Nanosystems Applied to HIV Infection: Prevention and Treatments
Abstract
:1. Introduction
1.1. Generalities of Different Types of Polymeric Systems
1.1.1. Natural Polymers
1.1.2. Synthetic Polymers
1.2. Generalities of Different Types of Nanosystems
1.2.1. Liposomes
1.2.2. Polymeric Micelles
1.2.3. Dendrimers
1.2.4. Nanogels
1.2.5. Nanoparticles and Hybrid Systems
2. Nanotechnology Approaches for Prevention of HIV Infection
2.1. Vaccines
2.2. Topical Microbicides
3. Nanotechnology Approaches for HIV/AIDS Treatment
3.1. Drug Delivery Nanosystems
3.2. Nanosystems as Therapeutic Agents
3.3. Immunotherapy
3.4. Gene Therapy
4. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gallo, R.C.; Montagnier, L. The Discovery of HIV as the Cause of AIDS. N. Engl. J. Med. 2003, 349, 2283–2285. [Google Scholar] [CrossRef]
- United Nations Programme on HIV/AIDS. Global HIV & AIDS Statistics. 2020. Available online: www.unaids.org/en/resources/fact-sheet (accessed on 9 November 2020).
- Gilbert, P.B.; McKeague, I.W.; Eisen, G.; Mullins, C.; Guéye-Ndiaye, A.; Mboup, S.; Kanki, P.J. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat. Med. 2003, 22, 573–593. [Google Scholar] [CrossRef] [PubMed]
- Nyamweya, S.; Hegedus, A.; Jaye, A.; Rowland-Jones, S.; Flanagan, K.L.; Macallan, D.C. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 2013, 23, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Hunter, E. HIV Transmission. Cold Spring Harb. Perspect. Med. 2012, 2, a006965. [Google Scholar] [CrossRef] [PubMed]
- Dwyer-Lindgren, L.; Cork, M.A.; Sligar, A.; Steuben, K.M.; Wilson, K.F.; Provost, N.R.; Mayala, B.K.; Vanderheide, J.D.; Collison, M.L.; Hall, J.B.; et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019, 570, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempton, J.; Hill, A.; Levi, J.A.; Heath, K.; Pozniak, A. Most new HIV infections, vertical transmissions and AIDS-related deaths occur in lower-prevalence countries. J. Virus Erad. 2019, 5, 92–101. [Google Scholar] [CrossRef]
- Hegdahl, H.K.; Fylkesnes, K.M.; Sandøy, I.F. Sex differences in HIV prevalence persist over time: Evidence from 18 countries in Sub-Saharan Africa. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.L.; Pion, M.; Javier de la Mata, F.; Gomez, R.; Muñoz, E.; Leal, M.; Muñoz-Fernandez, M.A. Dendrimers as topical microbicides with activity against HIV. New J. Chem. 2012, 36, 299–309. [Google Scholar] [CrossRef]
- Baluku, J.B.; Mwebaza, S.; Ingabire, G.; Nsereko, C.; Muwanga, M. HIV and SARS-CoV-2 co-infection: A case report from Uganda. J. Med. Virol. 2020, 1–3. [Google Scholar] [CrossRef]
- Kanwugu, O.N.; Adadi, P. HIV/SARS-CoV-2 coinfection: A global perspective. J. Med. Virol. 2020, 1–7. [Google Scholar] [CrossRef]
- Makoti, P.; Fielding, B.C. HIV and Human Coronavirus Coinfections: A Historical Perspective. Viruses 2020, 12, 937. [Google Scholar] [CrossRef]
- Dragojevic, S.; Ryu, J.S.; Raucher, D.; Rades, T.; Grohganz, H.; Löbmann, K. Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules 2015, 20, 21750–21769. [Google Scholar] [CrossRef]
- Wannachaiyasit, S.; Chanvorachote, P.; Nimmannit, U. A novel anti-hiv dextrin-zidovudine conjugate improving the pharmacokinetics of zidovudine in rat. AAPS PharmSciTech 2008, 9, 840–850. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Mukaya, H.E. Polymer Therapeutics: Design, Application, and Pharmacokinetics. In Nano-and Microscale Drug Delivery Systems: Design and Fabrication; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 33–48. [Google Scholar]
- Ghosh, M.; Maiti, S. Polymeric Anticancer Agents—An Overview. In Polymeric Materials in Medication; Springer: Berlin, Germany, 1985; pp. 103–114. [Google Scholar]
- Van Damme, L.; Govinden, R.; Mirembe, F.M.; Guédou, F.; Solomon, S.; Becker, M.L.; Pradeep, B.S.; Krishnan, A.K.; Alary, M.; Pande, B.; et al. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N. Engl. J. Med. 2008, 359, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoler-Karpoff, S.; Ramjee, G.; Ahmed, K.; Altini, L.; Gehert Plagianos, M.; Friedland, B.; Govender, S.; De Kock, A.; Cassim, N.; Palanee, T.; et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1977–1987. [Google Scholar] [CrossRef]
- Gunaseelan, S.; Debrah, L.; Li, W.; Leibowitz, M.J.; Rabson, A.B.; Stein, S.; Sinko, P.J. Synthesis of poly(ethylene glycol)-based saquinavir prodrug conjugates and assessment of release and anti-HIV-1 bioactivity using a novel protease inhibition assay. Bioconjug. Chem. 2004, 15, 1322–1333. [Google Scholar] [CrossRef] [PubMed]
- Rohini, N.A.; Anupam, J.; Alok, M. Polymeric Prodrugs: Recent Achievements and General Strategies. J. Antivir. Antiretrovir. 2013, 15, 1–12. [Google Scholar]
- Vlieghe, P.; Clerc, T.; Pannecouque, C.; Witvrouw, M.; Clercq, E.D.; Salles, J.-P.; Kraus, J.-L. Synthesis of New Covalently Bound κ-Carrageenan−AZT Conjugates with Improved Anti-HIV Activities. J. Med. Chem. 2002, 45, 1275–1283. [Google Scholar] [CrossRef]
- Martins, C.; Araujo, F.; Gomes, M.J.; Fernandes, C.; Nunes, R.; Li, W.; Santos, H.A.; Borges, F.; Sarmiento, B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur. J. Pharm. Biopharm. 2019, 138, 111–124. [Google Scholar] [CrossRef]
- Surve, D.H.; Jindal, A.B. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs. J. Control. Release 2020, 324, 379–404. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478. [Google Scholar] [CrossRef]
- Biswas, S.; Vaze, O.S.; Movassaghian, S.; Torchilin, V.P. Polymeric Micelles for the Delivery of Poorly Soluble Drugs. In Drug Delivery Strategies for Poorly Water-Soluble Drugs; Douroumis, D., Fahr, A., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2013; pp. 411–476. [Google Scholar]
- Tan, C.; Wang, Y.; Fan, W. Exploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies. Pharmaceutics 2013, 5, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Luganini, A.; Giuliani, A.; Pirri, G.; Pizzuto, L.; Landolfo, S.; Gribaudo, G. Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antivir. Res. 2010, 85, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Farias, E.D.; Bouchet, L.M.; Brunetti, V.; Strumia, M.C. Dendrimers and dendronized materials as nanocarriers. In Nanostructures for Novel Therapy: Synthesis, Characterization and Applications; Grumezescu, A., Ficai, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 429–456. [Google Scholar]
- Barrios-Gumiel, A.; Sepúlveda-Crespo, D.; Jiménez, J.L.; Gómez, R.; Muñoz-Fernández, M.Á.; de la Mata, F.J. Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic. Colloids Surfaces B Biointerfaces 2019, 181, 360–368. [Google Scholar] [CrossRef]
- Dey, P.; Bergmann, T.; Cuellar-Camacho, J.L.; Ehrmann, S.; Chowdgury, M.S.; Zhang, M.; Dahmani, I.; Haag, R.; Azab, W. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS Nano 2018, 12, 6429–6442. [Google Scholar] [CrossRef]
- Rupp, R.; Rosenthal, S.L.; Stanberry, L.R. VivaGel™ (SPL7013 Gel): A candidate dendrimer-Microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007, 2, 561–566. [Google Scholar]
- Macchione, M.A.; Biglione, C.; Strumia, M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Macchione, M.A.; Sacarelli, M.F.; Racca, A.C.; Biglione, C.; Panzetta-Dutari, G.M.; Strumia, M.C. Dual-responsive nanogels based on oligo(ethylene glycol) methacrylates and acidic co-monomers. Soft Matter 2019, 15, 9700–9709. [Google Scholar] [CrossRef]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020, 12, 1397. [Google Scholar] [CrossRef]
- Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev. 2015, 44, 6161. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yan, L.; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem. Rev. 2018, 119, 1666–1762. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D. Polymer nanocomposites in medicine. J. Macromol. Sci. Part A Pure Appl. Chem. 2016, 53, 55–62. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamo, T.; Moseman, E.A.; Kolishetti, N.; Salvador-Morales, C.; Shi, J.; Kuritzkes, D.R.; Langer, R.; von Adrian, U.; Farokhzad, O.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 2010, 5, 269–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesquita, L.; Galante, J.; Nunes, R.; Sarmento, B.; Neves, J.D. Pharmaceutical vehicles for vaginal and rectal administration of anti-hivmicrobicide nanosystems. Pharmaceutics 2019, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Burton, D.R. Advancing an HIV vaccine; advancing vaccinology. Nat. Rev. Immunol. 2019, 19, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Woodrow, K.A. Nanotechnology approaches to eradicating HIV reservoirs. Eur. J. Pharm. Biopharm. 2019, 138, 48–63. [Google Scholar] [CrossRef]
- Van Regenmortel, M.H. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int. J. Mol. Sci. 2016, 17, 1591. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wijewardhana, C.; Mann, J.F.S. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front. Immunol. 2018, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Grande, F.; Ioele, G.; Occhiuzzi, M.A.; De Luca, M.; Mazzota, E.; Ragno, G.; Garofalo, A.; Mazzalupo, R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.; Menta, M.; Dacoba, T.G.; Crecente-Campo, J.; Alonso, M.J.; Dupin, D.; Loinaz, I.; Grassl, B.; Séby, F. Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. J. Pharm. Biomed. Anal. 2020, 179, 113017–113038. [Google Scholar] [CrossRef]
- Dacoba, T.G.; Omange, R.W.; Li, H.; Crecente-Campo, J.; Luo, M.; Alonso, M.J. Polysaccharide Nanoparticles Can Efficiently Modulate the Immune Response against an HIV Peptide Antigen. ACS Nano 2019, 13, 4947–4959. [Google Scholar] [CrossRef]
- Dacoba, T.G.; Ruiz-Gatón, L.; Benito, A.; Klein, M.; Dupin, D.; Luo, M.; Menta, M.; Teijeiro-Osorio, D.; Loinaz, I.; Alonso, M.J.; et al. Technological challenges in the preclinical development of an HIV nanovaccine candidate. Drug Deliv. Transl. Res. 2020, 10, 621–634. [Google Scholar] [CrossRef]
- Martín-Moreno, A.; Jiménez Blanco, J.L.; Mosher, J.; Swanson, D.R.; García Fernández, J.M.; Sharma, A.; Ceña, V.; Muñoz-Fernández, M.A. Nanoparticle-delivered HIV peptides to dendritic cells a promising approach to generate a therapeutic vaccine. Pharmaceutics 2020, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, K.; Berndsen, Z.T.; Antanasijevic, A.; Schiffner, T.; Zhang, X.; Lee, W.; Torres, J.L.; Zhang, L.; Irimia, A.; Copps, J.; et al. HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Rep. 2020, 31, 107583. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.K.S.; Kesharwani, S.S.; Kumar, S.; Muley, P.; Narisetty, S.; Tummala, H. Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS Appl. Mater. Interfaces 2018, 10, 27589–27602. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, F.; Duan, W.; Mu, X.; Fang, S.; Lu, N.; Zhou, X.; Kong, W. Engineering a ‘PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere’ hybrid controlled release system to enhance immunogenicity of DNA vaccine. Mater. Sci. Eng. C 2020, 106, 110294. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fonseca, R.A.; Bello, M.; Muñoz-Fernandez, M.A.; Jimenez, J.L.; Rojas-Hernandez, S.; Fragoso-Vázquez, M.J.; Gutierrez-Sanchez, M.; Rodrigues, J.; Cayetano-Castro, N.; Borja-Urby, R.; et al. In silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three-dimensional models of the HIV-1 gp120 protein. Colloids Surfaces B Biointerfaces 2019, 177, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Rostami, H.; Ebtekar, M.; Ardestani, M.S.; Yazdi, M.H.; Mahdavi, M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol. Lett. 2017, 187, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Stone, A. Microbicides: A new approach to preventing HIV and other sexually transmitted infections. Nat. Rev. Drug Discov. 2002, 1, 977–985. [Google Scholar] [CrossRef]
- Shattock, R.J.; Moore, J.P. Inhibiting sexual transmission of HIV-1 infection. Nat. Rev. Microbiol. 2003, 1, 25–34. [Google Scholar] [CrossRef]
- Das Neves, J.; Nunes, R.; Rodrigues, F.; Sarmento, B. Nanomedicine in the development of anti-HIV microbicides. Adv. Drug Deliv. Rev. 2016, 103, 57–75. [Google Scholar] [CrossRef]
- Lederman, M.M.; Offord, R.E.; Hartley, O. Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nat. Rev. Immunol. 2006, 6, 371–382. [Google Scholar] [CrossRef]
- Ceña-Diez, R.; García-Broncano, P.; de la Mata, F.J.; Gómez, R.; Resino, S.; Muñoz-Fernández, M.Á. G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women. Nanoscale 2017, 9, 9732–9742. [Google Scholar] [CrossRef]
- Martín-Moreno, A.; Sepúlveda-Crespo, D.; Serramía-Lobera, M.J.; Perisé-Barrios, A.J.; Muñoz-Fernández, M.A. G2-S16 dendrimer microbicide does not interfere with the vaginal immune system. J. Nanobiotechnol. 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Rodriguez-Izquierdo, I.; Gasco, S.; Muñoz-Fernández, M.A. High Preventive Effect of G2-S16 Anionic Carbosilane Dendrimer against Sexually Transmitted HSV-2 Infection. Molecules 2020, 25, 2965. [Google Scholar] [CrossRef]
- Serramía, M.J.; Gómez, R.; la Mata, J.D.; Luis, J.; Ángeles, M. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine 2015, 10, 899–914. [Google Scholar]
- Ceña-Diez, R.; Martin-Moreno, A.; De la Mata, F.J.; Gómez-Ramirez, R.; Muñoz, E.; Ardoy, M.; Muñoz-Fernandez, M.A. G1-S4 or G2-S16 carbosilane dendrimer in combination with Platycodin D as a promising vaginal microbicide candidate with contraceptive activity. Int. J. Nanomed. 2019, 14, 2371–2381. [Google Scholar] [CrossRef] [Green Version]
- Maciel, D.; Guerrero-Beltrán, C.; Ceña-Diez, R.; Tomás, H.; Muñoz-Fernández, M.Á.; Rodrigues, J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679–9690. [Google Scholar] [CrossRef]
- Macchione, M.A.; Guerrero-Beltrán, C.; Rosso, A.P.; Euti, E.M.; Martinelli, M.; Strumia, M.C.; Fernandez-Muñoz, M.A. Poly(N-vinylcaprolactam) Nanogels with Antiviral Behavior against HIV-1 Infection. Sci. Rep. 2019, 9, 5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-López, E.; Paús, A.; Pérez-Pomeda, I.; Calpena, A.; Haro, I.; Gómara, M.J. Lipid vesicles loaded with an HIV-1 fusion inhibitor peptide as a potential microbicide. Pharmaceutics 2020, 12, 502. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Prathipati, P.K.; Belshan, M.; Destache, C.J. A potential long-acting bictegravir loaded nano-drug delivery system for HIV-1 infection: A proof-of-concept study. Antivir. Res. 2019, 167, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, J.; Patel, S.K.; Palmer, K.E.; Devlin, B.; Rohan, L.C. Design of poly(Lactic-co-glycolic acid) (plga) nanoparticles for vaginal co-delivery of griffthsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics 2019, 11, 184. [Google Scholar] [CrossRef] [Green Version]
- Vacas-Córdoba, E.; Maly, M.; de la mata, F.J.; Gómez, R.; Pion, M.; Muñoz-Fernández, M.Á. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-I. Int. J. Nanomed. 2016, 11, 1281–1294. [Google Scholar]
- Guerrero-Beltran, C.; Rodriguez-Izquierdo, I.; Serramia, M.J.; Araya-Duran, I.; Márquez-Miranda, V.; Gomez, R.; De la Mata, F.J.; Leal, M.; González-Nilo, F.; Muñoz-Fernandez, M.A. Anionic Carbosilane Dendrimers Destabilize the GP120-CD4 Complex Blocking HIV-1 Entry and Cell to Cell Fusion. Bioconjug. Chem. 2018, 29, 1584–1594. [Google Scholar] [CrossRef]
- Peña-González, C.E.; Garcia-Broncano, P.; Ottaviani, M.F.; Cangiotti, M.; Fattori, A.; Hierro-Olvia, M.; González-Martín, M.L.; Perez-Serrano, J.; Gomez, R.; Muñoz-Fernandez, M.A.; et al. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity. Chem. A Eur. J. 2016, 22, 2987–2999. [Google Scholar] [CrossRef]
- Peña-González, C.E.; Pedziwiatr-Werbicka, E.; Scharbin, D.; Guerrero-Beltran, C.; Abashkin, V.; Loznikova, S.; Jimenez, J.L.; Muñoz-Fernandez, M.A.; Bryszewska, M.; Gomez, R.; et al. Gold nanoparticles stabilized by cationic carbosilane dendrons: Synthesis and biological properties. Dalt. Trans. 2017, 46, 8736–8745. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, C.; Ceña-Diez, R.; Sepulveda-Crespo, D.; De la Mata, J.; Gomez, R.; Leal, M.; Muñoz-Fernandez, M.A.; Jimenez, J.L. Carbosilane Dendrons with Fatty Acids At the Core As a New Potential Microbicide Against Hsv-2/Hiv-1 Co-Infection. Nanoscale 2017, 9, 17263–17273. [Google Scholar] [CrossRef]
- Tyo, K.M.; Lasnik, A.B.; Zhang, L.; Mahmoud, M.; Jenson, A.B.; Fuqua, J.L.; Palmer, K.E.; Steinbach-Rankins, J.M. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J. Control. Release 2020, 321, 84–99. [Google Scholar] [CrossRef]
- Nunes, R.; Araujo, F.; Barreiros, L.; Bártolo, I.; Segundo, M.A.; Taveira, N.; Sarmento, B.; Das Neves, J. Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides. ACS Appl. Mater. Interfaces 2018, 10, 34942–34953. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Verma, S.; Prasad, D.N.; Bhardwaj, A.; Vaidya, B.; Jain, A.K. Nanotechnology: A magic bullet for HIV AIDS treatment. Artif. Cells Nanomed. Biotechnol. 2015, 43, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.; Nijhuis, M.; Wensing, A.M.J.; Lee, H.; et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 2019, 568, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Hütter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Müßig, A.; Allers, K.; Schneider, T.; Hofmann, J.; Kücherer, C.; Blau, O.; et al. Long-Term Control of HIV by CCR5 Delta32/Delta32 Stem-Cell Transplantation. N. Engl. J. Med. 2009, 360, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Kraft, J.C.; Yu, D.; Ho, R.J.Y. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur. J. Pharm. Biopharm. 2019, 138, 75–91. [Google Scholar] [CrossRef]
- Chiappetta, D.A.; Facorro, G.; de Celis, E.R.; Sosnik, A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 624–637. [Google Scholar] [CrossRef]
- Ramana, L.N.; Sharma, S.; Sethuraman, S.; Ranga, U.; Krishnan, U.M. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 476–484. [Google Scholar] [CrossRef]
- Belgamwar, A.; Khan, S.; Yeole, P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif. Cells Nanomed. Biotechnol. 2018, 46, 374–386. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Bui, T.; Ho, R.J.Y. pH-Dependent Interactions of Indinavir and Lipids in Nanoparticles and Their Ability to Entrap a Solute. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Guo, D.; Zhou, T.; Araínga, M.; Palandri, D.; Gautam, N.; Bronich, T.; Alnouti, Y.; McMillan, J.; Edagwa, B.; Gendelman, H. Creation of a Long-Acting Nanoformulated 2′,3′-Dideoxy-3′-Thiacytidine. J. Acquir. Immune Defic. Syst. 2017, 74, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Relaño-Rodríguez, I.; Juárez-Sánchez, R.; Pavicic, C.; Muñoz, E.; Muñoz-Fernández, M.Á. Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment. J. Nanobiotechnol. 2019, 17, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, S.; Ganesan, S. Gold Nanoparticles as an HIV Entry Inhibitor. Curr. HIV Res. 2014, 10, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Etemadzade, M.; Ghamarypour, A.; Zabihollahi, R.; Shabbak, G.; Shirazi, M.; Sahebjamee, H.; Vaziri, A.Z.; Assadi, A.; Ardestani, M.S.; Sadat Shandiz, S.A.; et al. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pac. J. Trop. Dis. 2016, 6, 854–858. [Google Scholar] [CrossRef]
- Osminkina, L.A.; Timoshenko, V.Y.; Shilovsky, I.P.; Kornilaeva, G.V.; Shevchenko, S.N.; Gongalsky, M.B.; Tamarov, K.P.; Abramchuk, S.S.; Nikiforov, V.N.; Khaitov, V.N.; et al. Porous silicon nanoparticles as scavengers of hazardous viruses. J. Nanoparticle Res. 2014, 16, 2430. [Google Scholar] [CrossRef]
- Aung, Y.Y.; Kristanti, A.N.; Khairunisa, S.Q.; Nasronudin, N.; Fahmi, M.Z. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots. ACS Biomater. Sci. Eng. 2020, 6, 4490–4501. [Google Scholar] [CrossRef]
- Iannazzo, D.; Pistone, A.; Ferro, S.; De Luca, L.; Monforte, A.; Romeo, R.; Buemi, M.R.; Pannecouque, C. Graphene Quantum Dots Based Systems as HIV Inhibitors. Bioconjug. Chem. 2018, 29, 3084–3093. [Google Scholar] [CrossRef]
- Sweeney, E.E.; Balakrishnan, P.B.; Powell, A.B.; Bowen, A.; Sarabia, I.; Burga, R.A.; Jones, R.B.; Bosque, A.; Cruz, C.R.Y.; Fernandes, R. PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. Nano Res. 2020, 13, 736–744. [Google Scholar] [CrossRef]
- Zhang, G.; Campbell, G.R.; Zhang, Q.; Maule, E.; Hanna, J.; Gao, W.; Zhang, L.; Spector, S. CD4+ t cell-mimicking nanoparticles broadly neutralize hiv-1 and suppress viral replication through autophagy. MBio 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Mobarakeh, V.I.; Modarressi, M.H.; Rahimi, P.; Bolhassani, A.; Arefian, E.; Aryabi, F.; Vahabpour, R. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int. J. Biol. Macromol. 2019, 129, 305–315. [Google Scholar] [CrossRef]
- Kaushik, A.; Yndart, A.; Alturi, V.; Tiwari, S.; Tomitaka, A.; Gupta, P.; Jayant, R.D.; Alvarez-Carbonell, D.; Khalili, K.; Nair, M. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Waters, D.D.; Hsue, P.Y. Lipid Abnormalities in Persons Living with HIV Infection. Can. J. Cardiol. 2019, 35, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, Y.; Caster, J.M.; Eblan, M.J.; Wang, A.Z. Clinical Translation of Nanomedicine. Chem. Rev. 2015, 115, 11147–11190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. Bionanoscience 2012, 2, 227–250. [Google Scholar] [CrossRef]
- Mcdonald, T.O.; Giardiello, M.; Martin, P.; Siccardi, M.; Liptrott, N.J.; Smith, D.; Roberts, P.; Curley, P.; Schipani, A.; Khoo, S.H.; et al. Antiretroviral Solid Drug Nanoparticles with Enhanced Oral Bioavailability: Production, Characterization, and In Vitro-In Vivo Correlation. Adv. Healthc. Mater. 2014, 3, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Destache, C.J. A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013, 34, 6202–6228. [Google Scholar] [CrossRef] [Green Version]
- Raza, K.; Kumar, P.; Kumar, N.; Malik, R. Pharmacokinetics and biodistribution of the nanoparticles. Adv. Nanomed. Deliv. Ther. Nucleic Acids 2017, 166–186. [Google Scholar] [CrossRef]
- Singh, G.; Pai, R.S.; Mustafa, S. Nanostructured delivery systems: Augmenting the delivery of antiretroviral drugs for better management of HIV/AIDS. Crit. Rev. Ther. Drug Carrier Syst. 2015, 32, 503–533. [Google Scholar] [CrossRef]
- Victor, O.B. Nanoparticles and Its Implications in HIV/AIDS Therapy. Curr. Drug Discov. Technol. 2019, 16, 448–456. [Google Scholar]
- Varatharajan, L.; Thomas, S.A. The transport of anti-HIV drugs across blood-CNS interfaces: Summary of current knowledge and recommendations for further research. Antivir. Res. 2009, 82, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Aikaterini, A.; Yujie, L.; Brian, W. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr. HIV Res. 2008, 6, 388–400. [Google Scholar]
- Van Dyke, R.B.; Lee, S.; Jognson, G.M.; Wiznia, A.; Mohan, K.; Stanley, K.; Morse, E.V.; Krogstad, P.A.; Nachman, S.; Pediatric AIDS Clinical Trials Group Adherence Subcommittee; et al. Reported adherence as a determinant of response to highly active antiretroviral therapy in children who have human immunodeficiency virus infection. Pediatrics 2002, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisziewicz, J.; Toke, E.R. Nanomedicine applications towards the cure of HIV. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Richman, D.D. HIV chemotherapy. Nature 2001, 410, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Schrager, L.K.; D’Souza, M.P. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. J. Am. Med. Assoc. 1998, 280, 67–71. [Google Scholar] [CrossRef]
- Das Neves, J.; Amiji, M.M.; Bahia, M.F.; Sarmento, B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv. Drug Deliv. Rev. 2010, 62, 458–477. [Google Scholar] [CrossRef]
- Gong, Y.; Chowdhury, P.; Nagesh, P.K.B.; Rahman, M.A.; Zhi, K.; Yallapu, M.M.; Kumar, S. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Zhi, K.; Nagesh, P.K.B.; Sinha, N.; Chowdhury, P.; Chen, H.; Gorantla, S.; Yallupu, M.M.; Kumar, S. An elvitegravir nanoformulation crosses the blood–brain barrier and suppresses HIV-1 replication in microglia. Viruses 2020, 12, 564. [Google Scholar] [CrossRef]
- Khalil, N.M.; Carraro, E.; Cótica, L.F.; Mainardes, R.M. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin. Drug Deliv. 2011, 8, 95–112. [Google Scholar] [CrossRef]
- Gupta, U.; Jain, N.K. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv. Drug Deliv. Rev. 2010, 62, 478–490. [Google Scholar] [CrossRef]
- Vyas, A.; Jain, A.; Hurkat, P.; Jain, A.; Jain, S.K. Targeting of AIDS related encephalopathy using phenylalanine anchored lipidic nanocarrier. Colloids Surfaces B Biointerfaces 2015, 131, 155–161. [Google Scholar] [CrossRef]
- Xing, S.; Siliciano, R.F. Targeting HIV latency: Pharmacologic strategies toward eradication. Drug Discov. Today 2013, 18, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.-Y.; Wu, H.-Y.; Yarla, N.S.; Xu, B.; Ding, J.; Lu, T.-R. HAART in HIV/AIDS Treatments: Future Trends. Infect. Disord. Drug Targets 2017, 18, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.B.; Merisko-Liversidge, E.; Remenar, J.F.; Namchuk, M. Delivery of long-acting injectable antivirals: Best approaches and recent advances. Curr. Opin. Infect. Dis. 2015, 28, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Gutiérrez, L.; Soriano, V.; Requena, S.; Arias, A.; Barreiro, P.; de Mendoza, C. Treatment and prevention of HIV infection with long-acting antiretrovirals. Expert Rev. Clin. Pharmacol. 2018, 11, 507–517. [Google Scholar] [CrossRef]
- Huang, F.; Allen, L.; Huang, D.B.; Moy, F.; Vinisko, R.; Nguyen, T.; Rowland, L.; MacGregor, T.R.; Casteles, M.A.; Robinson, P. Evaluation of steady-state pharmacokinetic interactions between ritonavir-boosted BILR 355, a non-nucleoside reverse transcriptase inhibitor, and lamivudine/zidovudine in healthy subjects. J. Clin. Pharm. Ther. 2012, 37, 81–88. [Google Scholar] [CrossRef]
- Margolis, D.A.; Gonzalez-Garcia, J.; Stellbrink, H.; Eron, J.J.; Yazdanpanah, Y.; Podzamczer, D.; Lutz, T.; Angel, J.B.; Richmond, G.J.; Clotet, B.; et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet 2017, 390, 1499–1510. [Google Scholar] [CrossRef]
- McMillan, J.E.; Slachetka, A.; Slack, L.; Sillman, B.; Lamberty, B.; Morsey, B.; Callen, S.; Gautam, N.; Alnouti, Y.; Edagwa, B.; et al. Pharmacokinetics of a long-acting nanoformulated dolutegravir prodrug in rhesus macaques. Antimicrob. Agents Chemother. 2018, 62, e01316–e01317. [Google Scholar] [CrossRef] [Green Version]
- Gautam, N.; Roy, U.; Balkundi, S.; Puliguija, P.; Guo, D.; Smith, N.; Liu, X.; Lamberty, B.; Morsey, B.; Fox, H.S.; et al. Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob. Agents Chemother. 2013, 57, 3110–3120. [Google Scholar] [CrossRef] [Green Version]
- Benhabbour, S.R.; Kovarova, M.; Jones, C.; Copeland, D.J.; Shrivastava, R.; Swanson, M.D.; Sykes, C.; Ho, P.T.; Cottrell, M.L.; Sridharan, A.; et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Foster, C.; Ayers, S.; Fidler, S. Antiretroviral adherence for adolescents growing up with HIV: Understanding real life, drug delivery and forgiveness. Ther. Adv. Infect. Dis. 2020, 7. [Google Scholar] [CrossRef]
- Rasmussen, T.A.; Tolstrup, M.; Søgaard, O.S. Reversal of Latency as Part of a Cure for HIV-1. Trends Microbiol. 2016, 24, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.A.; Lewin, S.R. Shocking HIV out of hiding: Where are we with clinical trials of latency reversing agents? Curr. Opin. HIV AIDS 2016, 11, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C 2020, 112, 110924. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M.C.; Ballard, T.E.; Ackerson, C.J.; Feldheim, D.L.; Margolis, D.M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897. [Google Scholar] [CrossRef] [Green Version]
- Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 2010, 8, 1–10. [Google Scholar] [CrossRef]
- Pollock, S.; Nichita, N.B.; Böhmer, A.; Radulescu, C.; Dwek, R.A.; Zitzmann, N. Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells. Proc. Natl. Acad. Sci. USA 2010, 107, 17176–17181. [Google Scholar] [CrossRef] [Green Version]
- Abeer, M.M.; Rewatkar, P.; Qu, Z.; Talekar, M.; Kleitz, F.; Schmid, R.; Lindén, M.; Kumeria, T.; Popat, A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J. Control. Release 2020, 326, 544–555. [Google Scholar] [CrossRef]
- Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Bauch, T.; Graviss, E.A.; Arduino, R.C.; Kimata, J.T.; Chen, M.; Wang, J. Clearance of HIV infection by selective elimination of host cells capable of producing HIV. Nat. Commun. 2020, 11, 1–15. [Google Scholar]
- Yang, H.; Wallace, Z.; Dorrell, L. Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front. Immunol. 2018, 9, 2861. [Google Scholar] [CrossRef]
- Margolis, D.M.; Archin, N.M.; Cohen, M.S.; Eron, J.J.; Ferrari, G.; Garcia, V.J.; Gay, C.L.; Goonetilleke, N.; Joseph, S.B.; Swanstrom, R.; et al. Curing HIV: Seeking to Target and Clear Persistent Infection. Cell 2020, 181, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.; Sweeney, E.E.; Fernandes, R. Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Shattock, R.J.; Doms, R.W. AIDS models: Microbicides could learn from vaccines. Nat. Med. 2002, 8, 425. [Google Scholar] [CrossRef] [PubMed]
- Caskey, M.; Klein, F.; Lorenzi, J.C.; Seaman, M.S.; West, A.P., Jr.; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015, 522, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Barouch, D.H.; Whitney, J.B.; Moldt, B.; Klein, F.; Oliveria, T.Y.; Liu, J.; Stephenson, K.; Chang, H.; Shekhar, K.; Gupta, S.; et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 2013, 503, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.T.D.; Ofek, G.; Schatzle, S.; McDaniel, J.R.; Lu, X.; Nicely, N.; Wu, L.; Lougheed, C.S.; Bradley, T.; Louder, M.K.; et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci. Immunol. 2017, 2, eaal2200. [Google Scholar] [CrossRef] [Green Version]
- Santra, S.; Tomaras, G.D.; Warrier, R.; Nicely, N.I.; Liao, X.; Pollara, J.; Liu, P.; Alam, S.M.; Zhang, R.; Cocklin, S.L.; et al. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathog. 2015, 11, e1005042. [Google Scholar] [CrossRef]
- Schoofs, T.; Klein, F.; Braunshweig, M.; Kreider, E.F.; Feldmann, A.; Nogueria, L.; Oliveira, T.; Lorenzi, J.C.C.; Parrish, E.H.; Learn, G.H.; et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016, 352, 997–1001. [Google Scholar] [CrossRef] [Green Version]
- Moog, C.; Dereuddre-Bosquet, N.; Teillaud, J.-L.; Biedma, M.E.; Holl, V.; Van Ham, G.; Heyndrickx, L.; Van Dorsselaer, A.; Katinger, D.; Vcelar, B.; et al. Protective effect of vaginal application of neutralizing and nonneutralizing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal Immunol. 2014, 7, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.M.; Boritz, E.; Coates, E.E.; DeZure, A.; Madden, P.; Costner, P.; Enama, M.E.; Plummer, S.; Holman, L.; Handel, C.S.; et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 2015, 7, 319ra206. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.; Haynes, B.F.; Koenig, S.; Nordstrom, J.L.; Margolis, D.M.; Tomaras, G.D. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat. Rev. Drug Discov. 2016, 15, 823–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegu, A.; Asokan, M.; Wu, L.; Wang, K.; Hataye, J.; Casazza, J.P.; Guo, X.; Shi, W.; Georgiev, I.; Zhou, T.; et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.A.M.; Pickeral, J.; Liu, L.; Stanfield-Oakley, S.A.; Lam, C.Y.; Garrido, C.; Pollara, J.; LaBranche, C.; Bonsignori, M.; Moody, M.A.; et al. Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells. J. Clin. Investig. 2015, 125, 4077–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, I.M.; Somia, N. Gene therapy-promises, problems and prospects. Nature 1997, 389, 239–242. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Kohn, D.B. Overview of the current status of gene therapy for primary immune deficiencies (PIDs). J. Allergy Clin. Immunol. 2020, 146, 229–233. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Bobbin, M.L.; Burnett, J.C.; Rossi, J.J. RNA interference approaches for treatment of HIV-1 infection. Genome Med. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Novina, C.D.; Murray, M.F.; Dykxhoorn, D.M.; Beresford, P.J.; Riess, J.; Lee, S.-K.; Collman, R.G.; Lieberman, J.; Shankar, P.; Sharp, P. A siRNA-directed inhibition of HIV-1 infection. Nat. Med. 2002, 8, 681–686. [Google Scholar] [CrossRef]
- Sánchez-Milla, M.; Pastor, I.; Mali, M.; Serramía, M.J.; Gomez, R.; Sanchez-Nievas, J.; Ritort, F.; Muñoz-Fernandez, M.A.; De la Mata, F.J. Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids Surfaces B Biointerfaces 2018, 162, 380–388. [Google Scholar] [CrossRef]
- Herrera-Carrillo, E.; Gao, Z.; Berkhout, B. CRISPR therapy towards an HIV cure. Brief. Funct. Genom. 2020, 19, 201–208. [Google Scholar] [CrossRef]
- Hashmat, R.; Yousaf, M.Z.; Rahman, Z.; Anjum, K.M.; Yaqoob, A.; Imran, M. Crispr-cas replacing antiviral drugs against hiv: An update. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tomitaka, A.; Raymond, A.; Nair, M. Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Ther. 2017, 24, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, A. Towards a novel therapy against AIDS. Med. Hypotheses 2020, 137, 109569. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, R.; Sghia-Hughes, G.; Reid, J.K.; Kubek, S.; Haworth, K.G.; Humbert, O.; Kiem, H.-P.; Adair, J.E. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat. Mater. 2019, 18, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Al-Bayati, K.; Ho, E.A. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv. Transl. Res. 2017, 7, 497–506. [Google Scholar] [CrossRef]
- Dash, P.K.; Kaminski, R.; Bella, R.; Su, H.; Mathews, S.; Ahooyi, T.M.; Chen, C.; Mancuso, P.; Sariyer, R.; Ferrante, P.; et al. Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat. Commun. 2019, 10, 1–20. [Google Scholar] [CrossRef] [Green Version]
Prevention Approach | Goal | Nanoformulation | References |
---|---|---|---|
Vaccines | Transport of HIV antigens to targeted immune cells | Chitosan/dextran sulfate NPs with HIV antigenic peptides | [48,49] |
G4-70/30 dendrimer and the β-cyclodextrin derivative AMC6 for peptide delivery | [50] | ||
Complex based on fourth- generation poly(amidoamine) dendrimers (G4-PAMAM) and peptide epitopes | [54] | ||
PLGA NPs with HIV antigenic peptide conjugated to an adjuvant | [55] | ||
Inulin acetate NPs with encapsulated antigen (ovalbumin) | [52] | ||
DNA vaccine delivery | (PEG-g-PEI)/DNA polyplexes formulated into PLGA microspheres | [53] |
Topical Microbicides | Type of NSs | NSs or Nanoformulation | Mechanism/Description | References |
Carbosilane dendrimers | Anionic carbosilane dendrimers: G2-S16 and others | Anti-HIV-1 and anti-HIV-2 activity due to their ability to bind to gp120 and CD4 and interfere with their interaction. | [60,61,62] [70,71] | |
associated with nanoparticles, fatty acids | [72,73,74] | |||
associated with antiretroviral drugs, contraceptives | [63,64] | |||
Anionic poly(alkylideneamine) dendrimers with carboxylate or sulfonate terminal groups | G1C and G1S dendrimers | Antiviral activity against infection at acidic and basic pH values, long term chemical stability. | [65] | |
Polymeric systems | Poly(N-vinylcaprolactam) NGs | Inhibitory effect against HIV-1 infection by themselves. | [66] | |
PLGA NPS and lipid large unilamellar vesicles loaded with the inhibitor peptide | Release of HIV-1 fusion inhibitor peptide in vaginal mucosa. | [67] | ||
PLGA-loaded Bictegravir NPs | Bictegravir, an integrase strand transfer inhibitor, tested for prophylaxis. | [68] | ||
PLGA NPs loaded with antiretrovirals: griffithsin and dapivirine | The combination of drugs showed strong synergistic drug activity. | [69] | ||
PCL fibers surrounding PEO fibers that incorporated mPEG-PLGA NPs loaded with griffithsin | Sustained release of griffithsin during 90-day period were achieved. | [75] | ||
PLGA NPs as carriers for efavirenz | For intrarectal administration. | [76] |
Therapy Approach | NSs Class | Drug | Description | References |
---|---|---|---|---|
Drug delivery nanosystems | Mixed poloxamine/poloxamer polymeric micelles | Efavirenz | NSs greatly improved efavirenz solubility for oral administration. Drug-loaded mixed micelles also exhibited enhanced physical stability compared to pure drug. | [81] |
Polymeric NPs | Saquinavir | A Chitosan nanoformulation with saquinavir-enhanced bioavailability. In addition, poly cationic chitosan improved macrophages uptake by negatively charged proteins deposition on its surface. | [82] | |
Cyclodextrin-polymeric NPs | Efavirenz | Efavirenz-loaded chitosan-cyclodextrin NSs for intranasal administration showed sustained drug release; greater permeability than free drug; high encapsulation; and enhanced CNS bioavailability. | [83] | |
Lipidic NPs | Indinavir & PMPA | Lipid-indinavir particles with the capacity to encapsulate PMPA and calcein, and further deliver to lymph nodes and tissues. | [84] | |
Poloxamer Conjugate | Lamivudine | A folic acid-modified poloxamer with entrapped lamivudine was synthetized as a long acting nanoformulation. These NSs presented improved macrophage uptake, drug bioavailability and pharmacokinetics of drug combined with slow release. | [85] | |
Dendrimers | Bryostatin, Romidepsin & Panobinostat | Carbosilane dendrimers in combination with different LRA-produced viral reactivation in THP89GFP monocyte cell line as a new approach for HIV treatment. | [86] | |
Nanosystems as therapeutic agents | AuNPs conjugated with polyethylene glycol | No | These NSs presented excellent activity as a virucidal agent or viral entry inhibitor. Although, the mechanism of AuNPs against HIV-1 is not clear. | [87] |
AuNPs conjugated with anionic dendrons | No | Dendrons by themselves presented a lower efficiency than dendronized AuNPs; the results showed that the toxicity is decreased and antiviral activity is increased with respect to pioneering dendron compounds. | [72] | |
Silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES) | No | The NSs can block adhesion between the virus and the host cell. These NSs almost inhibited the entire viral replication of HIV and HSV-1 in human cervical cancer HeLa cells | [88] | |
MSNs | No | The NSs can bind to viral proteins through a non-specific interaction, which can effectively reduce the infectious virus strains and change the virus attack behavior. | [89] | |
Amino phenylboronic acid-modified carbon dots (APBA-CDs) | Duviral | The NSs avoid HIV-1 entry into target cells by themselves. Besides, the synergistic extracellular viral blocking when combining the APBA-CDs with the Duviral drug was demonstrated in MT-4/HIV-1 and MOLT-4 cells. | [90] | |
QDs from multi-walled carbon nanotubes (MWCNT) | CHI499 and CDF119 | The NSs exhibited a highlight antiviral activity for themselves, which improved the antiviral activity of the conjugated system since the solubility of these compounds notably increases when conjugated with the QDs. | [91] | |
Immunotherapy | PLGA NPs | Prostratin | The NSs encapsulated a LRA and anti-CD25, an antibody that binds to CD25 expressed on the surface of the target cells. In an in vitro model of latent HIV, the NSs exhibited successfull release of both. Moreover, the cytotoxicity of NK cells as antiviral or antitumor agents was enhanced. | [92] |
PLGA NPs coated with the plasma membranes of uninfected CD4+ T cells | No | The NSs presented potential to neutralize a broad range of HIV-1 strains by inhibiting replication and to induce cell death in macrophages and CD4+ T cells infected with HIV. | [93] | |
Gene therapy | Chitosan NPs modified with polyethylenimine and carboxymethyl dextran | No | The NSs noticeably increased siRNA delivery efficiency with no significant cytotoxicity. In addition, the NSs significantly reduced the RNA and protein expression of HIV-1 into two mammalian cell lines. | [94] |
Cas9/gRNA bound with magneto-electric NPs (MENPs) | No | The outcomes suggested that the NSs reduced HIV-1 infection expression significantly in comparison to unbound Cas9/gRNA. They achieved for the first time magnetically guided non-invasive delivery of Cas9/gRNA/MENPs, across the blood brain barrier. | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchione, M.A.; Aristizabal Bedoya, D.; Figueroa, F.N.; Muñoz-Fernández, M.Á.; Strumia, M.C. Nanosystems Applied to HIV Infection: Prevention and Treatments. Int. J. Mol. Sci. 2020, 21, 8647. https://doi.org/10.3390/ijms21228647
Macchione MA, Aristizabal Bedoya D, Figueroa FN, Muñoz-Fernández MÁ, Strumia MC. Nanosystems Applied to HIV Infection: Prevention and Treatments. International Journal of Molecular Sciences. 2020; 21(22):8647. https://doi.org/10.3390/ijms21228647
Chicago/Turabian StyleMacchione, Micaela A., Dariana Aristizabal Bedoya, Francisco N. Figueroa, María Ángeles Muñoz-Fernández, and Miriam C. Strumia. 2020. "Nanosystems Applied to HIV Infection: Prevention and Treatments" International Journal of Molecular Sciences 21, no. 22: 8647. https://doi.org/10.3390/ijms21228647
APA StyleMacchione, M. A., Aristizabal Bedoya, D., Figueroa, F. N., Muñoz-Fernández, M. Á., & Strumia, M. C. (2020). Nanosystems Applied to HIV Infection: Prevention and Treatments. International Journal of Molecular Sciences, 21(22), 8647. https://doi.org/10.3390/ijms21228647