Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology
Abstract
:1. Introduction
2. Results
2.1. Plant Attributes of the Test Cultivars
2.2. Enzymatic Activity in Soil
2.3. Comparison of the Rhizospheric Microbiome Profiles between Two Lentil Cultivars
2.4. Comparison of the Functional Profiles for the Microbial Metagenomes
2.5. Comparison of the N Cycling Genes of Bacterial Communities in Lentil Cultivars: Moitree Vs. Farmer-2
2.6. Comparison of the P Cycling Genes of Bacterial Communities in Lentil Cultivars: Moitree vs. Farmer-2
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Soil Sampling
4.2. Enzyme Assay of Soil Samples
4.3. Plant Analysis
4.4. DNA Extraction, Library Preparation, and Metagenomic Sequencing
4.5. Metagenomic Sequence Assembly, Gene Prediction, Taxonomy, and Functional Annotation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACP | Acid phosphatase |
ALP | Alkaline phosphatase |
BLAST | Basic Local Alignment Search Tool |
BNF | Biological nitrogen fixation |
Bp | Base Pairs |
C | Carbon |
COG | Clusters of Orthologous Groups of proteins |
FIGfams | Fellowship for the Interpretation of Genomes protein families |
GB | Gigabyte |
Gdh | Glutamate dehydrogenase |
GLDC | Grain legumes & Dryland Cereals |
GNC | Grain nitrogen concentration |
GO | Gene Ontology |
GPC | Grain phosphorus concentration |
GS | Glutamine synthetase |
ICAR | Indian Council of Agricultural Research |
ICARDA | International Centre for Agricultural Research in the Dry Areas |
KAAS | KEGG Automatic Annotation Server |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KO | KEGG Orthology |
LB | Leghaemoglobin |
LCA | Lowest common ancestor |
N | Nitrogen |
NCBI | National Center for Biotechnology Information |
NGS | Next Generation Sequencing |
nif | Nitrogen fixation |
nmo | Nitronate mono oxygenase |
NNP | Nodule number per plant |
nor | Nitric-oxide reductase |
Nr | Non-redundant |
ORFs | Open reading frames |
OTUs | Operational taxonomic units |
P | Phosphorus |
PCA | Principal Component Analysis |
Pfam | Protein Families |
PGPB | Plant growth promoting bacteria |
PGPR | Plant Growth-Promoting Rhizobacteria |
PP | Phytase |
QIIME | Quantitative Insight Into Microbial Ecology |
RD | Average root diameter |
RNC | Root nitrogen concentration |
RPC | Root phosphorus concentration |
RSA | Average root surface area |
SE | Standard error of mean |
SRR | Shoot–root ratio |
References
- Tringe, S.G.; Von Mering, C.; Kobayashi, A.; Salamov, A.A.; Chen, K.; Chang, H.W.; Podar, M.; Short, J.M.; Mathur, E.J.; Detter, J.C. Comparative metagenomics of microbial communities. Science 2005, 308, 554–557. [Google Scholar] [PubMed] [Green Version]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [PubMed]
- Wei, F.; Zhao, L.; Xu, X.; Feng, H.; Shi, Y.; Deakin, G.; Feng, Z.; Zhu, H. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions. Front. Plant Sci. 2019, 10, 1659. [Google Scholar] [PubMed]
- Lopes, L.D.; Pereira e Silva, M.C.; de Andreote, F.D. Bacterial abilities and adaptation toward the rhizosphere colonization. Front. Microbiol. 2016, 7, 1341. [Google Scholar]
- Dong, M.; Yang, Z.; Cheng, G.; Peng, L.; Xu, Q.; Xu, J. Diversity of the Bacterial Microbiome in the Roots of Four Saccharum Species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Front. Microbiol. 2018, 9, 267. [Google Scholar]
- Wang, X.; Hsu, C.; Dubeux, J.C.B., Jr.; Mackowiak, C.; Blount, A.; Han, X.; Liao, H. Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecol. Evol. 2019, 9, 12676–12687. [Google Scholar]
- Baudoin, E.; Benizri, E.; Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 2003, 35, 1183–1192. [Google Scholar]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar]
- Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. Mol. Plant-Microbe Interact. 2015, 28, 212–217. [Google Scholar]
- Pathan, S.I.; Větrovský, T.; Giagnoni, L.; Datta, R.; Baldrian, P.; Nannipieri, P.; Renella, G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 2018, 433, 401–413. [Google Scholar]
- Liu, F.; Hewezi, T.; Lebeis, S.L.; Pantalone, V.; Grewal, P.S.; Staton, M.E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019, 19, 1–19. [Google Scholar]
- Subbarao, G.V. Spatial Distribution and Quantification of Rice-Fallows in South Asia: Potential for Legumes; International Crops Research Institute for Semi-Arid Tropics (ICRISTAT); National Remote Sensing Agency (NRSA); Department for International Development (DFID): Patancheru, India, 2001; pp. 74–80. ISBN 92-9066-436-3. [Google Scholar]
- Liu, X.; Sheng, H.; Jiang, S.; Yuan, Z.; Zhang, C.; Elser, J.J. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl. Acad. Sci. USA 2016, 113, 2609–2614. [Google Scholar] [PubMed] [Green Version]
- Chen, S.; Zheng, X.; Wang, D.; Chen, L.; Xu, C.; Zhang, X. Effect of long-term paddy-upland yearly rotations on rice (Oryza sativa) yield, soil properties, and bacteria community diversity. Sci. World J. 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Witt, C.; Cassman, K.G.; Olk, D.C.; Biker, U.; Liboon, S.P.; Samson, M.I.; Ottow, J.C.G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 2000, 225, 263–278. [Google Scholar]
- Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool Season Food Legumes in Rice Fallows: An Indian Perspective. In Agronomic Crops; Springer: Berlin/Heidelberg, Germany, 2019; pp. 561–605. [Google Scholar]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The plant microbiota: Systems-level insights and perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar]
- Abi-Ghanem, R.; Carpenter-Boggs, L.; Smith, J.L. Cultivar effects on nitrogen fixation in peas and lentils. Biol. Fertil. Soils 2011, 47, 115–120. [Google Scholar]
- Zehr, J.P.; Turner, P.J. Nitrogen fixation: Nitrogenase genes and gene expression. Methods Microbiol. 2001, 30, 271–286. [Google Scholar]
- Dos Santos, P.C.; Fang, Z.; Mason, S.W.; Setubal, J.C.; Dixon, R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 2012, 13, 162. [Google Scholar]
- Mus, F.; Crook, M.B.; Garcia, K.; Costas, A.G.; Geddes, B.A.; Kouri, E.D.; Paramasivan, P.; Ryu, M.-H.; Oldroyd, G.E.D.; Poole, P.S. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 2016, 82, 3698–3710. [Google Scholar]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar]
- Tu, Q.; He, Z.; Wu, L.; Xue, K.; Xie, G.; Chain, P.; Reich, P.B.; Hobbie, S.E.; Zhou, J. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biol. Biochem. 2017, 106, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E.; Simpson, R.J. Soil Microorganisms Mediating Phosphorus Availability: Phosphorus plant physiology. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.E. Utilization of soil organic phosphorus by higher plants. Org. Phosphorus Environ. 2005, 165–184. [Google Scholar] [CrossRef]
- Lambers, H.; Brundrett, M.C.; Raven, J.A.; Hopper, S.D. Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 2010, 348, 7. [Google Scholar] [CrossRef]
- Hill, J.O.; Simpson, R.J.; Wood, J.T.; Moore, A.D.; Chapman, D.F. The phosphorus and nitrogen requirements of temperate pasture species and their influence on grassland botanical composition. Aust. J. Agric. Res. 2005, 56, 1027–1039. [Google Scholar] [CrossRef]
- Neal, A.L.; Rossmann, M.; Brearley, C.; Akkari, E.; Guyomar, C.; Clark, I.M.; Allen, E.; Hirsch, P.R. Land-use influences phosphatase gene microdiversity in soils. Environ. Microbiol. 2017, 19, 2740–2753. [Google Scholar] [CrossRef]
- Frossard, E.; Condron, L.M.; Oberson, A.; Sinaj, S.; Fardeau, J.C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 2000, 29, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.R.; Ramakrishnan, K.; Walshaw, J.; Heavens, D.; Alston, M.; Swarbreck, D.; Osbourn, A.; Grant, A.; Poole, P.S. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013, 7, 2248–2258. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Ke, M.; Peijnenburg, W.; Zhu, Y.; Zhang, M.; Sun, L.; Fu, Z.; Qian, H. Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J. Agric. Food Chem. 2018, 66, 2645–2653. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del Rio, T.G. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathan, S.I.; Ceccherini, M.T.; Hansen, M.A.; Giagnoni, L.; Ascher, J.; Arenella, M.; Sørensen, S.J.; Pietramellara, G.; Nannipieri, P.; Renella, G. Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol. Fertil. Soils 2015, 51, 995–1004. [Google Scholar] [CrossRef]
- Marques, J.M.; Mateus, J.R.; da Silva, T.F.; de Couto, C.R.A.; Blank, A.F.; Seldin, L. Nitrogen Fixing and Phosphate Mineralizing Bacterial Communities in Sweet Potato Rhizosphere Show a Genotype-Dependent Distribution. Diversity 2019, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Sánchez, E.; Cantero-Martínez, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agric. Ecosyst. Environ. 2020, 287, 106687. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Y.; Zhou, J.; George, T.S.; Feng, G. Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol. Biochem. 2020, 142, 107724. [Google Scholar] [CrossRef]
- Bakker, M.G.; Schlatter, D.C.; Otto-Hanson, L.; Kinkel, L.L. Diffuse symbioses: Roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Mol. Ecol. 2014, 23, 1571–1583. [Google Scholar] [CrossRef]
- Micallef, S.A.; Channer, S.; Shiaris, M.P.; Colón-Carmona, A. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 2009, 4, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.R.; Lundberg, D.S.; Tijana, G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Bakker, M.G.; Chaparro, J.M.; Manter, D.K.; Vivanco, J.M. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 2015, 392, 115–126. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [Green Version]
- Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998, 180, 4765–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Lei, S.; Li, Y.; Huang, W.; Ma, R.; Xiong, J.; Zhang, T.; Jin, L.; Xu, X.; Tian, B. Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms 2020, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Xu, Y.; Ma, B.; Tang, C.; Brookes, P.C.; He, Y.; Xu, J. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environ. Int. 2019, 131, 104975. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.; Xu, W.; Wang, F.; Strobel, G.; Zhou, Z.; Xiang, Z.; Liu, J.; Xie, J. A Microbiome Study Reveals Seasonal Variation in Endophytic Bacteria Among different Mulberry Cultivars. Comput. Struct. Biotechnol. J. 2019, 17, 1091–1100. [Google Scholar] [CrossRef]
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; González-Peña, A.; Peiffer, J.; Koren, O.; Shi, Q. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G.A. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zwetsloot, M.J.; Ucros, J.M.; Wickings, K.; Wilhelm, R.C.; Sparks, J.; Buckley, D.H.; Bauerle, T.L. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biol. Biochem. 2020, 145, 107797. [Google Scholar] [CrossRef]
- Finkel, O.M.; Salas-González, I.; Castrillo, G.; Spaepen, S.; Law, T.F.; Teixeira, P.J.P.L.; Jones, C.D.; Dangl, J.L. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol. 2019, 17, e3000534. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Izquierdo, L.; Zabal-Aguirre, M.; González-Martínez, S.C.; Buée, M.; Verdú, M.; Rincón, A.; Goberna, M. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J. Ecol. 2019, 107, 1594–1605. [Google Scholar] [CrossRef]
- Koprivova, A.; Schuck, S.; Jacoby, R.P.; Klinkhammer, I.; Welter, B.; Leson, L.; Martyn, A.; Nauen, J.; Grabenhorst, N.; Mandelkow, J.F. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc. Natl. Acad. Sci. USA 2019, 116, 15735–15744. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, J.C.; Gharu, A. Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl. Soil Ecol. 2006, 32, 273–283. [Google Scholar] [CrossRef]
- Yadav, R.S.; Tarafdar, J.C. Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol. Biochem. 2003, 35, 745–751. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Korkmaz, K.; Ibrikci, H.; Karnez, E.; Buyuk, G.; Ryan, J.; Oguz, H.; Ulger, A.C. Responses of wheat genotypes to phosphorus fertilization under rainfed conditions in the Mediterranean region of Turkey. Sci. Res. Essays 2010, 5, 2304–2311. [Google Scholar]
- Zhang, H.; Huang, Y.; Ye, X.; Xu, F. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions. Sci. China Life Sci. 2010, 53, 709–717. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.H.; Sun, X.; Zhang, C.Y. The change of acid phosphatase activity and analysis of genotypic variation in P efficiency of soybean under phosphorus stress. J. Plant Genet. Res. 2012, 13, 521–528. [Google Scholar]
- Gahoonia, T.S.; Ali, O.; Sarker, A.; Rahman, M.M. Root traits, nutrient uptake, multi-location grain yield and benefit–cost ratio of two lentil (Lens culinaris, Medikus) varieties. Plant Soil 2005, 272, 153–161. [Google Scholar] [CrossRef]
- Wang, L.; Liao, H.; Yan, X.; Zhuang, B.; Dong, Y. Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil 2004, 261, 77–84. [Google Scholar] [CrossRef]
- Krasilinikoff, G.; Gahoonia, T.S.; Nielsen, N.E. Variation in phosphorus uptake of cowpea genotypes (Vigna unguiculata) due to differences in root and root hair length and root-induced rhizosphere processes. Plant Soil 2003, 251, 83–91. [Google Scholar] [CrossRef]
- Graham, P.H. Leghaemoglobin and symbiotic nitrogen fixation. Aust. J. Sci. 1969, 23, 231–232. [Google Scholar]
- Dakora, F.D. A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules. Ann. Bot. 1995, 75, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Atkins, C.A.; Pate, J.S.; Ritchie, A.; Peoples, M.B. Metabolism and translocation of allantoin in ureide-producing grain legumes. Plant Physiol. 1982, 70, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herridge, D.F.; Bergersen, F.J.; Peoples, M.B. Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiol. 1990, 93, 708–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshmi, K.; Sasikala, C.; Takaichi, S.; Ramana, C.V. Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 1656–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.-C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shameer, S.; Prasad, T. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 2018, 84, 603–615. [Google Scholar] [CrossRef]
- Damon, C.; Lehembre, F.; Oger-Desfeux, C.; Luis, P.; Ranger, J.; Fraissinet-Tachet, L.; Marmeisse, R. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS ONE 2012, 7, e28967. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Kirankumar, R.; Jagadeesh, K.S.; Krishnaraj, P.U.; Patil, M.S. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J. Agric. Sci. 2010, 21, 309–311. [Google Scholar]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, D.; Rangappa, K.; Das, A.; Layek, J.; Basavaraj, S.; Kandpal, B.K.; Shouche, Y.; Rahi, P. Pea (Pisum sativum L.) Plant Shapes Its Rhizosphere Microbiome for Nutrient Uptake and Stress Amelioration in Acidic Soils of the North-East Region of India. Front. Microbiol. 2020, 11, 968. [Google Scholar] [CrossRef] [PubMed]
- Fani, R.; Gallo, R.; Lio, P. Molecular evolution of nitrogen fixation: The evolutionary history of the nifD, nifK, nifE, and nifN genes. J. Mol. Evol. 2000, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Miao, J.; Saleem, M.; Zhang, H.; Yang, Y.; Zhang, Q. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 2020, 398, 122941. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, Z.H.; Contreras, J.; Hupp, B.M.; Lindenberger, J.H.; Chen, D.; Zhang, Q.; Wang, C.; Twigg, P.; Saleem, M. Root microbiome changes with root branching order and root chemistry in peach rhizosphere soil. Rhizosphere 2020, 16, 100249. [Google Scholar] [CrossRef]
- Quiquampoix, H. Enzymatic hydrolysis of organic phosphorus. Org. Phosphorus Environ. 2005. [Google Scholar] [CrossRef]
- Hu, M.; Peñuelas, J.; Sardans, J.; Tong, C.; Chang, C.T.; Cao, W. Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estuarine freshwater-oligohaline gradient. Geoderma 2020, 365, 114236. [Google Scholar] [CrossRef]
- Liu, D.; Liberton, M.; Yu, J.; Pakrasi, H.B.; Bhattacharyya-Pakrasi, M. Engineering nitrogen fixation activity in an oxygenic phototroph. MBio 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Gómez-García, M.R.; Serrano, A. Expression studies of two paralogous ppa genes encoding distinct family I pyrophosphatases in marine unicellular cyanobacteria reveal inactivation of the typical cyanobacterial gene. Biochem. Biophys. Res. Commun. 2002, 295, 890–897. [Google Scholar] [CrossRef]
- Liang, Q.; Cheng, X.; Mei, M.; Yan, X.; Liao, H. QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann. Bot. 2010, 106, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Ames, B.N. Assay of inorganic phosphate, total phosphate and phosphatases. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1966; Volume 8, pp. 115–118. ISBN 0076-6879. [Google Scholar]
- Jackson, H.C. Soil Chemical Analysis; Prentica Hall India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Gilbert, G.A.; Knight, J.D.; Vance, C.P.; Allan, D.L. Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ. 1999, 22, 801–810. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manickam, A. Biochemical Methods for Agricultural Sciences; Wiley Eastern Limited: New Delhi, India, 1992; ISBN 8122403883. [Google Scholar]
- Vogels, G.D.; Van der Drift, C. Differential analyses of glyoxylate derivatives. Anal. Biochem. 1970, 33, 143–157. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, T.; Haque, M.M.; Reddy, C.; Mande, S.S. COGNIZER: A framework for functional annotation of metagenomic datasets. PLoS ONE 2015, 10, e0142102. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
Plant Attributes | Moitree Mean ± SE | Farmer-2 Mean ± SE | p Value |
---|---|---|---|
GNC | 4.47 ± 0.23 | 3.64 ± 0.19 | 0.001 |
GPC | 2.61 ± 0.13 | 2.74 ± 0.14 | 0.223 |
RNC | 0.65 ± 0.03 | 0.98 ± 0.05 | <0.0001 |
RPC | 0.96 ± 0.05 | 1.72 ± 0.09 | <0.0001 |
SRR | 8.41 ± 0.58 | 4.63 ± 0.24 | <0.0001 |
ACP | 7.85 ± 0.40 | 9.78 ± 0.50 | 0.001 |
PP | 3.90 ± 0.20 | 6.30 ± 0.32 | <0.0001 |
LB | 0.22 ± 0.0011 | 0.14 ± 0.0007 | <0.0001 |
Allantoin | 50.36 ± 2.57 | 43.93 ± 2.24 | 0.009 |
NNP | 33 ± 1.68 | 24 ± 1.22 | <0.0001 |
TRL | 38.97 ± 2.42 | 22.17 ± 1.65 | <0.0001 |
RSA | 29.7 ± 1.51 | 14.6 ± 0.74 | <0.0001 |
RD | 0.7 ± 0.04 | 0.5 ± 0.03 | <0.0001 |
Genotype | ACP Mean ± SE | ALP Mean ± SE | PP Mean ± SE |
---|---|---|---|
Moitree | 31.9 ± 1.63 | 27.8 ± 1.42 | 2.14 ± 0.11 |
Farmer-2 | 42.9 ± 2.19 | 36.9 ± 1.88 | 2.32 ± 0.12 |
p value | <0.0001 | <0.0001 | 0.065 |
Shannon Index | Observed Species | Chao1 | |
---|---|---|---|
Moitree | 11.78 | 3947 | 4179.83 |
Farmer-2 | 11.39 | 3012 | 3467.01 |
Assembly Elements | Moitree | Farmer-2 |
---|---|---|
Total reads | 58,363,086 | 32,085,250 |
Total bases | 8,754,462,900 | 4,812,787,500 |
GC % | 66.74 | 63.5 |
Total data (GB) | 8.75 | 4.81 |
Scaffolds | 105,291 | 121,422 |
Total scaffold length (bp) | 125,203,059 | 93,836,361 |
Average scaffold length (bp) | 1189.114 | 772.811 |
Scaffold N50 (bp) | 1128 | 731 |
Max scaffold size (bp) | 55,132 | 11,580 |
Genes | 206,155 | 186,216 |
Total genes size (bp) | 112,980,996 | 82,803,213 |
Average genes size (bp) | 548.039 | 444.662 |
Max scaffold size (bp) | 6315 | 4527 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramanik, K.; Das, A.; Banerjee, J.; Das, A.; Chatterjee, S.; Sharma, R.; Kumar, S.; Gupta, S. Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. Int. J. Mol. Sci. 2020, 21, 8895. https://doi.org/10.3390/ijms21238895
Pramanik K, Das A, Banerjee J, Das A, Chatterjee S, Sharma R, Kumar S, Gupta S. Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. International Journal of Molecular Sciences. 2020; 21(23):8895. https://doi.org/10.3390/ijms21238895
Chicago/Turabian StylePramanik, Krishnendu, Arpita Das, Joydeep Banerjee, Anupam Das, Shayree Chatterjee, Rishu Sharma, Shiv Kumar, and Sanjeev Gupta. 2020. "Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology" International Journal of Molecular Sciences 21, no. 23: 8895. https://doi.org/10.3390/ijms21238895
APA StylePramanik, K., Das, A., Banerjee, J., Das, A., Chatterjee, S., Sharma, R., Kumar, S., & Gupta, S. (2020). Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. International Journal of Molecular Sciences, 21(23), 8895. https://doi.org/10.3390/ijms21238895