Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton
Abstract
:1. Introduction
2. Biomechanical Properties of Cells Measured by AFM
2.1. Brief Description of AFM-Based Elasticity Measurements
2.2. Hertz–Sneddon Contact Mechanics in Determination of Mechanical Properties of Cells
3. Nanomechanical Properties of a Cell Cytoskeleton
4. Mechanics of Actin Filaments and Microtubules as Targets for Antitumor Therapy
5. Non-Cytoskeleton Interacting Drugs Affecting Cancer Cell Biomechanics
6. Biomechanics in Cancer Cell Resistance to Antitumor Drugs
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 1997, 16, 47–57. [Google Scholar] [CrossRef]
- Goldmann, W.H.; Ezzell, R.M. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp. Cell Res. 1996, 226, 234–237. [Google Scholar] [CrossRef]
- Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 1999, 28, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Rianna, C.; Radmacher, M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. Eur. Biophys. J. 2017, 46, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Brás, M.M.; Radmacher, M.; Sousa, S.R.; Granja, P.L. Melanoma in the Eyes of Mechanobiology. Front. Cell Dev. Biol. 2020, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekka, M. Discrimination Between Normal and Cancerous Cells Using AFM. Bionanoscience 2016, 6, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaraz, J.; Otero, J.; Jorba, I.; Navajas, D. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin. Cell Dev. Biol. 2018, 73, 71–81. [Google Scholar] [CrossRef]
- Pyka-Fościak, G.; Zemła, J.; Lis, G.J.; Litwin, J.A.; Lekka, M. Changes in spinal cord stiffness in the course of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Arch. Biochem. Biophys. 2020, 680, 108221. [Google Scholar] [CrossRef]
- Sokolov, I.; Dokukin, M.E.; Kalaparthi, V.; Miljkovic, M.; Wang, A.; Seigne, J.D.; Grivas, P.; Demidenko, E. Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 12920–12925. [Google Scholar] [CrossRef] [Green Version]
- Ketene, A.N.; Schmelz, E.M.; Roberts, P.C.; Agah, M. The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 93–102. [Google Scholar] [CrossRef]
- Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 2008, 374, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Staunton, J.R.; Doss, B.L.; Lindsay, S.; Ros, R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen i matrices. Sci. Rep. 2016, 6, 19686. [Google Scholar] [CrossRef] [Green Version]
- Puricelli, L.; Galluzzi, M.; Schulte, C.; Podestà, A.; Milani, P. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes. Rev. Sci. Instrum. 2015, 86, 033705. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.; Shao, Y.; Wineman, A.; Fu, J.; Waas, A. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells. Math. Biosci. 2016, 277, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Faria, E.C.; Ma, N.; Gazi, E.; Gardner, P.; Brown, M.; Clarke, N.W.; Snook, R.D. Measurement of elastic properties of prostate cancer cells using AFM. Analyst 2008, 133, 1498–1500. [Google Scholar] [CrossRef] [PubMed]
- Lekka, M.; Laidler, P.; Ignacak, J.J.; Labd, M.; Lekki, J.; Struszczyk, H.; Stachura, Z.; Hrynkiewicz, A.Z. The effect of chitosan on stiffness and glycolytic activity of human bladder cells. Biochim. Biophys. Acta Mol. Cell Res. 2001, 1540, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.R.; Pabijan, J.; Garcia, R.; Lekka, M. The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J. Nanotechnol. 2014, 5, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Nyberg, K.D.; Scott, M.B.; Welsh, A.M.; Nguyen, A.H.; Wu, N.; Hohlbauch, S.V.; Geisse, N.A.; Gibb, E.A.; Robertson, A.G.; et al. stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr. Biol. UK 2016, 8, 1232–1245. [Google Scholar] [CrossRef]
- Bobrowska, J.; Awsiuk, K.; Pabijan, J.; Bobrowski, P.; Lekki, J.; Sowa, K.M.; Rysz, J.; Budkowski, A.; Lekka, M. Biophysical and biochemical characteristics as complementary indicators of melanoma progression. Anal. Chem. 2019, 91, 9885–9892. [Google Scholar] [CrossRef]
- Butt, H.J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [Google Scholar] [CrossRef] [Green Version]
- Pillet, F.; Chopinet, L.; Formosa, C.; Dague, É. Atomic Force Microscopy and pharmacology: From microbiology to cancerology. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 1028–1050. [Google Scholar] [CrossRef] [PubMed]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 1882, 156–171. [Google Scholar]
- Sneddon, I.N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Stylianou, A.; Nikita, K.S.; Malamou, A. A discussion regarding the application of the Hertz contact theory on biological samples in AFM nanoindentation experiments. Micro Nanosyst. 2020, 12. [Google Scholar] [CrossRef]
- Schillers, H.; Rianna, C.; Schäpe, J.; Luque, T.; Doschke, H.; Wälte, M.; Uriarte, J.J.; Campillo, N.; Michanetzis, G.P.A.; Bobrowska, J.; et al. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Sci. Rep. 2017, 7, 5117. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. 1971, 324, 301–313. [Google Scholar]
- Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 1975, 53, 314–326. [Google Scholar] [CrossRef]
- Wang, J.H.C.; Thampatty, B.P. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 2006, 5, 1–16. [Google Scholar] [CrossRef]
- Hawkins, T.; Mirigian, M.; Selcuk Yasar, M.; Ross, J.L. Mechanics of microtubules. J. Biomech. 2010, 43, 23–30. [Google Scholar] [CrossRef]
- Amos, L.A.; Schlieper, D. Microtubules and maps. Adv. Protein Chem. 2005, 71, 257–298. [Google Scholar]
- Rogers, G.C.; Rogers, S.L.; Sharp, D.J. Spindle microtubules in flux. J. Cell Sci. 2005, 118, 1105–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science 2009, 326, 1208–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, D.; Levine, H.; Rappel, W.J. Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. USA 2012, 109, 6851–6856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bershadsky, A.D.; Balaban, N.Q.; Geiger, B. Adhesion-Dependent Cell Mechanosensitivity. Annu. Rev. Cell Dev. Biol. 2003, 19, 677–695. [Google Scholar] [CrossRef] [Green Version]
- Huber, F.; Boire, A.; López, M.P.; Koenderink, G.H. Cytoskeletal crosstalk: When three different personalities team up. Curr. Opin. Cell Biol. 2015, 32, 39–47. [Google Scholar] [CrossRef]
- Sens, P.; Plastino, J. Membrane tension and cytoskeleton organization in cell motility. J. Phys. Condens. Matter 2015, 27, 273103. [Google Scholar] [CrossRef]
- Hohmann, T.; Dehghani, F. The Cytoskeleton—A Complex Interacting Meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Rotsch, C.; Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 2000, 78, 520–535. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Huang, H.; Liu, Y.; Zheng, X.; Zou, Q. An atomic force microscope study revealed two mechanisms in the effect of anticancer drugs on rate-dependent Young’s modulus of human prostate cancer cells. PLoS ONE 2015, 10, e0126107. [Google Scholar] [CrossRef]
- Grady, M.E.; Composto, R.J.; Eckmann, D.M. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J. Mech. Behav. Biomed. Mater. 2016, 61, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Schliwa, M. Action of cytochalasin D on cytoskeletal networks. J. Cell Biol. 1982, 92, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.W.; Kuhn, T.; Moy, V.T. Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 1998, 20, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mollaeian, K.; Shamim, M.H.; Ren, J. Effect of F-actin and microtubules on cellular mechanical behavior studied using atomic force microscope and an image recognition-based cytoskeleton quantification approach. Int. J. Mol. Sci. 2020, 21, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floor, S.L.; Dumont, J.E.; Maenhaut, C.; Raspe, E. Hallmarks of cancer: Of all cancer cells, all the time? Trends Mol. Med. 2012, 18, 509–515. [Google Scholar] [CrossRef]
- Su, X.; Zhang, L.; Kang, H.; Zhang, B.; Bao, G.; Wang, J. Mechanical, nanomorphological and biological reconstruction of early-stage apoptosis in HeLa cells induced by cytochalasin B. Oncol. Rep. 2019, 41, 928–938. [Google Scholar] [CrossRef]
- Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.L. 2011: The immune hallmarks of cancer. Cancer Immunol. Immunother. 2011, 60, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Stark, R.; Liebes, L.F.; Nevrla, D.; Conklyn, M.; Silber, R. Decreased actin content of lymphocytes from patients with chronic lymphocytic leukemia. Blood 1982, 59, 536–541. [Google Scholar] [CrossRef]
- Tavares, S.; Vieira, A.F.; Taubenberger, A.V.; Araújo, M.; Martins, N.P.; Brás-Pereira, C.; Polónia, A.; Herbig, M.; Barreto, C.; Otto, O.; et al. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017, 8, 15237. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kurisu, S.; Takenawa, T. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005, 96, 379–386. [Google Scholar] [CrossRef]
- Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev. 2009, 28, 5–14. [Google Scholar] [CrossRef]
- Jordan, M.A.; Wilson, L. Microtubules As a Target for. Nat. Rev. Cancer 2004, 4, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Kanthou, C.; Tozer, G.M. Microtubule depolymerizing vascular disrupting agents: Novel therapeutic agents for oncology and other pathologies. Int. J. Exp. Pathol. 2009, 90, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Akhmanova, A. Microtubule tip-interacting proteins: A view from both ends. Curr. Opin. Cell Biol. 2011, 23, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Tsvetkov, P.O.; Breuzard, G.; Devred, F. Deciphering the molecular mechanisms of anti-tubulin plant derived drugs. Phytochem. Rev. 2014, 13, 157–169. [Google Scholar] [CrossRef]
- López, M.P.; Huber, F.; Grigoriev, I.; Steinmetz, M.O.; Akhmanova, A.; Koenderink, G.H.; Dogterom, M. Actin-microtubule coordination at growing microtubule ends. Nat. Commun. 2014, 5, 5778. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, J.J.; Parness, J.; Horwitz, S.B. Taxoi binds to cellular microtubules. J. Cell Biol. 1982, 94, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 2014, 4, 153. [Google Scholar] [CrossRef] [Green Version]
- Morel, D.; Jeffery, D.; Aspeslagh, S.; Almouzni, G.; Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—Past lessons and future promise. Nat. Rev. Clin. Oncol. 2020, 17, 91–107. [Google Scholar] [CrossRef]
- Wang, X.P.; Chen, T.S.; Sun, L.; Cai, J.Y.; Wu, M.Q.; Mok, M. Live morphological analysis of taxol-induced cytoplasmic vacuoliazation in human lung adenocarcinoma cells. Micron 2008, 39, 1216–1221. [Google Scholar] [CrossRef]
- Au, N.P.B.; Fang, Y.; Xi, N.; Lai, K.W.C.; Ma, C.H.E. Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1323–1333. [Google Scholar] [CrossRef]
- Yun, X.; Tang, M.; Yang, Z.; Wilksch, J.J.; Xiu, P.; Gao, H.; Zhang, F.; Wang, H. Interrogation of drug effects on HeLa cells by exploiting new AFM mechanical biomarkers. RSC Adv. 2017, 7, 43764–43771. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Cho, C.H.; Park, E.K.; Jung, M.H.; Yoon, K.S.; Park, H.K. AFM-Detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PLoS ONE 2012, 7, e30066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elie-Caille, C.; Severin, F.; Helenius, J.; Howard, J.; Muller, D.J.; Hyman, A.A. Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol. Curr. Biol. 2007, 17, 1765–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kaffas, A.; Bekah, D.; Rui, M.; Carl Kumaradas, J.; Kolios, M.C. Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology. Phys. Med. Biol. 2013, 58, 923–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudenska, M.; Kratochvilova, M.; Vicar, T.; Gumulec, J.; Balvan, J.; Polanska, H.; Pribyl, J.; Masarik, M. Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation. Sci. Rep. 2019, 9, 1660. [Google Scholar] [CrossRef]
- Lin, C.C.K.; Yang, C.H.; Ju, M.S. Cytotoxic and biomechanical effects of clinical dosing schemes of paclitaxel on neurons and cancer cells. Cancer Chemother. Pharmacol. 2020, 86, 245–255. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Li, L.; Zhu, X.; Liu, J.; Wang, X.; Song, Z.; Xu, H.; Wang, Z. Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope. J. Biomech. 2018, 67, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Kasas, S.; Wang, X.; Hirling, H.; Marsault, R.; Huni, B.; Yersin, A.; Regazzi, R.; Grenningloh, G.; Riederer, B.; Forrò, L.; et al. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil. Cytoskeleton 2005, 62, 124–132. [Google Scholar] [CrossRef]
- Hung, M.S.; Tsai, M.F. Investigating the Influence of Anticancer Drugs on the Mechanics of Cells Using AFM. Bionanoscience 2015, 5, 156–161. [Google Scholar] [CrossRef]
- Li, W.; Xue, J.; Xu, H. Combined administration of PTX and S-HM-3 in TPGS/solutol micelle system for oncotarget therapy. Int. J. Nanomed. 2019, 14, 1011–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkenazy-Shahar, M.; Ben-Porat, H.; Beitner, R. Insulin stimulates binding of phosphofructokinase to cytoskeleton and increases glucose 1,6-bisphosphate levels in NIH-3T3 fibroblasts, which is prevented by calmodulin antagonists. Mol. Genet. Metab. 1998, 65, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, D.; Freire, J.M.; Pacheco, T.R.; Barata, J.T.; Castanho, M.A.R.B. Apoptotic human neutrophil peptide-1 antitumor activity revealed by cellular biomechanics. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 308–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, S.T.W.; Lundy, F.T.; Nelson, J.; Lockhart, D.; Irwin, C.R.; Cowan, C.G.; Marley, J.J. The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncol. 2006, 42, 685–690. [Google Scholar] [CrossRef]
- Le Cigne, A.; Chièze, L.; Beaussart, A.; El-Kirat-Chatel, S.; Dufrêne, Y.F.; Dedieu, S.; Schneider, C.; Martiny, L.; Devy, J.; Molinari, M. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy. Nanoscale 2016, 8, 7144–7154. [Google Scholar] [CrossRef]
- Fang, Y.; Iu, C.Y.Y.; Lui, C.N.P.; Zou, Y.; Fung, C.K.M.; Li, H.W.; Xi, N.; Yung, K.K.L.; Lai, K.W.C. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci. Rep. 2014, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shi, Y.; Xu, H.; Zhou, L.; Gao, J.; Jiang, J.; Cai, M.; Shan, Y. Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy. RSC Adv. 2018, 8, 21793–21797. [Google Scholar] [CrossRef] [Green Version]
- Iturri, J.; Weber, A.; Moreno-Cencerrado, A.; Vivanco, M.D.; Benítez, R.; Leporatti, S.; Toca-Herrera, J.L. Resveratrol-induced temporal variation in the mechanical properties of MCF-7 breast cancer cells investigated by atomic force microscopy. Int. J. Mol. Sci. 2019, 20, 3275. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, M.; Sun, X.; Zhou, C.; Wang, Y.; Wang, L.; Chen, L.; Liang, Z.; Zhu, L.; Yang, H. The selective cytotoxicity of DSF-Cu attributes to the biomechanical properties and cytoskeleton rearrangements in the normal and cancerous nasopharyngeal epithelial cells. Int. J. Biochem. Cell Biol. 2017, 84, 96–108. [Google Scholar] [CrossRef]
- Olugbami, J.O.; Damoiseaux, R.; France, B.; Gbadegesin, M.A.; Stieg, A.Z.; Sharma, S.; Odunola, O.A.; Gimzewski, J.K. Atomic force microscopy correlates antimetastatic potentials of HepG2 cell line with its redox/energy status: Effects of curcumin and Khaya senegalensis. J. Integr. Med. 2017, 15, 214–230. [Google Scholar] [CrossRef] [Green Version]
- Lam, W.A.; Rosenbluth, M.J.; Fletcher, D.A. Chemotherapy exposure increases leukemia cell stiffness. Blood 2007, 109, 3505–3508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, Z.; Wang, X. AFM-Based Study of Fullerenol (C60(OH)24)-Induced Changes of Elasticity in Living SMCC-7721 Cells. J. Mech. Behav. Biomed. Mater. 2015, 45, 65–74. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Liu, X. Investigation of effect of fullerenol on viscoelasticity properties of human hepatocellular carcinoma by AFM-based creep tests. J. Mater. Res. 2017, 32, 2521–2531. [Google Scholar] [CrossRef] [Green Version]
- Pierzchała, K.; Lekka, M.; Magrez, A.; Kulik, A.J.; Forró, L.; Sienkiewicz, A. Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays. Nanotoxicology 2012, 6, 813–824. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46, S855–S872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.; Grunberg, S.; Timblin, C.; Buder-Hoffman, S.; Vacek, P.; Taatjes, D.J.; Mossman, B.T. Paclitaxel and vinorelbine cause synergistic increases in apoptosis but not in microtubular disruption in human lung adenocarcinoma cells (A-549). Histochem. Cell Biol. 2004, 121, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.H.; Jo, Y.N.; Oh, Y.J.; Park, S. Nano-mechanical reinforcement in drug-resistant ovarian cancer cells. Biol. Pharm. Bull. 2015, 38, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.B.; Whisler, J.A.; Jeon, J.S.; Kamm, R.D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 2013, 5, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Santiskulvong, C.; Rao, J.; Gimzewski, J.K.; Dorigo, O. The role of Rho GTPase in cell stiffness and cisplatin resistance in ovarian cancer cells. Integr. Biol. UK 2014, 6, 611–617. [Google Scholar] [CrossRef]
- Zemła, J.; Danilkiewicz, J.; Orzechowska, B.; Pabijan, J.; Seweryn, S.; Lekka, M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin. Cell Dev. Biol. 2018, 73, 115–124. [Google Scholar] [CrossRef]
- Stylianou, A.; Lekka, M.; Stylianopoulos, T. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: From single cell to tissue level. Nanoscale 2018, 10, 20930–20945. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, C.; Wong, S.; Elson, E.L. Mechanical function of dystrophin in muscle cells. J. Cell Biol. 1995, 128, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Puttini, S.; Lekka, M.; Dorchies, O.M.; Saugy, D.; Incitti, T.; Ruegg, U.T.; Bozzoni, I.; Kulik, A.J.; Mermod, N. Gene-mediated restoration of normal myofiber elasticity in dystrophic muscles. Mol. Ther. 2009, 17, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 2007, 55, 3989–4014. [Google Scholar] [CrossRef] [Green Version]
- Marzo, I.; Naval, J. Antimitotic drugs in cancer chemotherapy: Promises and pitfalls. Biochem. Pharmacol. 2013, 86, 703–710. [Google Scholar] [CrossRef]
Drug | Cell Type | Dose Time | Elasticity Change (E) | Reference |
---|---|---|---|---|
Paclitaxel | prostate cancer (PC-3) | 2 and 10 µM 24 h | E ↑ | Ren et al. 2015 [39] |
Docetaxel | prostate cancer (22Rv) | 150 nM 24 h | E ↑ | Raudenska et al. [66] |
Docetaxel | prostate cancer (PC-3) | 200 nM 24 h | E ↑ | Raudenska et al. [66] |
Paclitaxel | melanoma (B16F10) | 24 nM 14 h | no change | Lin et al. [67] |
Paclitaxel | melanoma (B16F10) | 287 nM 30 h | E ↓ | Lin et al. [67] |
Paclitaxel | melanoma (B16F10) | 20 nM 30 h | no change | Lin et al. [67] |
Paclitaxel | melanoma (B16F10) | 42 nM 46 h | E ↓ | Lin et al. [67] |
Paclitaxel | endometrial cancer (Ishikawa cells) | 50 µM 6–18h h | E ↓ | Kim et al. [63] |
Colchicine | hepatocellular carcinoma (SMCC-7721) | 0.1 µM 2h | no change | Liu et al. [68] |
Colchicine | hepatocellular carcinoma (SMCC-7721) | 0.1 µM 4 and 6 h | E ↑ | Liu et al. [68] |
Drug | Cell Type | Dose Time | Elasticity Change (E) | Reference |
---|---|---|---|---|
Chitosan | non-malignant cell cancer of ureter (HCV29) | 0.05% 40 min | no effect | Lekka et al. [16] |
Chitosan | transitional cell carcinoma (T24) | 0.05% 40 min | E ↑ | Lekka et al. [16] |
NHP-1 (human neutrophil peptide-1) | prostate cancer (PC-3) | 5 µM 4 h | E ↓ | Gaspar et al. [73] |
Disulfiram | prostate cancer (PC-3 cell line) | 1 and 2 µM 24 h | E ↑ | Ren et al. 2015 [39] |
Tomatine | prostate cancer (PC-3 cell line) | 1 and 3 µM 24 h | E ↑ | Ren et al. 2015 [39] |
BAY 11-7082 (inhibitor of κB kinase) | prostate cancer (PC-3 cell line) | 2 and 5 µM 24 h | E ↑ | Ren et al. 2015 [39] |
Vaproic acid | prostate cancer (PC-3 cell line) | 2 and 10 µM 24 h | E ↑ | Ren et al. 2015 [39] |
12-O-tetradecanoylphorbol-13-acetate | prostate cancer (PC-3 cell line) | 2 and 20 µM 24 h | E ↑ | Ren et al. 2015 [39] |
Celebrex | prostate cancer (PC-3 cell line) | 2 and 10 µM 24 h | E ↑ | Ren et al. 2015 [39] |
MK-2206 (allosteric inhibitor of a serine/threonine-specific protein kinase B (AKT)) | prostate cancer (PC-3 cell line) | 2 and 10 µM 24 h | E ↑ | Ren et al. 2015 [39] |
NMDA (N-methyl-D-aspartate receptors) | neuroblastoma (SH-SY5Y) | 5 µM 1 h | E ↑ | Fang et al. [76] |
NMDA (N-methyl-D-aspartate receptors) | neuroblastoma (SH-SY5Y) | 200 µM 1 h | E ↑ | Fang et al. [76] |
Cetuximab | lung cancer (A549) | 20 nM 12 h | E ↑ | Zhang et al. [77] |
Resveratrol | breast cancer (MCF-7) | 50 µM 3 h | E ↓ | Iturri et al. [78] |
Resveratrol | breast cancer (MCF-7) | 50 µM 6 h | no change | Iturri et al. [78] |
Resveratrol | breast cancer (MCF-7) | 50 µM 24 h | E ↑ | Iturri et al. [78] |
Resveratrol | breast cancer (MCF-7) | 50 µM 48 h | E ↑ | Iturri et al. [78] |
Cisplatin | prostate cancer (22Rv) | 24 µM 24 h | E ↑ | Raudenska et al. [66] |
Cisplatin | prostate cancer (PC-3) | 93 µM 24 h | E ↑ | Raudenska et al. [66] |
Disulfiram-Cu | nasopharyngeal carcinoma cells (CNE-2Z) | 200 and 400 nM 6 h | E ↑ | Yang et al. [79] |
Curcumin | liver carcinoma (HepG2) | 0.78 and 1.56 μg/mL 24h | E ↑ | Olugbami et al. [80] |
K. senegalensis hydroethanolic extract | liver carcinoma (HepG2) | 25 and 50 μg/mL 24 h | E ↑ | Olugbami et al. [80] |
Dexamethasone | acute lymphoblastic leukemia (ALL) | 1 µM – | E ↑ | Lam et al. [81] |
Daunorubicin | acute lymphoblastic leukemia (ALL) | 1 µM – | E ↑ | Lam et al. [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, A.; Zieliński, T.; Pabijan, J.; Lekka, M. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. Int. J. Mol. Sci. 2020, 21, 8786. https://doi.org/10.3390/ijms21228786
Kubiak A, Zieliński T, Pabijan J, Lekka M. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. International Journal of Molecular Sciences. 2020; 21(22):8786. https://doi.org/10.3390/ijms21228786
Chicago/Turabian StyleKubiak, Andrzej, Tomasz Zieliński, Joanna Pabijan, and Małgorzata Lekka. 2020. "Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton" International Journal of Molecular Sciences 21, no. 22: 8786. https://doi.org/10.3390/ijms21228786
APA StyleKubiak, A., Zieliński, T., Pabijan, J., & Lekka, M. (2020). Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. International Journal of Molecular Sciences, 21(22), 8786. https://doi.org/10.3390/ijms21228786