Therapeutic Effect of Calcimimetics on Osteoclast–Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease
Abstract
:1. Introduction
2. Results
2.1. Bio-Demographic Characteristics of the Whole Study Population with Comparisons of Therapeutic Responses between Responders and Non-Responders after Six-Month Treatment of Cinacalcet
2.2. Baseline Lower iPTH Level Is Associated with Responsiveness to Cinacalcet Therapy
2.3. Cinacalcet Treatment Attenuates the Expression of Wnt/β-Catenin Signaling Inhibitor SOST and Enhances the Activity of Wnt-10b/Wnt 16 at 3rd and 6th Months
2.4. Cinacalcet Treatment Upregulates PINP Expression to Activate Osteoblasts Responsible for Bone Formation and Downregulates TRACP-5b Expression to Inhibit Osteoclastic Bone Resorption Along with CRP Suppression at 3rd and 6th Months
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Eligibility
4.2. Treatment Intervention
4.3. Patient Demographic Information and BMD Measurement
4.4. Serum Biochemical and Bone Metabolism Parameters
4.5. Objectives and Outcome Measuresemnt
4.6. Statistical Analysis of Data
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isakova, T.; Nickolas, T.L.; Denburg, M.; Yarlagadda, S.; Weiner, D.E.; Gutiérrez, O.M.; Bansal, V.; Rosas, S.E.; Nigwekar, S.; Yee, J.; et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis. 2017, 70, 737–751. [Google Scholar] [CrossRef] [Green Version]
- Tentori, F.; McCullough, K.; Kilpatrick, R.D.; Bradbury, B.D.; Robinson, B.M.; Kerr, P.G.; Pisoni, R.L. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014, 85, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, J.; Danese, M.; Olson, K.; Klassen, P.; Chertow, G.M. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005, 68, 1793–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.-M.; Wu, C.-C.; Hung, C.-F.; Liao, M.-T.; Shyu, J.-F.; Hsu, Y.-H.; Lu, C.-L.; Wang, Y.-H.; Zheng, J.-Q.; Chang, T.-J.; et al. Cholecalciferol Additively Reduces Serum Parathyroid Hormone Levels in Severe Secondary Hyperparathyroidism Treated with Calcitriol and Cinacalcet among Hemodialysis Patients. Nutrients 2018, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.-M.; Hsu, Y.-H.; Wu, C.-C.; Lu, C.-L.; Liu, W.-C.; Zheng, J.-Q.; Lin, Y.-F.; Chiu, H.-W.; Chang, T.-J.; Shyu, J.-F.; et al. Osteoclast-Released Wnt-10b Underlies Cinacalcet Related Bone Improvement in Chronic Kidney Disease. Int. J. Mol. Sci. 2019, 20, 2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelman-Dijkstra, N.M.; Papapoulos, S.E. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat. Rev. Endocrinol. 2018, 14, 605–623. [Google Scholar] [CrossRef] [PubMed]
- Cici, D.; Corrado, A.; Rotondo, C.; Cantatore, F.P. Wnt Signaling and Biological Therapy in Rheumatoid Arthritis and Spondyloarthritis. Int. J. Mol. Sci. 2019, 20, 5552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weivoda, M.M.; Youssef, S.J.; Oursler, M.J. Sclerostin expression and functions beyond the osteocyte. Bone 2017, 96, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, L.V.; Galvin, R.J.; Risteli, J.; Ma, Y.L.; Harvey, A.K.; Yang, X.; Cain, R.L.; Zeng, Q.; Frolik, C.A.; Sato, M.; et al. PINP: A serum biomarker of bone formation in the rat. Bone 2007, 40, 1103–1109. [Google Scholar] [CrossRef]
- Hong, L.; Liu, D.; Wu, F.; Wang, M.; Cen, Y.; Ma, L. Correlation between Bone Turnover Markers and Bone Mineral Density in Patients Undergoing Long-Term Anti-Osteoporosis Treatment: A Systematic Review and Meta-Analysis. Appl. Sci. 2020, 10, 832. [Google Scholar] [CrossRef] [Green Version]
- Halleen, J.M.; Tiitinen, S.L.; Ylipahkala, H.; Fagerlund, K.M.; Väänänen, H.K. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin. Lab. 2006, 52, 499–509. [Google Scholar] [PubMed]
- Tsuruta, Y.; Okano, K.; Kikuchi, K.; Tsuruta, Y.; Akiba, T.; Nitta, K. Effects of cinacalcet on bone mineral density and bone markers in hemodialysis patients with secondary hyperparathyroidism. Clin. Exp. Nephrol. 2013, 17, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Methven, S.; Gasparini, A.; Barany, P.; Birnie, K.; MacNeill, S.; May, M.T.; Caskey, F.J.; Carrero, J.-J. Cinacalcet use and the risk of cardiovascular events, fractures and mortality in chronic kidney disease patients with secondary hyperparathyroidism. Sci. Rep. 2018, 8, 2103. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.M.; Abdalla, S.; Chertow, G.M.; Parfrey, P.S.; Block, G.A.; Correa-Rotter, R.; Floege, J.; Herzog, C.A.; London, G.M.; Mahaffey, K.W.; et al. Effects of Cinacalcet on Fracture Events in Patients Receiving Hemodialysis: The EVOLVE Trial. J. Am. Soc. Nephrol. 2015, 26, 1466–1475. [Google Scholar] [CrossRef]
- Akizawa, T.; Kurita, N.; Mizobuchi, M.; Fukagawa, M.; Onishi, Y.; Yamaguchi, T.; Ellis, A.R.; Fukuma, S.; Alan Brookhart, M.; Hasegawa, T.; et al. PTH-dependence of the effectiveness of cinacalcet in hemodialysis patients with secondary hyperparathyroidism. Sci. Rep. 2016, 6, 19612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Y.-P.; Paulson, C.; Shao, J.-Z.; Zhang, X.; Wu, M.; Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. Landmark Ed. 2014, 19, 379–407. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.N.; Longo, K.A.; Wright, W.S.; Suva, L.J.; Lane, T.F.; Hankenson, K.D.; MacDougald, O.A. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 2005, 102, 3324–3329. [Google Scholar] [CrossRef] [Green Version]
- Gori, F.; Lerner, U.; Ohlsson, C.; Baron, R. A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures. Bonekey Rep. 2015, 4, 669. [Google Scholar] [CrossRef] [Green Version]
- Movérare-Skrtic, S.; Henning, P.; Liu, X.; Nagano, K.; Saito, H.; Börjesson, A.E.; Sjögren, K.; Windahl, S.H.; Farman, H.; Kindlund, B.; et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 2014, 20, 1279–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Ethen, N.J.; Williams, B.O. WNT signaling in bone development and homeostasis. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Q.; Cao, G.; Chen, H.; Liu, D.; Su, W.; Yu, X.-Y.; Vaziri, N.D.; Liu, X.-H.; Bai, X.; Zhang, L.; et al. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol. 2017, 12, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Liu, X.; Wang, J.; Chen, X.; Zhang, H.; Kim, S.H.; Cui, J.; Li, R.; Zhang, W.; Kong, Y.; et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther. Adv. Musculoskelet. Dis. 2013, 5, 13–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.-F.; Chou, Y.-S.; Wu, C.-C.; Chen, P.-C.; Ko, W.-C.; Liou, J.-C.; Hsieh, C.-Y.; Lin, W.-N.; Wen, L.-L.; Chang, S.-W.; et al. A Joint Evaluation of Neurohormone Vasopressin-Neurophysin II-Copeptin and Aortic Arch Calcification on Mortality Risks in Hemodialysis Patients. Front. Med. Lausanne 2020, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, W.-C.; Choy, C.-S.; Lin, W.-N.; Chang, S.-W.; Liou, J.-C.; Tung, T.-H.; Hsieh, C.-Y.; Chang, J.-F. Galectin-3 Interacts with Vascular Cell Adhesion Molecule-1 to Increase Cardiovascular Mortality in Hemodialysis Patients. J. Clin. Med. 2018, 7, 300. [Google Scholar] [CrossRef] [Green Version]
- Drechsler, C.; Evenepoel, P.; Vervloet, M.G.; Wanner, C.; Ketteler, M.; Marx, N.; Floege, J.; Dekker, F.W.; Brandenburg, V.M. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: Results from the NECOSAD study. Nephrol. Dial. Transplant. 2015, 30, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Macías, I.; Alcorta-Sevillano, N.; Rodríguez, C.I.; Infante, A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 1653. [Google Scholar] [CrossRef] [Green Version]
- Janckila, A.J.; Neustadt, D.H.; Yam, L.T. Significance of serum TRACP in rheumatoid arthritis. J. Bone Miner. Res. 2008, 23, 1287–1295. [Google Scholar] [CrossRef]
- Susantitaphong, P.; Vadcharavivad, S.; Susomboon, T.; Singhan, W.; Dumrongpisutikul, N.; Jakchairoongruang, K.; Eiam-Ong, S.; Praditpornsilpa, K. The effectiveness of cinacalcet: A randomized, open label study in chronic hemodialysis patients with severe secondary hyperparathyroidism. Ren. Fail. 2019, 41, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.C.; Tseng, C.F.; Wu, C.C.; Yeung, L.K.; Chen, J.S.; Chao, T.Y.; Janckila, A.J.; Yam, L.T.; Chu, P. Effects of calcitriol on type 5b tartrate-resistant acid phosphatase and interleukin-6 in secondary hyperparathyroidism. Blood Purif. 2006, 24, 423–430. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chang, J.-H.; Chen, C.-C.; Su, S.-B.; Yang, L.-K.; Ma, W.-Y.; Zheng, C.-M.; Diang, L.-K.; Lu, K.-C. Calcitriol Treatment Attenuates Inflammation and Oxidative Stress in Hemodialysis Patients with Secondary Hyperparathyroidism. Tohoku J. Exp. Med. 2011, 223, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.R.; Olauson, H.; Witasp, A.; Haarhaus, M.; Brandenburg, V.; Wernerson, A.; Lindholm, B.; Söderberg, M.; Wennberg, L.; Nordfors, L.; et al. Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int. 2015, 88, 1356–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, A.; Bellone, F.; Morabito, N.; Corica, F. Sclerostin and Vascular Pathophysiology. Int. J. Mol. Sci. 2020, 21, 4779. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Gok, M.; Cetinkaya, H.; Karaman, M.; Unal, H.U.; Oguz, Y.; Sari, S.; et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J. Clin. Endocrinol. Metab. 2014, 99, E1854–E1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Zheng, D.; Yuan, J.; Cao, L.; Ni, Z.; Fang, W. Elevated levels of serum sclerostin are linked to adverse cardiovascular outcomes in peritoneal dialysis patients. Int. Urol. Nephrol. 2018, 50, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-C.; Wu, C.-C.; Yen, J.-F.; Liu, W.-C. Vascular calcification and renal bone disorders. Sci. World J. 2014, 2014, 637065. [Google Scholar] [CrossRef]
- Costa, A.G.; Cremers, S.; Bilezikian, J.P. Sclerostin measurement in human disease: Validity and current limitations. Bone 2017, 96, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Kuczera, P.; Adamczak, M.; Więcek, A. Treatment with cinacalcet increases plasma sclerostin concentration in hemodialysis patients with secondary hyperparathyroidism. BMC Nephrol. 2016, 17, 176. [Google Scholar] [CrossRef] [Green Version]
Variables | Overall (n = 40) | Responders (n = 32) | Non-Responders (n = 8) | p-Value |
---|---|---|---|---|
mean ± SD | mean ± SD | mean ± SD | ||
Age (years) | 54.8 ± 10.9 | 55.4 ± 11.3 | 50.8 ± 7.7 | 0.25 |
Male, n (%) | 27 (67.5%) | 22 (64.7%) | 5 (83.3%) | 0.35 |
HD duration (years) | 6.5 ± 5.6 | 6.3 ± 5.9 | 7.3 ± 4.1 | 0.68 |
Baseline BMD (g/cm2) | 1.1 ± 0.4 | 1.1 ± 0.4 | 1.1 ± 0.2 | 0.93 |
T score | 1.0 ± 1.5 | 1.3 ± 1.5 | 1. ± 0.2 | 0.93 |
Z score | 1.1 ± 0.4 | 1.1 ± 0.4 | 1.1 ± 0.2 | 0.93 |
iPTH (pg/mL) | 748.6 ± 389.6 | 694.1 ± 318.6 | 1012.2 ± 602.8 | 0.03 |
Calcium (mg/dL) | 9.1 ± 0.8 | 9.1 ± 0.8 | 9.0 ± 0.8 | 0.60 |
Phosphate (mg/dL) | 5.6 ± 1.4 | 5.7 ± 1.4 | 5.6 ± 1.8 | 0.89 |
Albumin (mg/dL) | 3.8 ± 0.4 | 3.8 ± 0.4 | 3.8 ± 0.2 | 0.85 |
Hematocrit (%) | 32.0 ± 3.2 | 32.0 ± 3.4 | 32.0 ± 2.4 | 0.73 |
Hemoglobin (g/dL) | 10.8 ± 1.2 | 10.7 ± 1.3 | 10.9 ± 0.6 | 0.99 |
ALK-P (IU/L) | 111.3 ± 87.3 | 109.9 ± 89.0 | 119.3 ± 85.8 | 0.81 |
Uric acid (mg/dL) | 7.3 ± 1.5 | 7.2 ± 1.5 | 7.5 ± 1.4 | 0.71 |
Triglyceride (mg/dL) | 176.8 ± 126.1 | 185.8 ± 136.0 | 116.3 ± 38.8 | 0.23 |
T-Cholesterol (mg/dL) | 157.8 ± 43.6 | 158.8 ± 46.9 | 153.0 ± 23.7 | 0.66 |
HbA1C (%) | 7.1 ± 1.9 | 7.6 ± 2.1 | 6.2 ± 1.3 | 0.18 |
SOST (pg/mL) | 127.3 ± 103.7 | 133.3 ± 107.3 | 94.3 ± 80.3 | 0.33 |
Wnt 10B (pg/mL) | 123.5 ± 24.5 | 122.5 ± 25.1 | 120.9 ± 22.4 | 0.54 |
Wnt 16 (pg/mL) | 166.5 ± 74.3 | 168.2 ± 78.0 | 157.3 ± 52.8 | 0.68 |
PINP (ng/mL) | 0.9 ± 0.4 | 0.9 ± 0.4 | 0.8 ± 0.4 | 0.59 |
TRACP-5b (IU/L) | 16.5 ± 0.4 | 16.6 ± 0.4 | 16.4 ± 0.4 | 0.90 |
CRP (mg/L) | 2.5 ± 2.7 | 2.6 ± 2.8 | 2.1 ± 1.1 | 0.46 |
25(OH)D3 (ng/mL) | 13.2 ± 9.6 | 12.7 ± 9.7 | 15.7 ± 9.2 | 0.49 |
Responders (n = 32) | Non-Responders (n = 8) | p-Values | |
---|---|---|---|
BMD changes | 0.18 ± 0.33 | −0.04 ± 0.05 | <0.05 |
T score changes | 0.27 ± 0.81 | −0.36 ± 0.46 | <0.05 |
Z score changes | 0.21 ± 0.77 | −0.36 ± 0.40 | <0.05 |
Variable | Univariate OR for Responsiveness (95% CI) | p-Value |
---|---|---|
iPTH (pg/mL) | 0.98 (0.96–1.00) | 0.05 |
ALK-P (IU/L) | 1.00 (0.99–1.01) | 0.80 |
Calclium (mg/dL) | 1.10 (0.34–3.55) | 0.87 |
Phosphate (mg/dL) | 1.05 (0.56–1.96) | 0.88 |
SOST (pg/mL) | 1.01 (0.99–1.02) | 0.40 |
Wnt 10B (pg/mL) | 0.99 (0.95–1.03) | 0.55 |
Wnt 16 (pg/mL) | 1.00 (0.99–1.02) | 0.74 |
PINP (ng/mL) | 2.19 (0.18-6.71) | 0.54 |
TRACP-5b (IU/L) | 1.15 (0.14–9.86) | 0.90 |
CRP (mg/L) | 1.09 (0.72–1.66) | 0.68 |
25(OH)D3 (ng/mL) | 0.97 (0.89–1.06) | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, K.-C.; Chang, J.-F.; Hsu, Y.-H.; Hsieh, C.-Y.; Wu, M.-S.; Wu, M.-Y.; Chiu, I.-J.; Syu, R.-S.; Wang, T.-M.; Wu, C.-C.; et al. Therapeutic Effect of Calcimimetics on Osteoclast–Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. Int. J. Mol. Sci. 2020, 21, 8712. https://doi.org/10.3390/ijms21228712
Hung K-C, Chang J-F, Hsu Y-H, Hsieh C-Y, Wu M-S, Wu M-Y, Chiu I-J, Syu R-S, Wang T-M, Wu C-C, et al. Therapeutic Effect of Calcimimetics on Osteoclast–Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. International Journal of Molecular Sciences. 2020; 21(22):8712. https://doi.org/10.3390/ijms21228712
Chicago/Turabian StyleHung, Kuo-Chin, Jia-Feng Chang, Yung-Ho Hsu, Chih-Yu Hsieh, Mai-Szu Wu, Mei-Yi Wu, I-Jen Chiu, Ren-Si Syu, Ting-Ming Wang, Chang-Chin Wu, and et al. 2020. "Therapeutic Effect of Calcimimetics on Osteoclast–Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease" International Journal of Molecular Sciences 21, no. 22: 8712. https://doi.org/10.3390/ijms21228712
APA StyleHung, K. -C., Chang, J. -F., Hsu, Y. -H., Hsieh, C. -Y., Wu, M. -S., Wu, M. -Y., Chiu, I. -J., Syu, R. -S., Wang, T. -M., Wu, C. -C., Hung, L. -Y., Zheng, C. -M., & Lu, K. -C. (2020). Therapeutic Effect of Calcimimetics on Osteoclast–Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. International Journal of Molecular Sciences, 21(22), 8712. https://doi.org/10.3390/ijms21228712