 13888–13893. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Qian, E.; Huang, Y. Subtyping of Parkinson’s Disease—Where Are We Up To? Aging Dis. 2019, 10, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Stefano, F.; Cinzia, N.; Marco, P.; Marco, G.; Rita, G.; Augusto, F.; Rosita, G. Hair Microelement Profile as a Prognostic Tool in Parkinson’s Disease. Toxics 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajsuvakova, O.P.; Tinkov, A.A.; Willkommen, D.; Skalnaya, A.A.; Danilov, A.B.; Pilipovich, A.A.; Aschner, M.; Skalny, A.V.; Michalke, B.; Skalnaya, M.G. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson’s disease: A pilot study. J. Trace Elem. Med. Biol. 2020, 59, 126423. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem. 2018, 25, 2198–2214. [Google Scholar] [CrossRef] [PubMed]
- Kwakye, G.F.; Paoliello, M.M.; Mukhopadhyay, S.; Bowman, A.B.; Aschner, M. Manganese-Induced Parkinsonism and Parkinson’s Disease: Shared and Distinguishable Features. Int. J. Environ. Res. Public Health 2015, 12, 7519–7540. [Google Scholar] [CrossRef] [Green Version]
- Matusch, A.; Fenn, L.S.; Depboylu, C.; Klietz, M.; Strohmer, S.; McLean, J.A.; Becker, J.S. Combined elemental and biomolecular mass spectrometry imaging for probing the inventory of tissue at a micrometer scale. Anal. Chem. 2012, 84, 3170–3178. [Google Scholar] [CrossRef] [Green Version]
- McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018, 25, 24–34. [Google Scholar] [CrossRef]
- Muller, M.; Leavitt, B.R. Iron dysregulation in Huntington’s disease. J. Neurochem. 2014, 130, 328–350. [Google Scholar] [CrossRef] [Green Version]
- Sirabella, R.; Valsecchi, V.; Anzilotti, S.; Cuomo, O.; Vinciguerra, A.; Cepparulo, P.; Brancaccio, P.; Guida, N.; Blondeau, N.; Canzoniero, L.M.T.; et al. Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Front. Neurosci. 2018, 12, 510. [Google Scholar] [CrossRef]
- Caroli, S.; Alimonti, A.; Coni, E.; Petrucci, F.; Senofonte, O.; Violante, N. The Assessment of Reference Values for Elements in Human Biological Tissues and Fluids: A Systematic Review. Crit. Rev. Anal. Chem. 1994, 24, 363–398. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Yang, Y.; Gu, C. Iron metabolism and its contribution to cancer (Review). Int. J. Oncol. 2019, 54, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Koedrith, P.; Kim, H.; Weon, J.I.; Seo, Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics 2011, 6, 820–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, A.; Karapetsas, A.; Sandaltzopoulos, R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat. Res. 2009, 674, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Feng, P.H.; Chuang, H.C.; Wu, S.M.; Liu, W.T.; Chen, K.Y.; Liu, C.Y.; Ho, S.C. Trace Elements in Pleural Effusion Correlates with Smokers with Lung Cancer. Biol. Trace Elem. Res. 2018, 182, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Q. Association between serum copper levels and lung cancer risk: A meta-analysis. J. Int. Med. Res. 2018, 46, 4863–4873. [Google Scholar] [CrossRef] [Green Version]
- Zabłocka-Słowińska, K.; Płaczkowska, S.; Prescha, A.; Pawełczyk, K.; Porębska, I.; Kosacka, M.; Pawlik-Sobecka, L.; Grajeta, H. Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J. Trace Elem. Med. Biol. 2018, 45, 78–84. [Google Scholar] [CrossRef]
- Tan, C.; Chen, H.; Wu, T. Classification models for detection of lung cancer based on nine element distribution of urine samples. Biol. Trace Elem. Res. 2011, 142, 18–28. [Google Scholar] [CrossRef]
- Callejón-Leblic, B.; Arias-Borrego, A.; Pereira-Vega, A.; Gómez-Ariza, J.L.; García-Barrera, T. The Metallome of Lung Cancer and its Potential Use as Biomarker. Int. J. Mol. Sci. 2019, 20, 778. [Google Scholar] [CrossRef] [Green Version]
- Camargo, J.; Pumarega, J.A.; Alguacil, J.; Sanz-Gallen, P.; Gasull, M.; Delclos, G.L.; Amaral, A.F.S.; Porta, M. Toenail concentrations of trace elements and occupational history in pancreatic cancer. Environ. Int. 2019, 127, 216–225. [Google Scholar] [CrossRef]
- Gomez-Tomas, A.; Pumarega, J.; Alguacil, J.; Amaral, A.F.S.; Malats, N.; Pallares, N.; Gasull, M.; Porta, M.; Group, P.I.S. Concentrations of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. Environ. Mol. Mutagen. 2019, 60, 693–703. [Google Scholar] [CrossRef]
- Porta, M.; Pumarega, J.; Amaral, A.F.S.; Genkinger, J.M.; Camargo, J.; Mucci, L.; Alguacil, J.; Gasull, M.; Zhang, X.; Morales, E.; et al. Influence of KRAS mutations, persistent organic pollutants, and trace elements on survival from pancreatic ductal adenocarcinoma. Environ. Res. 2020, 190, 109781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zou, M.; Wen, X.; Gu, F.; Li, J.; Liu, G.; Dong, J.; Deng, X.; Gao, J.; Li, X.; et al. Development of serum parameters panels for the early detection of pancreatic cancer. Int. J. Cancer 2014, 134, 2646–2655. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Zhang, Y.; Yang, X.H.; Jing, W.; Zheng, L.Q.; Liu, Y.P.; Qu, X.J.; Li, Z. Serum calcium level used as a prognostic predictor in patients with resectable pancreatic ductal adenocarcinoma. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 639–648. [Google Scholar] [CrossRef] [PubMed]
Disease | Population | Number of Subjects (Disease/Control) | Tissue | Elevated Elements | Decreased Elements | Potential Confounders Adjusted or Matched | Ref. |
---|---|---|---|---|---|---|---|
Diabetes | |||||||
T2D 1 | Moscow region, Russia | 93/1236 | Hair | K, Na, Hg | Ca, Mg, Zn, Co | Sex | [59] |
T2D | Guanajuato, Mexico | 76/12 | Serum | Al, Cd, Cu, Mn, Hg, Ni | Cr, Co, V | Smoking status, other chronic diseases | [54] |
Urine | Cr, As, Cu, Zn | Cd, Co, Pb, Mn, Mo, Ni, Se | |||||
T2D | Shanghai, China | 122/854 | Plasma | Cu, P, S | Mg, Cr, Se | Age, sex, BMI 2 | [60] |
T2D | Beijing and Shanghai, China | 747/1368 | Urine | Ni | - | Age, sex, region, residence, education, smoking and drinking status, physical activity, family history of diabetes, BMI | [61] |
T2D | Suzhou, China | 122/429 | Plasma | V, Cr, Mn, Cu, Zn, As, Se, Sr, Pd, Cd, Cs, Ba | - | Age, sex, BMI, family history of diabetes, smoking and drinking status | [62] |
T2D | Tanta, Egypt | 40/36 | Serum | Cu | Zn, Se, Fe, Mn, Cr, Mg, As | Age, sex, weight | [63] |
T2D complication | Cartagena, Spain | 31/43 | Saliva | - | Co | - | [64] |
Plasma | Sr | - | |||||
T2D complication (microvascular) | Ankara, Turkey | 118/40 | Blood | - | Mg, Cr | - | [65] |
T2D | Nord-Trøndelag County, Norway | 128/755 | Blood | Cd, Cr, Fe, Ni, Ag, Zn | Br | Age, sex, BMI, waist-to-hip ratio, education, income, smoking status, family history of diabetes, seafood intake, alcohol consumption | [66] |
T2D | Sardinia region, Italy | 68/59 | Blood | - | Cr, Mn, Ni | - | [67] |
T1D 3 | Sardinia region, Italy | 192/59 | Blood | - | Cr, Mn, Ni, Pb, Zn | - | [67] |
T1D | Miami, U.S. | 63/65 | Serum | Cu, Mo | Mn, Zn, Se | Age, sex, BMI | [68] |
GD 4 | Padova, Italy | 28/19 | Placenta | Se | Cd | - | [69] |
GD | Padova, Italy | 36/36 | Placenta | Hg, Si | Fe, Cu, Mn, Cd | - | [70] |
35/30 | Mother blood | Cu | K, Co, Al, Rb, Sb | ||||
35/34 | Umbilical cord blood | Ca, Na, Co, Cu, Mo, Zn, Al, Ti | Fe, K, Mn, Si, Rb | ||||
Neurodegenerative disease | |||||||
AD 5 | Göteborg, Sweden | 173 (AD), 87 (AD + vasc)/54 | Plasma | Mn, Hg | Co, Se, Cs | Age | [71] |
CSF | - | V, Mn, Rb, Sb, Cs, Pb | |||||
AD | Huelva, Spain | 30 (AD), 16 (MCI)/30 | Serum | Al, Fe | Mn, Zn, Se | Age | [72] |
AD | Kayseri, Turkey | 62/60 | Nail | - | Mn, Fe, Cu, Zn, Cd, Hg | Age, sex, living environment, health status | [73] |
Hair | Na, K | Al, Mn, Fe, Co, Cu, Cd, Hg, Pb | |||||
PD 6 | Rome, Italy | 26/13 | Serum | Ca, Mg | Al, Cu | Age | [74] |
Urine | Ca, Fe, Si | - | |||||
PD | Mysore, India | 52/25 | Serum | K, Mg, Cu, P | Al, S, Fe, Zn | Age, sex | [75] |
PD | Rome, Italy | 42/20 | CSF | - | Co, Cr, Fe, Pb, Si, Sn | Age, sex | [53] |
PD | Wenzhou, China | 238/302 | Plasma | Fe, Se | Zn | Age, sex | [76] |
PD | Kolkata, India | 50/60 | CSF | Ca, Cr, Pb, Mg | Al, Co, Fe, Mn, Si, Zn | Age, sex | [77] |
250/280 | Serum | Al, Ca, Pb, Mg | Cu, Fe | ||||
HD 7 | Torino, Italy | 18/18 | Blood | As, Cr, Fe, Se, Zn | Pb, Sb, V | - | [78] |
ALS 8 | Stockholm, Sweden | 17/10 | CSF | Mn, Al, Cd, Co, Cu, Zn, Pb, V, U | - | - | [79] |
15/9 | Plasma | Hg, Ag | - | ||||
ALS | Milan, Italy | 6/5 | Blood | Mn, Al, Se | As | Age | [80] |
ALS (severe vs. less severe) | Sassari, Italy | 17 (severe), 16 (less severe)/30 | Blood | Pb | Hg, Cu, Se | Smoking and drinking status, exposure to heavy metals | [81] |
Urine | - | Mg, Ca | |||||
Hair | Zn | Hg, Pb, Cu | |||||
Cancer | |||||||
Prostate cancer | Shanghai, China | 60/55 | Hair | K, Fe, Cu, Se | Mg, P, Ca, Cr, Mn, Zn | - | [82] |
Prostate cancer | Islamabad, Pakistan | 74/66 | Blood | Fe, Mn, Ni, Cd, Pb | Zn | Age, habitat, food habits | [83] |
67/67 | Scalp hair | Fe, Mn, Ni, Cr, Cd, Pb | Zn | ||||
60/60 | Nail | Mn, Ni, Cr, Cd | - | ||||
Prostate cancer | Kuala Lumpur, Malaysia | 50/50 | Hair | Cu, Mn | Se, Zn | Age, ethnicity, family history, smoking and alcohol consumption | [84] |
Nail | Fe, Mn | Se, Zn | |||||
Prostate cancer | Singapore | 141/114 | Serum | Mn, Ni, Zn, As, Se, Sb, Pb | - | Age, ethnicity, BMI, prostate-specific antigen level, eye color, skin color, family cancer history, smoking status, marital status, education | [85] |
Prostate cancer | Mecca, Saudi Arabia | 40/52 | Serum | Cu, Fe | Se, Zn, Mn | Age | [86] |
NSCLC 9 | Kocasinan/Kayseri, Turkey | 67/74 | Hair | Au, Bi, Ca, Co, Cr, Cu, Ga, Hg, K, Ni, Rb, Sb, Sc, Ti, V | Ag, Cd, Fe, Zn | Age, ethnicity, geographic origin, smoking status | [87] |
Lung cancer | Huelva, Spain | 48/39 | Serum | V, Cr, Cu | - | - | [88] |
48/39 | Urine | Cd | - | ||||
24/31 | Bronchoalveolar lavage fluid | Mn | - | ||||
Lung cancer | Lahore, Pakistan | 95/91 | Serum | Cd, Cr, Pb, Hg, As, Ni | Co, Fe, Mg, Na, K, Zn, Se | Age, sex, geographical location, history of cancer, alcohol consumption | [89] |
Pancreatic cancer | Madrid, Spain | 118/399 | Toenail | Cd, As, Pb | Se, Ni | Age, sex, region, smoking status, education, past history of diabetes | [90] |
PDAC 10 | Oxford, U.K. | 21/46 | Urine | Cu, Zn | Ca, Mg | Age, sex | [91] |
Colorectal cancer | Vigo, Spain | 38/38 (paired) | Tumor vs. non-tumor | Mn, Se, Cu, Al, Fe, Mg, Ca, K, P, S | Cd | - | [92] |
Colorectal cancer | Tehran, Iran | 50/50 (paired) | Tumor vs. non-tumor | Zn, Cr, Cu, Al, Pb | Sn, Fe, Mn | - | [93] |
Gastric cancer | Sanandaj, Iran | 35/30 | Tumor vs. non-tumor | Fe, Mg, As | Cr, Cu, Ca, Ni | Sex, cancer history, smoking and alcohol consumption | [94] |
ESCC 11 | Anyang, China | 100/100 | Serum | Li, Sn, Ba, Tl, P, S, Bi, U, Cr, Mn, Cu, Rb, Pb, | B, Ti, Ge, As, Se, Sr, Cs, La, V, Zn, Hg, Ca, K, Mg, Na | Age, sex, region, smoking and alcohol consumption | [95] |
ESCC | Quanzhou, China | 30/30 (paired) | Tumor vs. non-tumor | Mn, Se, Cu, Ti, Mg, Fe, Co | Zn, Sr, Ca | - | [96] |
Laryngeal cancer | Kraków, Poland | 68/73 | Hair/nail | Cr, Cd, Pb | Ca, Mg, Cu, Fe, Mn, Co | Age, smoking and drinking habits, diet | [97] |
Breast cancer | Springfield, USA | 47/84 | Urine | Cu, Pb | - | Age | [98] |
Gallbladder cancer | Shanghai, China | 259 (gallbladder cancer), 701 (gallstones)/851 | Serum | Cd, Cr, Cu, Mo, V | As, B, Ca, Fe, Li, Mg, Se, S | Age, sex, BMI, smoking and alcohol consumption, levels of triglycerides and cholesterol | [99] |
Other diseases | |||||||
End-stage renal disease | Kyiv, Ukraine | 41/61 | Blood | B, Al, V, Cr, Mn, Zn, Sr, Cd, Ba, Pb | Ni, As, Se, Rb | - | [100] |
Periodontal disease | Poznan, Poland | 31/29 | Saliva | Cu, Mg, Mn | - | Age, sex, smoking status | [101] |
Thoracic aortic dissection | Uppsala, Sweden | 21/23 | Serum | Fe | Ca, V, Cu, Zn | Age | [102] |
18/10 | Aortic tissue | Fe | Cu, Zn | ||||
Ischemia heart disease | Islamabad, Pakistan | 100/100 | Blood | Cd, Co, Cr, Fe, K, Li, Mn, Na, Pb | Ca | Age, sex, habitat, smoking habits | [103] |
154/133 | Scalp hair | Ca, Cd, Fe, K, Li, Pb, Sr | Na | ||||
Acute kidney injury | Shanghai, China | 92/169 | Urine | Al, Fe, Co, Cu, Zn, Ag, Cd, W, Pb | Cs | Age, weight, height, BMI, history of other diseases, coronary artery bypass graft | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, Y.; Zheng, L. Disease Ionomics: Understanding the Role of Ions in Complex Disease. Int. J. Mol. Sci. 2020, 21, 8646. https://doi.org/10.3390/ijms21228646
Zhang Y, Xu Y, Zheng L. Disease Ionomics: Understanding the Role of Ions in Complex Disease. International Journal of Molecular Sciences. 2020; 21(22):8646. https://doi.org/10.3390/ijms21228646
Chicago/Turabian StyleZhang, Yan, Yinzhen Xu, and Lin Zheng. 2020. "Disease Ionomics: Understanding the Role of Ions in Complex Disease" International Journal of Molecular Sciences 21, no. 22: 8646. https://doi.org/10.3390/ijms21228646
APA StyleZhang, Y., Xu, Y., & Zheng, L. (2020). Disease Ionomics: Understanding the Role of Ions in Complex Disease. International Journal of Molecular Sciences, 21(22), 8646. https://doi.org/10.3390/ijms21228646