Effect of Prostanoids on Human Platelet Function: An Overview
Abstract
:1. Introduction
2. Generation of Prostanoids in Platelets
3. Prostanoid Receptors
3.1. Thromboxane A2 (TXA2)
3.2. Prostaglandin-E2 (PGE2, Low Concentrations)
3.3. Prostaglandin-F2α (PGF2α)
3.4. Inhibitory Effects of Prostanoids on Platelet Aggregation
Prostaglandin-I2 (PGI2, Prostacyclin)
3.5. Prostaglandin-D2 (PGD2)
3.6. Prostaglandin-E1 (PGE1)
3.7. Prostaglandin-E2 (PGE2, Higher Concentrations)
3.8. Prostaglandin-E3 (PGE3)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agbani, E.O.; Williams, C.M.; Hers, I.; Poole, A.W. Membrane ballooning in aggregated platelets is synchronised and mediates a surge in microvesiculation. Sci. Rep. 2017, 7, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubenstein, D.A.; Yin, W. Platelet-activation mechanisms and vascular remodeling. Compr. Physiol. 2018, 8, 1117–1156. [Google Scholar] [CrossRef] [PubMed]
- Faes, C.; Sparkenbaugh, E.M.; Pawlinski, R. Hypercoagulable state in sickle cell disease. Clin. Hemorheol. Microcirc. 2018, 68, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Reinthaler, M.; Braune, S.; Lendlein, A.; Landmesser, U.; Jung, F. Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases 2016, 11, 029702. [Google Scholar] [CrossRef] [PubMed]
- Ezer, E.; Schrick, D.; Tőkés-Füzesi, M.; Szapary, L.; Bogar, L.; Molnar, T. A novel approach of platelet function test for prediction of attenuated response to clopidogrel. Clin. Hemorheol. Microcirc. 2019, 73, 359–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, H.; Gori, T. The pleiotropic effects of antiplatelet therapies. Clin. Hemorheol. Microcirc. 2019, 73, 29–34. [Google Scholar] [CrossRef]
- Gregg, D. Platelets and cardiovascular disease. Circulation 2003, 108, 88e–90e. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Franchini, M.; Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 502–512. [Google Scholar] [CrossRef]
- Trip, M.D.; Cats, V.M.; van Capelle, F.J.; Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 1990, 322, 1549–1554. [Google Scholar] [CrossRef]
- Willoughby, S. Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2002, 1, 273–288. [Google Scholar] [CrossRef]
- Jung, F.; Wischke, C.; Lendlein, A. Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 2010, 35, 607–613. [Google Scholar] [CrossRef]
- Otsuka, F.; Cheng, Q.; Yahagi, K.; Acampado, E.; Sheehy, A.; Yazdani, S.K.; Sakakura, K.; Euller, K.; Perkins, L.E.L.; Kolodgie, F.D.; et al. Acute thrombogenicity of a durable polymer everolimus-eluting stent relative to contemporary drug-eluting stents with biodegradable polymer coatings assessed ex vivo in a swine shunt model. JACC Cardiovasc. Interv. 2015, 8, 1248–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anadol, R.; Dimitriadis, Z.; Polimeni, A.; Wendling, F.; Gönner, S.; Ullrich, H.; Lorenz, L.; Weissner, M.; Munzel, T.; Gori, T. Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non STelevation-acute coronary syndrome: A three-years follow-up1. Clin. Hemorheol. Microcirc. 2018, 69, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Lapetina, E.G.; Cuatrecasas, P. Rapid inactivation of cyclooxygenase activity after stimulation of intact platelets. Proc. Natl. Acad. Sci. USA 1979, 76, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Gerrard, J.M.; White, J.G.; Rao, G.H.; Townsend, D. Localization of platelet prostaglandin production in the platelet dense tubular system. Am. J. Pathol. 1976, 83, 283–298. [Google Scholar]
- Gerrard, J.M.; White, J.G.; Peterson, D.A. The Platelet dense tubular system: Its Relationship to prostaglandin synthesis and calcium flux. Thromb. Haemost. 1978, 40, 224–231. [Google Scholar] [CrossRef]
- Rendu, F.; Brohard-Bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 2001, 12, 261–273. [Google Scholar] [CrossRef]
- Kennedy, I.; Coleman, R.A.; Humphrey, P.P.; Levy, G.P.; Lumley, P. Studies on the characterisation of prostanoid receptors: A proposed classification. Prostaglandins 1982, 24, 667–689. [Google Scholar] [CrossRef]
- Coleman, R.A.; Andrianova, I.; Humphrey, P.P.A.; Adrian, K.; Bath, P.M. Prostanoids and their receptors. In Comprehensive Medicinal Chemistry: The Rational Design, Mechanistic Study & Therapeutic Application of Chemical Compounds; Membranes and Receptors; Emmett, J.C., Ed.; Pergamon: Oxford, UK, 1990; Volume 3, pp. 643–714. [Google Scholar]
- Lebender, L.F.; Prünte, L.; Rumzhum, N.N.; Ammit, A.J. Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm. Pharmacol. Ther. 2018, 49, 75–87. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Negishi, M.; Hayashi, Y.; Namba, T.; Honda, A.; Watabe, A.; Hirata, M.; Narumiya, S.; Ichikawa, A. Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. J. Biol. Chem. 1993, 268, 2712–2718. [Google Scholar] [PubMed]
- Irie, A.; Sugimoto, Y.; Namba, T.; Harazono, A.; Honda, A.; Watabe, A.; Negishi, M.; Narumiya, S.; Ichikawa, A. Third isoform of the prostaglandin-E-receptor EP3 subtype with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. Eur. J. Biochem. 1993, 217, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 2001, 193, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Ozen, G.; Norel, X. Prostanoids in the pathophysiology of human coronary artery. Prostaglandins Other Lipid Mediat. 2017, 133, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 1975, 72, 2994–2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J.R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976, 263, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Packham, M.A.; Rand, M.L.; Kinlough-Rathbone, R.L. Similarities and differences between rabbit and human platelet characteristics and functions. Comp. Biochem. Physiol. Comp. Physiol. 1992, 103, 35–54. [Google Scholar] [CrossRef]
- Paul, B.Z.; Ashby, B.; Sheth, S.B. Distribution of prostaglandin IP and EP receptor subtypes and isoforms in platelets and human umbilical artery smooth muscle cells. Br. J. Haematol. 1998, 102, 1204–1211. [Google Scholar] [CrossRef]
- Procter, N.E.K.; Hurst, N.L.; Nooney, V.B.; Imam, H.; De Caterina, R.; Chirkov, Y.Y.; Horowitz, J.D. New developments in platelet cyclic nucleotide signalling: Therapeutic implications. Cardiovasc. Drugs Ther. 2016, 30, 505–513. [Google Scholar] [CrossRef]
- Schwarz, U.R.; Walter, U.; Eigenthaler, M. Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 2001, 62, 1153–1161. [Google Scholar] [CrossRef]
- Yokoyama, U.; Iwatsubo, K.; Umemura, M.; Fujita, T.; Ishikawa, Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol. Rev. 2013, 65, 1010–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Fukami, K. Regulation and physiological functions of mammalian phospholipase C. J. Biochem. 2017, 161, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.A.; Kirkby, N.S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br. J. Pharmacol. 2019, 176, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Crescente, M.; Menke, L.; Chan, M.V.; Armstrong, P.C.; Warner, T.D. Eicosanoids in platelets and the effect of their modulation by aspirin in the cardiovascular system (and beyond). Br. J. Pharmacol. 2019, 176, 988–999. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Schulz, C.; Kratz, K.; Lendlein, A.; Jung, F. Comparison of two substrate materials used as negative control in endothelialization studies: Glass versus polymeric tissue culture plate. Clin. Hemorheol. Microcirc. 2018, 69, 437–445. [Google Scholar] [CrossRef]
- Hauser, S.; Jung, F.; Pietzsch, J. Human endothelial cell models in biomaterial research. Trends Biotechnol. 2017, 35, 265–277. [Google Scholar] [CrossRef]
- FitzGerald, G.A. Mechanisms of platelet activation: Thromboxane A2 as an amplifying signal for other agonists. Am. J. Cardiol. 1991, 68, 11B–15B. [Google Scholar] [CrossRef]
- Lagarde, M.; Guichardant, M.; Bernoud-Hubac, N.; Calzada, C.; Véricel, E. Oxygenation of polyunsaturated fatty acids and oxidative stress within blood platelets. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 651–656. [Google Scholar] [CrossRef]
- Patrono, C.; Ciabattoni, G.; Pugliese, F.; Pierucci, A.; Blair, I.A.; FitzGerald, G.A. Estimated rate of thromboxane secretion into the circulation of normal humans. J. Clin. Investig. 1986, 77, 590–594. [Google Scholar] [CrossRef] [Green Version]
- Viinikka, L.; Ylikorkala, O. Measurement of thromboxane B2 in human plasma or serum by radioimmunoassay. Prostaglandins 1980, 20, 759–766. [Google Scholar] [CrossRef]
- Patrono, C.; Rocca, B. Measurement of thromboxane biosynthesis in health and disease. Front. Pharmacol. 2019, 10, 1244. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, E.A.; Ogletree, M.L.; Haddad, E.V.; Boutaud, O. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb. Res. 2015, 136, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offermanns, S. Activation of platelet function through G protein-coupled receptors. Circ. Res. 2006, 99, 1293–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatta, A.; Prosdocimi, M. Platelet activation induced by a stable analogue of endoperoxides (U46619). Thromb. Haemost. 1989, 61, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Reilly, M.; Fitzgerald, G.A. Cellular activation by thromboxane A2 and other eicosanoids. Eur. Heart J. 1993, 14 (Suppl. K), 88–93. [Google Scholar] [PubMed]
- Fuse, I.; Higuchi, W.; Aizawa, Y. Pathogenesis of a bleeding disorder characterized by platelet unresponsiveness to thromboxane A2. Semin. Thromb. Hemost. 2000, 26, 43–45. [Google Scholar] [CrossRef]
- Hirata, T.; Kakizuka, A.; Ushikubi, F.; Fuse, I.; Okuma, M.; Narumiya, S. Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J. Clin. Investig. 1994, 94, 1662–1667. [Google Scholar] [CrossRef] [Green Version]
- Oates, J.A.; FitzGerald, G.A.; Branch, R.A.; Jackson, E.K.; Knapp, H.R.; Roberts, L.J. Clinical implications of prostaglandin and thromboxane A2 formation (1). N. Engl. J. Med. 1988, 319, 689–698. [Google Scholar] [CrossRef]
- Malmsten, C.; Hamberg, M.; Svensson, J.; Samuelsson, B. Physiological role of an endoperoxide in human platelets: Hemostatic defect due to platelet cyclo-oxygenase deficiency. Proc. Natl. Acad. Sci. USA 1975, 72, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Defreyn, G.; Deckmyn, H.; Vermylen, J. A thromboxane synthetase inhibitor reorients endoperoxide metabolism in whole blood towards prostacyclin and prostaglandin E2. Thromb. Res. 1982, 26, 389–400. [Google Scholar] [CrossRef]
- Defreyn, G.; Machin, S.J.; Carreras, L.O.; Dauden, M.V.; Chamone, D.A.; Vermylen, J. Familial bleeding tendency with partial platelet thromboxane synthetase deficiency: Reorientation of cyclic endoperoxide metabolism. Br. J. Haematol. 1981, 49, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Vermylen, J.; Defreyn, G.; Carreras, L.O.; Machin, S.J.; Van Schaeren, J.; Verstraete, M. Thromboxane synthetase inhibition as antithrombotic strategy. Lancet 1981, 1, 1073–1075. [Google Scholar] [CrossRef]
- Gresele, P.; Arnout, J.; Deckmyn, H.; Huybrechts, E.; Pieters, G.; Vermylen, J. Role of proaggregatory and antiaggregatory prostaglandins in hemostasis. Studies with combined thromboxane synthase inhibition and thromboxane receptor antagonism. J. Clin. Investig. 1987, 80, 1435–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, L.; Grover, G.J.; Stier, C.T. Ifetroban sodium: An effective TxA2/PGH2 receptor antagonist. Cardiovasc. Drug Rev. 2001, 19, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Bousser, M.-G.; Amarenco, P.; Chamorro, A.; Fisher, M.; Ford, I.; Fox, K.M.; Hennerici, M.G.; Mattle, H.P.; Rothwell, P.M.; de Cordoüe, A.; et al. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): A randomised, double-blind, parallel-group trial. Lancet 2011, 377, 2013–2022. [Google Scholar] [CrossRef]
- Schrey, M.P.; Patel, K.V. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br. J. Cancer 1995, 72, 1412–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tammali, R.; Ramana, K.V.; Srivastava, S.K. Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells. Cancer Lett. 2007, 252, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Delamere, F.; Holland, E.; Patel, S.; Bennett, J.; Pavord, I.; Knox, A. Production of PGE2 by bovine cultured airway smooth muscle cells and its inhibition by cyclo-oxygenase inhibitors. Br. J. Pharmacol. 1994, 111, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Charo, I.F.; Shak, S.; Karasek, M.A.; Davison, P.M.; Goldstein, I.M. Prostaglandin I2 is not a major metabolite of arachidonic acid in cultured endothelial cells from human foreskin microvessels. J. Clin. Investig. 1984, 74, 914–919. [Google Scholar] [CrossRef]
- Kuwano, T.; Nakao, S.; Yamamoto, H.; Tsuneyoshi, M.; Yamamoto, T.; Kuwano, M.; Ono, M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004, 18, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Tilly, P.; Hentsch, D.; Vonesch, J.-L.; Fabre, J.-E. Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. J. Exp. Med. 2007, 204, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipollone, F.; Prontera, C.; Pini, B.; Marini, M.; Fazia, M.; De Cesare, D.; Iezzi, A.; Ucchino, S.; Boccoli, G.; Saba, V.; et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 2001, 104, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Gomez, I.; Foudi, N.; Longrois, D.; Norel, X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 55–63. [Google Scholar] [CrossRef]
- Shio, H.; Ramwell, P. Effect of prostaglandin E 2 and aspirin on the secondary aggregation of human platelets. Nat. New Biol. 1972, 236, 45–46. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.W.; Stuart, R.K. Interaction of prostaglandins E1 and E2 in regulation of cyclic-AMP and aggregation in human platelets: Evidence for a common prostaglandin receptor. J. Lab. Clin. Med. 1974, 84, 111–121. [Google Scholar]
- Gray, S.J.; Heptinstall, S. The effects of PGE2 and CL 115,347, an antihypertensive PGE2 analogue, on human blood platelet behaviour and vascular contractility. Eur. J. Pharmacol. 1985, 114, 129–137. [Google Scholar] [CrossRef]
- Gray, S.J.; Heptinstall, S. Interactions between prostaglandin E2 and inhibitors of platelet aggregation which act through cyclic AMP. Eur. J. Pharmacol. 1991, 194, 63–70. [Google Scholar] [CrossRef]
- Ma, H.; Hara, A.; Xiao, C.Y.; Okada, Y.; Takahata, O.; Nakaya, K.; Sugimoto, Y.; Ichikawa, A.; Narumiya, S.; Ushikubi, F. Increased bleeding tendency and decreased susceptibility to thromboembolism in mice lacking the prostaglandin E receptor subtype EP(3). Circulation 2001, 104, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.P.; Haddad, E.V.; Downey, J.D.; Breyer, R.M.; Boutaud, O. PGE2 decreases reactivity of human platelets by activating EP2 and EP4. Thromb. Res. 2010, 126, e23–e29. [Google Scholar] [CrossRef] [Green Version]
- Iyú, D.; Glenn, J.R.; White, A.E.; Johnson, A.J.; Fox, S.C.; Heptinstall, S. The role of prostanoid receptors in mediating the effects of PGE(2) on human platelet function. Platelets 2010, 21, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, G.; De Cristofaro, R.; Rutella, S.; Ranelletti, F.O.; Pocaterra, D.; Lancellotti, S.; Habib, A.; Patrono, C.; Rocca, B. Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors. J. Pharmacol. Exp. Ther. 2011, 336, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Andersen, N.H.; Eggerman, T.L.; Harker, L.A.; Wilson, C.H.; De, B. On the multiplicity of platelet prostaglandin receptors. I. Evaluation of competitive antagonism by aggregometry. Prostaglandins 1980, 19, 711–735. [Google Scholar] [CrossRef]
- Tynan, S.S.; Andersen, N.H.; Wills, M.T.; Harker, L.A.; Hanson, S.R. On the multiplicity of platelet prostaglandin receptors. II. The use of N-0164 for distinguishing the loci of action for PGI2, PGD2, PGE2 and hydantoin analogs. Prostaglandins 1984, 27, 683–696. [Google Scholar] [CrossRef]
- Hubertus, K.; Mischnik, M.; Timmer, J.; Herterich, S.; Mark, R.; Moulard, M.; Walter, U.; Geiger, J. Reciprocal regulation of human platelet function by endogenous prostanoids and through multiple prostanoid receptors. Eur. J. Pharmacol. 2014, 740, 15–27. [Google Scholar] [CrossRef]
- Schaid, M.D.; Wisinski, J.A.; Kimple, M.E. The EP3 receptor/Gz signaling axis as a therapeutic target for diabetes and cardiovascular disease. AAPS J. 2017, 19, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, J.; Kowalska, M.A.; Dalvi, A.; Prevost, N.; O’Brien, P.J.; Manning, D.; Poncz, M.; Lucki, I.; Blendy, J.A.; et al. Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc. Natl. Acad. Sci. USA 2000, 97, 9984–9989. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wu, J.; Jiang, H.; Mortensen, R.; Austin, S.; Manning, D.R.; Woulfe, D.; Brass, L.F. Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J. Biol. Chem. 2002, 277, 46035–46042. [Google Scholar] [CrossRef] [Green Version]
- Namba, T.; Sugimoto, Y.; Negishi, M.; Irie, A.; Ushikubi, F.; Kakizuka, A.; Ito, S.; Ichikawa, A.; Narumiya, S. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993, 365, 166–170. [Google Scholar] [CrossRef]
- Jin, J.; Mao, G.F.; Ashby, B. Constitutive activity of human prostaglandin E receptor EP3 isoforms. Br. J. Pharmacol. 1997, 121, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.A.; Grix, S.P.; Head, S.A.; Louttit, J.B.; Mallett, A.; Sheldrick, R.L. A novel inhibitory prostanoid receptor in piglet saphenous vein. Prostaglandins 1994, 47, 151–168. [Google Scholar] [CrossRef]
- Nagy, Z.; Smolenski, A. Cyclic nucleotide-dependent inhibitory signaling interweaves with activating pathways to determine platelet responses. Res. Pract. Thromb. Haemost. 2018, 2, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.L. Epac: A new cAMP target and new avenues in cAMP research. Nat. Rev. Mol. Cell Biol. 2003, 4, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, L.; Bergmeier, W. RAP1-GTPase signaling and platelet function. J. Mol. Med. (Berl.) 2016, 94, 13–19. [Google Scholar] [CrossRef]
- Vilahur, G.; Gutiérrez, M.; Arzanauskaite, M.; Mendieta, G.; Ben-Aicha, S.; Badimon, L. Intracellular platelet signalling as a target for drug development. Vascul. Pharmacol. 2018, 111, 22–25. [Google Scholar] [CrossRef]
- Wang, Z.; Dillon, T.J.; Pokala, V.; Mishra, S.; Labudda, K.; Hunter, B.; Stork, P.J.S. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol. Cell Biol. 2006, 26, 2130–2145. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Li, Y.; Dillon, T.J.; Stork, P.J.S. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) creates a binding site for KSR to sustain ERK activation by cAMP. J. Biol. Chem. 2017, 292, 1449–1461. [Google Scholar] [CrossRef] [Green Version]
- De Rooij, J.; Zwartkruis, F.J.; Verheijen, M.H.; Cool, R.H.; Nijman, S.M.; Wittinghofer, A.; Bos, J.L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396, 474–477. [Google Scholar] [CrossRef]
- Lacabaratz-Porret, C.; Corvazier, E.; Kovàcs, T.; Bobe, R.; Bredoux, R.; Launay, S.; Papp, B.; Enouf, J. Platelet sarco/endoplasmic reticulum Ca2+ATPase isoform 3b and Rap 1b: Interrelation and regulation in physiopathology. Biochem. J. 1998, 332(Pt 1), 173–181. [Google Scholar] [CrossRef] [Green Version]
- Kosuru, R.; Chrzanowska, M. Integration of Rap1 and calcium signaling. IJMS 2020, 21, 1616. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Sand, C.; Jakobs, K.H.; Michel, M.C.; Weernink, P.A.O. Epac and the cardiovascular system. Curr. Opin. Pharmacol. 2007, 7, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Ashby, B. Agonist-induced internalization and mitogen-activated protein kinase activation of the human prostaglandin EP4 receptor. FEBS Lett. 2001, 501, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.; Sukhova, G.K.; Chin, M.T.; Libby, P. A novel prostaglandin E receptor 4-associated protein participates in antiinflammatory signaling. Circ. Res. 2006, 98, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujino, H.; Xu, W.; Regan, J.W. Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J. Biol. Chem. 2003, 278, 12151–12156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujino, H.; West, K.A.; Regan, J.W. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J. Biol. Chem. 2002, 277, 2614–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresele, P.; Blockmans, D.; Deckmyn, H.; Vermylen, J. Adenylate cyclase activation determines the effect of thromboxane synthase inhibitors on platelet aggregation in vitro. Comparison of platelets from responders and nonresponders. J. Pharmacol. Exp. Ther. 1988, 246, 301–307. [Google Scholar]
- Matthews, J.S.; Jones, R.L. Potentiation of aggregation and inhibition of adenylate cyclase in human platelets by prostaglandin E analogues. Br. J. Pharmacol. 1993, 108, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Gresele, P.; Deckmyn, H.; Huybrechts, E.; Vermylen, J. Serum albumin enhances the impairment of platelet aggregation with thromboxane synthase inhibition by increasing the formation of prostaglandin D2. Biochem. Pharmacol. 1984, 33, 2083–2088. [Google Scholar] [CrossRef]
- Watanabe, K.; Yoshida, R.; Shimizu, T.; Hayaishi, O. Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J. Biol. Chem. 1985, 260, 7035–7041. [Google Scholar]
- Basu, S.; Sjöquist, B.; Resul, B.; Stjernschantz, J. Presence of a 15-ketoprostaglandin delta 13-reductase in porcine cornea. Acta Chem. Scand. 1992, 46, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Basu, S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Med. Res. Rev. 2007, 27, 435–468. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.-M.; Breyer, M.D. Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 2008, 70, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Sales, K.J.; List, T.; Boddy, S.C.; Williams, A.R.W.; Anderson, R.A.; Naor, Z.; Jabbour, H.N. A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res. 2005, 65, 7707–7716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.T.; Moon, S.K.; Maruyama, T.; Narumiya, S.; Doré, S. Prostaglandin FP receptor inhibitor reduces ischemic brain damage and neurotoxicity. Neurobiol. Dis. 2012, 48, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Glushakov, A.V.; Robbins, S.W.; Bracy, C.L.; Narumiya, S.; Doré, S. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury. J. Neuroinflamm. 2013, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Nakao, A.; Emerling, D.; Hashimoto, Y.; Tsukamoto, K.; Horie, Y.; Kinoshita, M.; Kurokawa, K. Prostaglandin F2 alpha enhances tyrosine phosphorylation and DNA synthesis through phospholipase C-coupled receptor via Ca(2+)-dependent intracellular pathway in NIH-3T3 cells. J. Biol. Chem. 1994, 269, 17619–17625. [Google Scholar]
- Sugimoto, Y.; Yamasaki, A.; Segi, E.; Tsuboi, K.; Aze, Y.; Nishimura, T.; Oida, H.; Yoshida, N.; Tanaka, T.; Katsuyama, M.; et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science 1997, 277, 681–683. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, Y.; Yu, Y. PG F2α receptor: A promising therapeutic target for cardiovascular disease. Front. Pharmacol. 2010, 1. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Lucitt, M.B.; Stubbe, J.; Cheng, Y.; Friis, U.G.; Hansen, P.B.; Jensen, B.L.; Smyth, E.M.; FitzGerald, G.A. Prostaglandin F2 elevates blood pressure and promotes atherosclerosis. Proc. Natl. Acad. Sci. USA 2009, 106, 7985–7990. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitz, B.; Arad, M.; Elazar, E.; Klein, R.; Zahav, Y.H. Epicardial versus endocardial “in mirror” changes in prostaglandin synthesis after short periods of ischemia and reperfusion. Eicosanoids 1992, 5, 163–167. [Google Scholar]
- Di Francesco, L.; Totani, L.; Dovizio, M.; Piccoli, A.; Di Francesco, A.; Salvatore, T.; Pandolfi, A.; Evangelista, V.; Dercho, R.A.; Seta, F.; et al. Induction of prostacyclin by steady laminar shear stress suppresses tumor necrosis factor-alpha biosynthesis via heme oxygenase-1 in human endothelial cells. Circ. Res. 2009, 104, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, K.M.; Uddemarri, S.; Desai, D.H.; Morrison, R.G.; Harris, R.; Wright, G.L.; Blough, E.R. PGF2alpha-associated vascular smooth muscle hypertrophy is ROS dependent and involves the activation of mTOR, p70S6k, and PTEN. Prostaglandins Other Lipid Mediat. 2008, 85, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, B.J.; Oren-Wolman, N.; Guth, P.H. Gastric vasoconstrictor actions of leukotriene C4, PGF2 alpha, and thromboxane mimetic U-46619 on rat submucosal microcirculation in vivo. Am. J. Physiol. 1985, 248, G580–G586. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.C.; Ghali, N.I.; Venton, D.L.; Le Breton, G.C. Prostaglandin F2 alpha antagonizes thromboxane A2-induced human platelet aggregation. Prostaglandins 1982, 24, 195–206. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Jones, R.L.; Wilson, N.H. Mechanism of the inhibition of platelet aggregation produced by prostaglandin F2 alpha. Prostaglandins 1985, 29, 601–610. [Google Scholar] [CrossRef]
- Kashiwagi, H.; Yuhki, K.; Imamichi, Y.; Kojima, F.; Kumei, S.; Tasaki, Y.; Narumiya, S.; Ushikubi, F. Prostaglandin F2α facilitates platelet activation by acting on prostaglandin E2 receptor subtype EP3 and thromboxane A2 receptor TP in mice. Thromb. Haemost. 2019, 119, 1311–1320. [Google Scholar] [CrossRef]
- Rulo, A.H.; Greve, E.L.; Hoyng, P.F. Additive effect of latanoprost, a prostaglandin F2 alpha analogue, and timolol in patients with elevated intraocular pressure. Br. J. Ophthalmol. 1994, 78, 899–902. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Liou, J.-Y.; Wu, K.K. Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway. Prostaglandins Other Lipid Mediat. 2015, 118–119, 19–27. [Google Scholar] [CrossRef]
- Cawello, W.; Schweer, H.; Müller, R.; Bonn, R.; Seyberth, H.W. Metabolism and pharmacokinetics of prostaglandin E1 administered by intravenous infusion in human subjects. Eur. J. Clin. Pharmacol. 1994, 46, 275–277. [Google Scholar] [CrossRef]
- Lewis, P.J.; Dollery, C.T. Clinical pharmacology and potential of prostacyclin. Br. Med. Bull. 1983, 39, 281–284. [Google Scholar] [CrossRef]
- Borgdorff, P.; Tangelder, G.J.; Paulus, W.J. Cyclooxygenase-2 inhibitors enhance shear stress-induced platelet aggregation. J. Am. Coll. Cardiol. 2006, 48, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, H.J.; Turitto, V.T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood 1979, 53, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, B.; Stemerman, M.B.; Mennell, D.; Handin, R.I. The interaction of platelets with aortic subendothelium: Inhibition of adhesion and secretion by prostaglandin I2. Blood 1981, 58, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, B.J.; Moncada, S.; Vane, J.R. Comparison of the effects of prostacyclin (PGI2), prostaglandin E1 and D2 on platelet aggregation in different species. Prostaglandins 1978, 16, 373–388. [Google Scholar] [CrossRef]
- Polanowska-Grabowska, R.; Gear, A.R. Role of cyclic nucleotides in rapid platelet adhesion to collagen. Blood 1994, 83, 2508–2515. [Google Scholar] [CrossRef] [Green Version]
- Rosado, J.A.; Meijer, E.M.; Hamulyak, K.; Novakova, I.; Heemskerk, J.W.; Sage, S.O. Fibrinogen binding to the integrin alpha(IIb)beta(3) modulates store-mediated calcium entry in human platelets. Blood 2001, 97, 2648–2656. [Google Scholar] [CrossRef]
- Rosado, J.A.; Porras, T.; Conde, M.; Sage, S.O. Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J. Biol. Chem. 2001, 276, 15666–15675. [Google Scholar] [CrossRef] [Green Version]
- Doni, M.G.; Cavallini, L.; Alexandre, A. Ca2+ influx in platelets: Activation by thrombin and by the depletion of the stores. Effect of cyclic nucleotides. Biochem. J. 1994, 303(Pt 2), 599–605. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Kimura, M.; Aviv, A. Role of cyclic nucleotides in store-mediated external Ca2+ entry in human platelets. Biochem. J. 1995, 310 (Pt 1), 263–269. [Google Scholar] [CrossRef] [Green Version]
- Harbeck, B.; Hüttelmaier, S.; Schluter, K.; Jockusch, B.M.; Illenberger, S. Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J. Biol. Chem. 2000, 275, 30817–30825. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, R.J.; Xi, X.; Li, Z.; Berndt, M.C.; Du, X. Regulation of glycoprotein Ib-IX-von Willebrand factor interaction by cAMP-dependent protein kinase-mediated phosphorylation at Ser 166 of glycoprotein Ib(beta). J. Biol. Chem. 2002, 277, 47080–47087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinton, T.M.; Dean, W.L. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem. Biophys. Res. Commun. 1992, 184, 893–899. [Google Scholar] [CrossRef]
- Peshavariya, H.M.; Liu, G.-S.; Chang, C.W.T.; Jiang, F.; Chan, E.C.; Dusting, G.J. Prostacyclin signaling boosts NADPH oxidase 4 in the endothelium promoting cytoprotection and angiogenesis. Antioxid. Redox Signal. 2014, 20, 2710–2725. [Google Scholar] [CrossRef] [PubMed]
- Hoang, K.G.; Allison, S.; Murray, M.; Petrovic, N. Prostanoids regulate angiogenesis acting primarily on IP and EP4 receptors. Microvasc. Re.s 2015, 101, 127–134. [Google Scholar] [CrossRef]
- Smith, J.B.; Silver, M.J.; Ingerman, C.M.; Kocsis, J.J. Prostaglandin D2 inhibits the aggregation of human platelets. Thromb. Res. 1974, 5, 291–299. [Google Scholar] [CrossRef]
- Pluchart, H.; Khouri, C.; Blaise, S.; Roustit, M.; Cracowski, J.-L. Targeting the prostacyclin pathway: Beyond pulmonary arterial hypertension. Trends Pharmacol. Sci. 2017, 38, 512–523. [Google Scholar] [CrossRef]
- Fox, C.J.; Cornett, E.M.; Hart, B.M.; Kaye, A.J.; Patil, S.S.; Turpin, M.C.; Valdez, A.; Urman, R.D.; Kaye, A.D. Pulmonary vasodilators: Latest evidence and outcomes in the perioperative setting. Best Pract. Res. Clin. Anaesthesiol. 2018, 32, 237–250. [Google Scholar] [CrossRef]
- Salehi, A. Pulmonary hypertension: A review of pathophysiology and anesthetic management. Am. J. Ther. 2012, 19, 377–383. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.; McGoon, M.D.; Park, M.H.; Rosenson, R.S.; et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009, 119, 2250–2294. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.T.; Haskal, Z.J.; Hertzer, N.R.; Bakal, C.W.; Creager, M.A.; Halperin, J.L.; Hiratzka, L.F.; Murphy, W.R.C.; Olin, J.W.; Puschett, J.B.; et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006, 113, e463–e654. [Google Scholar] [CrossRef] [Green Version]
- The Oral Iloprost in Severe Leg Ischaemia Study Group. Two randomised and placebo-controlled studies of an oral prostacyclin analogue (Iloprost) in severe leg ischaemia. Eur. J. Vasc. Endovasc. Surg. 2000, 20, 358–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, K.E.; Lui, F. Physiology, prostaglandin I2. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Gaillard-Bigot, F.; Roustit, M.; Blaise, S.; Cracowski, C.; Seinturier, C.; Imbert, B.; Carpentier, P.; Cracowski, J.-L. Treprostinil iontophoresis improves digital blood flow during local cooling in systemic sclerosis. Microcirculation 2016, 23, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Giles, H.; Leff, P. The biology and pharmacology of PGD2. Prostaglandins 1988, 35, 277–300. [Google Scholar] [CrossRef]
- Keery, R.J.; Lumley, P. AH6809, a prostaglandin DP-receptor blocking drug on human platelets. Br. J. Pharmacol. 1988, 94, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, M. Prostaglandin J2—Anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids 1990, 3, 189–199. [Google Scholar]
- Giles, H.; Leff, P.; Bolofo, M.L.; Kelly, M.G.; Robertson, A.D. The classification of prostaglandin DP-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br. J. Pharmacol. 1989, 96, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Schuligoi, R.; Schmidt, R.; Geisslinger, G.; Kollroser, M.; Peskar, B.A.; Heinemann, A. PGD2 metabolism in plasma: Kinetics and relationship with bioactivity on DP1 and CRTH2 receptors. Biochem. Pharmacol. 2007, 74, 107–117. [Google Scholar] [CrossRef]
- Norman, P. Update on the status of DP2 receptor antagonists; from proof of concept through clinical failures to promising new drugs. Expert. Opin. Investig. Drugs 2014, 23, 55–66. [Google Scholar] [CrossRef]
- Asano, K.; Sagara, H.; Ichinose, M.; Hirata, M.; Nakajima, A.; Ortega, H.; Tohda, Y. A phase 2a study of DP2 antagonist GB001 for asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 1275–1283.e1. [Google Scholar] [CrossRef]
- Marone, G.; Galdiero, M.R.; Pecoraro, A.; Pucino, V.; Criscuolo, G.; Triassi, M.; Varricchi, G. Prostaglandin D2 receptor antagonists in allergic disorders: Safety, efficacy, and future perspectives. Expert. Opin. Investig. Drugs 2019, 28, 73–84. [Google Scholar] [CrossRef]
- Levin, G.; Duffin, K.L.; Obukowicz, M.G.; Hummert, S.L.; Fujiwara, H.; Needleman, P.; Raz, A. Differential metabolism of dihomo-gamma-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: Implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. Biochem. J. 2002, 365, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta-Roy, A.K.; Kahn, N.N.; Sinha, A.K. Prostaglandin E1: The endogenous physiological regulator of platelet mediated blood coagulation. Prostaglandins Leukot. Essent. Fat. Acids 1989, 35, 189–195. [Google Scholar] [CrossRef]
- Koga, T.; Az-ma, T.; Yuge, O. Prostaglandin E1 at clinically relevant concentrations inhibits aggregation of platelets under synergic interaction with endothelial cells. Acta Anaesthesiol. Scand. 2002, 46, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Granström, E. On the metabolism of prostaglandin E1 in man: Prostaglandins and related factors. Prog. Biochem. Pharmacol. 1967, 3, 89–93. [Google Scholar]
- Long, W.A.; Rubin, L.J. Prostacyclin and PGE1 treatment of pulmonary hypertension. Am. Rev. Respir. Dis. 1987, 136, 773–776. [Google Scholar] [CrossRef]
- Anggård, E. The biological activities of three metabolites of prostaglandin E 1. Acta Physiol. Scand. 1966, 66, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Jap, T.S.; Kwok, C.F.; Wong, M.C.; Chiang, H. The effects of in vitro and in vivo exposure to insulin upon prostaglandin E1 stimulation of platelet adenylate cyclase activity in healthy subjects. Diabetes Res. 1994, 27, 39–46. [Google Scholar]
- Michel, H.; Caen, J.P.; Born, G.V.; Miller, R.; D’Auriac, G.A.; Meyer, P. Relation between the inhibition of aggregation and the concentration of cAMP in human and rat platelets. Br. J. Haematol. 1976, 33, 27–38. [Google Scholar] [CrossRef]
- Kikura, M.; Kazama, T.; Ikeda, T.; Sato, S. Disaggregatory effects of prostaglandin E1, amrinone and milrinone on platelet aggregation in human whole blood. Platelets 2000, 11, 446–458. [Google Scholar] [CrossRef]
- Schafer, A.I.; Cooper, B.; O’Hara, D.; Handin, R.I. Identification of platelet receptors for prostaglandin I2 and D2. J. Biol. Chem. 1979, 254, 2914–2917. [Google Scholar]
- Kiriyama, M.; Ushikubi, F.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 1997, 122, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyú, D.; Jüttner, M.; Glenn, J.R.; White, A.E.; Johnson, A.J.; Fox, S.C.; Heptinstall, S. PGE1 and PGE2 modify platelet function through different prostanoid receptors. Prostaglandins Other Lipid Mediat. 2011, 94, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Lu, H.; Guo, W.; Dai, W.; Li, H.; Yang, H.; Li, L. The effect of alprostadil on preventing contrast-induced nephropathy for percutaneous coronary intervention in diabetic patients: A systematic review and meta-analysis. Medicine 2016, 95, e5306. [Google Scholar] [CrossRef]
- Hatzimouratidis, K.; Salonia, A.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; McCullough, A.; Torres, L.O.; Khera, M. Pharmacotherapy for erectile dysfunction: Recommendations from the fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex. Med. 2016, 13, 465–488. [Google Scholar] [CrossRef]
- Vietto, V.; Franco, J.V.; Saenz, V.; Cytryn, D.; Chas, J.; Ciapponi, A. Prostanoids for critical limb ischaemia. Cochrane Database Syst. Rev. 2018, 1, CD006544. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, S.; Kashiwagi, H.; Yuhki, K.; Kojima, F.; Yamada, T.; Fujino, T.; Hara, A.; Takayama, K.; Maruyama, T.; Yoshida, A.; et al. Selective activation of the prostaglandin E2 receptor subtype EP2 or EP4 leads to inhibition of platelet aggregation. Thromb. Haemost. 2010, 104, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Philipose, S.; Konya, V.; Sreckovic, I.; Marsche, G.; Lippe, I.T.; Peskar, B.A.; Heinemann, A.; Schuligoi, R. The prostaglandin E2 receptor EP4 is expressed by human platelets and potently inhibits platelet aggregation and thrombus formation. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2416–2423. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.B.; Willis, A.L. Aspirin selectively inhibits prostaglandin production in human platelets. Nat. New Biol. 1971, 231, 235–237. [Google Scholar] [CrossRef]
- Schober, L.J.; Khandoga, A.L.; Dwivedi, S.; Penz, S.M.; Maruyama, T.; Brandl, R.; Siess, W. The role of PGE(2) in human atherosclerotic plaque on platelet EP(3) and EP(4) receptor activation and platelet function in whole blood. J. Thromb. Thrombolysis 2011, 32, 158–166. [Google Scholar] [CrossRef]
- Abramovitz, M.; Adam, M.; Boie, Y.; Carrière, M.; Denis, D.; Godbout, C.; Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N.M.; et al. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim. Biophys. Acta 2000, 1483, 285–293. [Google Scholar] [CrossRef]
- Sanchez-Ramos, L.; Peterson, D.E.; Delke, I.; Gaudier, F.L.; Kaunitz, A.M. Labor induction with prostaglandin E1 misoprostol compared with dinoprostone vaginal insert: A randomized trial. Obstet. Gynecol. 1998, 91, 401–405. [Google Scholar] [CrossRef]
- Belfrage, P.; Smedvig, E.; Gjessing, L.; Eggebø, T.M.; Okland, I. A randomized prospective study of misoprostol and dinoproston for induction of labor. Acta Obstet. Gynecol. Scand. 2000, 79, 1065–1068. [Google Scholar] [PubMed]
- Schmitz, G.; Ecker, J. The opposing effects of n−3 and n−6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Jiang, Y.; Fischer, S.M. Prostaglandin E3 metabolism and cancer. Cancer Lett. 2014, 348, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymczak, M.; Murray, M.; Petrovic, N. Modulation of angiogenesis by ω-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 2008, 111, 3514–3521. [Google Scholar] [CrossRef]
- Turco, S.D.; Basta, G.; Lazzerini, G.; Evangelista, M.; Rainaldi, G.; Tanganelli, P.; Camera, M.; Tremoli, E.; Caterina, R.D. Parallel decrease of tissue factor surface exposure and increase of tissue factor microparticle release by the n-3 fatty acid docosahexaenoate in endothelial cells. Thromb. Haemost. 2007, 98, 210–219. [Google Scholar] [CrossRef]
- Madonna, R.; Salerni, S.; Schiavone, D.; Glatz, J.; Geng, Y.-J.; Caterin, R. Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPARα/γ activity in microvascular endothelial cells. Thromb. Haemost. 2011, 106, 500–510. [Google Scholar] [CrossRef]
- Iyú, D.; Glenn, J.R.; White, A.E.; Johnson, A.; Heptinstall, S.; Fox, S.C. The role of prostanoid receptors in mediating the effects of PGE3 on human platelet function. Thromb. Haemost. 2012, 107, 797–799. [Google Scholar] [CrossRef]
- Gryglewski, R.J.; Salmon, J.A.; Ubatuba, F.B.; Weatherly, B.C.; Moncada, S.; Vane, J.R. Effects of all cis-5,8,11,14,17 eicosapentaenoic acid and PGH3 on platelet aggregation. Prostaglandins 1979, 18, 453–478. [Google Scholar] [CrossRef]
- Yeung, J.; Hawley, M.; Holinstat, M. The expansive role of oxylipins on platelet biology. J. Mol. Med. 2017, 95, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Gremmel, T.; Michelson, A.D.; Frelinger, A.L.; Bhatt, D.L. Novel aspects of antiplatelet therapy in cardiovascular disease. Res. Pract. Thromb. Haemost. 2018, 2, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Biringer, R.G. A review of prostanoid receptors: Expression, characterization, regulation, and mechanism of action. J. Cell Commun. Signal. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993, 362, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Smolenski, A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J. Thromb. Haemost. 2012, 10, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Fabre, J.E.; Nguyen, M.; Athirakul, K.; Coggins, K.; McNeish, J.D.; Austin, S.; Parise, L.K.; FitzGerald, G.A.; Coffman, T.M.; Koller, B.H. Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. J. Clin. Invest. 2001, 107, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Heptinstall, S.; Espinosa, D.I.; Manolopoulos, P.; Glenn, J.R.; White, A.E.; Johnson, A.; Dovlatova, N.; Fox, S.C.; May, J.A.; Hermann, D.; et al. DG-041 inhibits the EP3 prostanoid receptor—A new target for inhibition of platelet function in atherothrombotic disease. Platelets 2008, 19, 605–613. [Google Scholar] [CrossRef]
Prostanoid | PGD2 | PGE1 | PGE2 | PGE3 | PGF2α | PGI2 | TXA2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Receptor | DP | IP, EP | EP | FP | IP | TP | ||||||
Subtype | DP1 | DP2 CRTH2 | (EP1) | EP2 | EP3 | EP4 | TPa | |||||
G-protein | Linkage | Gs | Gi | Gs | Gq | Gs | Gi | Gs | Gq | Gs | Gq | |
Signaling pathway | AC | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ||||
Ca2+ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ||||||
cAMP | ↑ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | |||||
CREB | ↑ | ↑ | ||||||||||
ERK | ↑ | ↑ | ||||||||||
GSK3 | ↑ | |||||||||||
IP3 | ↑ | ↑ | ↑ | ↑ | ||||||||
PI3K | ↑ | |||||||||||
p38 MAPK | ↑ | ↑ | ||||||||||
PLC | ↑ | ↑ | ↑ | ↑ | ||||||||
PKA | ↑ | ↑ | ||||||||||
PKB (AKT) | ↑ | |||||||||||
PKC | ↑ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braune, S.; Küpper, J.-H.; Jung, F. Effect of Prostanoids on Human Platelet Function: An Overview. Int. J. Mol. Sci. 2020, 21, 9020. https://doi.org/10.3390/ijms21239020
Braune S, Küpper J-H, Jung F. Effect of Prostanoids on Human Platelet Function: An Overview. International Journal of Molecular Sciences. 2020; 21(23):9020. https://doi.org/10.3390/ijms21239020
Chicago/Turabian StyleBraune, Steffen, Jan-Heiner Küpper, and Friedrich Jung. 2020. "Effect of Prostanoids on Human Platelet Function: An Overview" International Journal of Molecular Sciences 21, no. 23: 9020. https://doi.org/10.3390/ijms21239020
APA StyleBraune, S., Küpper, J. -H., & Jung, F. (2020). Effect of Prostanoids on Human Platelet Function: An Overview. International Journal of Molecular Sciences, 21(23), 9020. https://doi.org/10.3390/ijms21239020