Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (Juglans regia) Seed Oil Accumulation
Abstract
:1. Introduction
2. Results
2.1. Dynamic Analysis of Oil Content and Fatty Acid
2.2. Key Genes in Accumulate Period of Walnut Oil
2.3. Sequence Characteristics of Small RNA in J. regia
2.4. Known miRNA and Novel Candidate miRNAs in J. regia Kernels
2.5. Differential Expression of miRNAs and Functional Analysis
2.6. Involvement of miRNAs in Walnut Oil Synthesis Pathways
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Analysis of Oil Content and Fatty Acid Composition
4.3. Total RNA Isolation, cDNA Library Construction and Transcriptome Sequencing
4.4. Small RNA Library Construction and Small RNA Sequencing
4.5. Processing and Analysis of Transcriptome
4.6. Bioinformatics Analysis of Small RNA Sequences
4.7. Quantitative Real-Time PCR Validation
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACC1 | acetyl-CoA carboxylase 1 |
ACOT | acyl-CoA thioesterase |
CPM | count per million |
DAF | day after flowering |
DAG | diacylglycerols |
DEG | differentially expressed gene |
DEM | differentially expressed miRNA |
DGAT | diacylglycerol O-acyltransferase |
FA | fatty acid |
FabG | 3-oxoacyl-[acyl-carrier-protein] reductase 4 |
FAD | fatty acid desaturase |
FATB | palmitoyl-acyl carrier protein thioesterase |
GO | Gene Ontology |
GPAT | glycerol-3-phosphate acyltransferases |
KAR | very long-chain 3-oxoacyl-CoA reductase |
KCS | 3-ketoacyl-CoA synthase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LACS | long chain acyl-CoA synthetase |
LEC1 | LEAFY COTYLEDON1 |
LEC2 | LEAFY COTYLEDON2 |
LPAT | lysophosphatidyl acyltransferase |
MUFA | monounsaturated fatty acid |
miRNA | microRNA |
PAS2 | very long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 |
PAS2A | very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase PASTICCINO 2A |
PAP | phosphatidic acid phosphatase |
PC | phosphatidylcholine |
PDAT | phospholipid:diacylglycerol acyltransferase |
PLA1 | phospholipase A I |
PLDδ | phospholipase D delta |
PUFA | polyunsaturated fatty acid |
qRT-PCR | quantitative real-time PCR |
rRNA | ribosomal RNA |
SAD | stearoyl-[acyl-carrier-protein] 9-desaturase |
SLD2 | delta 8-fatty-acid desaturase 2 |
TF | transcription factor |
TAG | triacylglycerols |
References
- Crews, C.; Hough, P.; Godward, J.; Brereton, P.; Lees, M.; Guiet, S.; Winkelmann, W. Study of the Main Constituents of Some Authentic Walnut Oils. J. Agric. Food Chem. 2005, 53, 4853–4860. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Li, J.; Hu, F.B.; Salas-Salvadó, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular disease risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zibaeenezhad, M.J.; Farhadi, P.; Attar, A.; Mosleh, A.; Amirmoezi, F.; Azimi, A. Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: A randomized, double-blind, placebo-controlled trial. Nutr. Diabetes 2017, 7, e259. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.L.; Hara-Nishimura, I. Oil-Body-Membrane proteins and their physiological functions in plants. Biol. Pharm. Bull. 2010, 33, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Kagaya, Y.; Toyoshima, R.; Okuda, R.; Usui, H.; Yamamoto, A.; Hattori, T. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol. 2005, 46, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.Y.; Tan, H.L.; Zheng, Q.; Fu, F.Y.; Liang, Y.; Zhang, J.; Yang, X.H.; Wang, T.; Chong, K.; Wang, X.J.; et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol. 2008, 148, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Manan, S.; Ahmad, M.Z.; Zhang, G.; Chen, B.; Haq, B.U.; Yang, J.; Zhao, J. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development. Front. Plant Sci. 2017, 8, 1604. [Google Scholar] [CrossRef] [Green Version]
- Baud, S.; Guyon, V.; Kronenberger, J.; Wuilleme, S.; Miquel, M.; Caboche, M.; Lepiniec, L.; Rochat, C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J. 2003, 33, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Yuan, L.; Ma, W. WRINKLED1, a “Master Regulator” in transcriptional control of plant oil biosynthesis. Plants 2019, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Chen, S.; Yang, Y.; An, C. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. FEBS Lett. 2013, 587, 3076–3082. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yu, X.; Song, L.; An, C. ABI4 Activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol. 2011, 156, 873–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeap, W.; Lee, F.; Shabari Shan, D.K.; Musa, H.; Appleton, D.R.; Kulaveerasingam, H. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J. 2017, 91, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Zhang, C.; Shi, W.; Chen, H. High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.). Biotechnol. Biotechnol. Equip. 2019, 33, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Lu, H.; Xue, F.; Ma, L. Identifying high confidence microRNAs in the developing seeds of Jatropha curcas. Sci. Rep. 2019, 9, 4510. [Google Scholar] [CrossRef] [PubMed]
- Jatan, R.; Tiwari, S.; Asif, M.H.; Lata, C. Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 2019, 157, 217–227. [Google Scholar] [CrossRef]
- Slocombe, S.P.; Cornah, J.; Pinfield-Wells, H.; Soady, K.; Zhang, Q.; Gilday, A.; Dyer, J.M.; Graham, I.A. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol. J. 2009, 7, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhu, Q.; Shen, W.; Jiao, X.; Zhao, X.; Wang, M.; Liu, L.; Singh, S.P.; Liu, Q. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants. Front. Plant Sci. 2013, 4, 489. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ding, J.; Yu, X.; Li, H.; Ruan, C. Identification and expression analysis of critical microRNA-transcription factor regulatory modules related to seed development and oil accumulation in developing Hippophae rhamnoides seeds. Ind. Crop. Prod. 2019, 137, 33–42. [Google Scholar] [CrossRef]
- Belide, S.; Petrie, J.R.; Shrestha, P.; Singh, S.P. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front. Plant Sci. 2012, 3, 168. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ma, S.; Wang, Y.; Xuan, X.; Hou, L.; Sun, Q.; Yang, K. The dynamics of fat, protein and sugar metabolism during walnut (Juglans regia L.) fruit development. Afr. J. Biotechnol. 2012, 11, 1267–1276. [Google Scholar] [CrossRef]
- Chen, H.; Pan, C.; Wang, B.; Xiao, Z.; Hu, Y.; Hu, G. Oil Body Observation in Seed Development and Its Analysis in Seed of Juglans regia ‘Wen185’ and J. regia ‘Xinxin2’ in Period of Seed Maturity. Sci. Agric. Sin. 2015, 48, 3899–3909. (In Chinese) [Google Scholar]
- Zhou, L.; Quan, S.; Xu, H.; Ma, L.; Niu, J. Identification and Expression of miRNAs Related to Female Flower Induction in Walnut (Juglans regia L.). Molecules 2018, 23, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Yu, H.; Park, S.; Shin, J.Y.; Oh, M.; Kim, N.; Mun, J. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing. BMC Plant Biol. 2012, 12, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Zhang, X.; Tan, J.; Xu, F.; Cheng, S.; Chen, Z.; Zhang, W.; Liao, Y. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Ind. Crop. Prod. 2020, 148, 112289. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, Y.; Yu, F.; Xu, M. Deep sequencing identifies miRNAs and their target genes involved in the biosynthesis of terpenoids in Cinnamomum camphora. Ind. Crop. Prod. 2020, 145, 111853. [Google Scholar] [CrossRef]
- Pelletier, J.M.; Kwong, R.W.; Park, S.; Le, B.H.; Baden, R.; Cagliari, A.; Hashimotoa, M.; Munoza, M.D.; Fischerc, R.L.; Goldberg, R.B.; et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc. Natl. Acad. Sci. USA 2017, 114, E6710–E6719. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, Z.; Huang, S.; Han, X.; Wang, X.; Pan, W.; Qin, H.; Qi, H.; Yin, Z.; Qu, K.; et al. Analysis of miRNAs targeted storage regulatory genes during soybean seed development based on transcriptome sequencing. Genes 2019, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jian, H.; Wang, T.; Wei, L.; Li, J.; Li, C.; Liu, L. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing. Front. Plant Sci. 2016, 7, 1570. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, R.; Sun, Z.; Zhang, T.; Huang, J. Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg. Funct. Integr. Genom. 2017, 17, 365–373. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, C.; Liang, Y.; Sun, R.; Gao, L.; Liu, T.; Li, D. Genome-wide association analysis of the lipid and fatty acid metabolism regulatory network in the mesocarp of oil palm (Elaeis guineensis Jacq.) based on small noncoding RNA sequencing. Tree Physiol. 2019, 39, 356–371. [Google Scholar] [CrossRef]
- Gecgel, U.; Demirci, M.; Esendal, E.; Tasan, M. Fatty Acid Composition of the Oil from Developing Seeds of Different Varieties of Safflower (Carthamus tinctorius L.). J. Am. Oil Chem. Soc. 2007, 84, 47–54. [Google Scholar] [CrossRef]
- Browse, J.; McConn, M.; D James, J.; Miquel, M. Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J. Biol. Chem. 1993, 268, 16345. [Google Scholar] [CrossRef]
- Iba, K.; Gibson, S.; Nishiuchi, T.; Fuse, T.; Nishimura, M.; Arondel, V.; Hugly, S.; Somerville, C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J. Biol. Chem. 1993, 268, 24099. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, X.; Su, Y.; Chen, Y.; Liu, Y.; Sun, M.; Qi, G. Transcriptome analysis reveals dynamic fat accumulation in the walnut kernel. Int. J. Genom. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Lindqvist, Y.; Huang, W.; Schneider, G.; Shanklin, J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J. 1996, 15, 4081–4092. [Google Scholar] [CrossRef]
- Mattison, C.P.; Rai, R.; Settlage, R.E.; Hinchliffe, D.J.; Madison, C.; Bland, J.M.; Brashear, S.; Graham, C.J.; Tarver, M.R.; Florane, C.; et al. RNA-Seq analysis of developing Pecan (Carya illinoinensis) embryos reveals parallel expression patterns among allergen and lipid metabolism genes. J. Agric. Food Chem. 2017, 65, 1443–1455. [Google Scholar] [CrossRef]
- Bouvier-Nave, P.; Benveniste, P.; Oelkers, P.; Sturley, S.L.; Schaller, H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur. J. Biochem. 2000, 267, 85–96. [Google Scholar] [CrossRef]
- Jako, C.; Kumar, A.; Wei, Y.; Zou, J.; Barton, D.L.; Giblin, E.M.; Covello, P.S.; Taylor, D.C. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 2001, 126, 861–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, U.; Carlsson, A.S.; Lenman, M.; Dahlqvist, A.; Huang, B.; Banas, W.; Banas, A.; Stymne, S. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 2004, 135, 1324–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Siloto, R.M.; Wickramarathna, A.D.; Mietkiewska, E.; Weselake, R.J. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. J. Biol. Chem. 2013, 288, 24173–24188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Fan, J.; Taylor, D.C.; Ohlrogge, J.B. DGAT1 and PDAT1 acyl transferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 2010, 21, 3885–3901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, G.F.F.E.; Silva, E.M.; Da Silva Azevedo, M.; Guivin, M.A.C.; Ramiro, D.A.; Figueiredo, C.R.; Carrer, H.; Peres, L.E.P.; Nogueira, F.T.S. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J. 2014, 78, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Stief, A.; Altmann, S.; Hoffmann, K.; Pant, B.D.; Scheible, W.; Bäurle, I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 2014, 26, 1792–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörmann, P.; Voelker, T.A.; Ohlrogge, J.B. Accumulation of palmitate in Arabidopsis mediated by the Acyl-Acyl carrier protein Thioesterase FATB1. Plant Physiol. 2000, 123, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Markham, J.E.; Cahoon, E.B. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J. 2012, 69, 769–781. [Google Scholar] [CrossRef]
- Roesler, K.; Shintani, D.; Savage, L.; Boddupalli, S.; Ohlrogge, J. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 1997, 113, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Somers, D.A.; Keith, R.A.; Egli, M.A.; Marshall, L.C.; Gengenbach, B.G.; Gronwald, J.W.; Wyse, D.L. Expression of the Acc1 Gene-Encoded Acetyl-Coenzyme A Carboxylase in Developing Maize (Zea mays L.) Kernels. Plant Physiol. 1993, 101, 1097–1101. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Luo, X.; Luo, K.; Liu, Y.; Pan, T.; Li, Z.; Duns, G.J.; He, F.; Qin, Z. Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. Int. J. Biol. Sci. 2019, 15, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, P.J.; Crepeau, M.W.; Puiu, D.; Gonzalez-Ibeas, D.; Whalen, J.; Stevens, K.A.; Paul, R.; Butterfield, T.S.; Britton, M.T.; Reagan, R.L.; et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J. 2016, 87, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Wu, H.; Ma, Y.; Chen, T.; Wang, M.; Wang, X. PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012, 40, W22–W28. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, X.; Zhang, W.; Zhang, R.; Chen, J. Stability evaluation of reference genes for quantitative real-time PCR analysis in walnut (Juglans spp.). Plant Physiol. J. 2017, 53, 1795–1802. (In Chinese) [Google Scholar]
Types of Fatty Acids | Days after Flowering/Day (MEAN ± SD) | ||||
---|---|---|---|---|---|
80 | 100 | 120 | |||
Saturated FA | Caprylic acid (C8:0) | 0.0077 ± 0.0013 a | 0.0071 ± 0.0041 a | 0.0065 ± 0.0007 a | |
Capric acid (C10:0) | 0.0764 ± 0.0140 a | 0.0511 ± 0.0079 b | 0.0503 ± 0.0090 b | ||
Myristic acid (C14:0) | 0.0400 ± 0.0016 a | 0.0264 ± 0.0005 b | 0.0224 ± 0.0019 c | ||
Pentadecanoic acid (C15:0) | 0.0455 ± 0.0004 a | 0.0221 ± 0.0003 b | 0.0172 ± 0.0005 c | ||
Palmitic acid (C16:0) | 7.2106 ± 0.0019 a | 5.8410 ± 0.0033 c | 5.8890 ± 0.0060 b | ||
Stearic acid (C18:0) | 1.4669 ± 0.0277 c | 2.3622 ± 0.0134 b | 2.4869 ± 0.0047 a | ||
Arachidic acid (C20:0) | 0.0613 ± 0.0005 a | 0.0579 ± 0.0006 b | 0.0608 ± 0.0003 a | ||
Unsaturated FA | MUFA | Pentadecenoic acid (C15:1) | 0.0078 ± 0.0045 a | 0.0053 ± 0.0084 a | 0.0083 ± 0.0109 a |
Palmitoleic acid (C16:1) | 0.0879 ± 0.0292 a | 0.0514 ± 0.0446 c | 0.0597 ± 0.0518 b | ||
Oleic acid (C18:1) | 9.7378 ± 0.0306 c | 15.3163 ± 0.0435 b | 15.7390 ± 0.0526 a | ||
11-Eicosenoic acid (C20:1) | 0.2201 ± 0.0015 a | 0.2140 ± 0.0007 b | 0.1963 ± 0.0011 c | ||
PUFA | Linoleic acid (C18:2, n-6) | 70.4437 ± 0.0368 a | 67.1098 ± 0.0303 b | 66.5504 ± 0.0290 c | |
γ-Linolenic acid (C18:3, n-6) | 0.0363 ± 0.0007 a | 0.0350 ± 0.005 a | 0.0307 ± 0.0005 b | ||
α-Linolenic acid (C18:3, n-3) | 10.4429 ± 0.0010 a | 8.8526 ± 0.0019 b | 8.8583 ± 0.0008 b | ||
11, 14-Eicosadienoic acid (C20:2) | 0.0781 ± 0.0123 a | 0.0215 ± 0.0021 b | 0 | ||
Docosadienoic acid (C22:2) | 0.0371 ± 0.0015 a | 0.0304 ± 0.0021 b | 0.0269 ± 0.0004 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yang, G.; Liu, X.; Yu, Z.; Peng, S. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (Juglans regia) Seed Oil Accumulation. Int. J. Mol. Sci. 2020, 21, 9093. https://doi.org/10.3390/ijms21239093
Zhao X, Yang G, Liu X, Yu Z, Peng S. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (Juglans regia) Seed Oil Accumulation. International Journal of Molecular Sciences. 2020; 21(23):9093. https://doi.org/10.3390/ijms21239093
Chicago/Turabian StyleZhao, Xinchi, Guiyan Yang, Xiaoqiang Liu, Zhongdong Yu, and Shaobing Peng. 2020. "Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (Juglans regia) Seed Oil Accumulation" International Journal of Molecular Sciences 21, no. 23: 9093. https://doi.org/10.3390/ijms21239093
APA StyleZhao, X., Yang, G., Liu, X., Yu, Z., & Peng, S. (2020). Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (Juglans regia) Seed Oil Accumulation. International Journal of Molecular Sciences, 21(23), 9093. https://doi.org/10.3390/ijms21239093