The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases
Abstract
:1. Introduction
2. Na+-Independent Pi Transport System for Pi Homeostasis
2.1. Pi Transport System in Intestinal Pi Absorption
2.2. Bone Resorption and Pi Transport Coupled to the Proton Gradient
2.3. The Pi Transport System in Proximal Renal Tubule
2.4. Pi Uptake by Capillaries of the Blood–Brain Barrier
3. High Phosphate and Pi Transport Mechanisms and Cancer Promotion
3.1. Extracellular Pi and Tumorigenesis
3.2. Na+-Independent Pi Transport Mechanisms in Breast Cancer
3.3. Na+-Independent Pi Transport and Metastasis
3.4. Pi Transport Stimulated by [H+] in Ehrlich Ascites Tumor Cells
4. Disease Development Related to Hyperphosphatemia and Hypercalcemia
4.1. Vascular Smooth Muscle Calcification
4.2. Crystal Formation in Articular Cartilage and Osteoarthritis Development
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sapio, L.; Naviglio, S. Inorganic phosphate in the development and treatment of cancer: A Janus Bifrons? World J. Clin. Oncol. 2015, 6, 198–201. [Google Scholar] [CrossRef]
- Takeda, E.; Taketani, Y.; Morita, K.; Tatsumi, S.; Katai, K.; Nii, T.; Yamamoto, H.; Miyamoto, K.-I. Molecular mechanisms of mammalian inorganic phosphate homeostasis. Adv. Enzym. Regul. 2000, 40, 285–302. [Google Scholar] [CrossRef]
- Iheagwara, O.S.; Ing, T.S.; Kjellstrand, C.M.; Lew, S.Q. Phosphorus, phosphorous, and phosphate. Hemodial. Int. 2012, 17, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Forster, I.C.; Hernando, N.; Biber, J.; Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Asp. Med. 2013, 34, 386–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, M.; Gratton, E.; Forster, I.C.; Hernando, N.; Wagner, C.A.; Biber, J.; Sorribas, V.; Murer, H. Mechanisms of phosphate transport. Nat. Rev. Nephrol. 2019, 15, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.A.; Hernando, N.; Forster, I.C.; Biber, J. The SLC34 family of sodium-dependent phosphate transporters. Eur. J. Physiol. 2013, 466, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Christov, M.; Jüppner, H. Phosphate homeostasis disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 685–706. [Google Scholar] [CrossRef]
- Jacquillet, G.; Unwin, R. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflügers Archiv 2019, 471, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Candeal, E.; Caldas, Y.A.; Guillén, N.; Levi, M.; Sorribas, V. Na+-independent phosphate transport in Caco2BBE cells. Am. J. Physiol. Physiol. 2014, 307, C1113–C1122. [Google Scholar] [CrossRef] [Green Version]
- Azzarolo, A.M.; Ritchie, G.; Quamme, G.A. Some characteristics of sodium-independent phosphate transport across renal basolateral membranes. Biochim. Biophys. Acta Biomembr. 1991, 1064, 229–234. [Google Scholar] [CrossRef]
- Ito, M.; Matsuka, N.; Izuka, M.; Haito, S.; Sakai, Y.; Nakamura, R.; Segawa, H.; Kuwahata, M.; Yamamoto, H.; Pike, W.J.; et al. Characterization of inorganic phosphate transport in osteoclast-like cells. Am. J. Physiol. Physiol. 2005, 288, C921–C931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, D.H.; Wilkins, R.J.; Meredith, D.; Browning, J.A. Characterisation of inorganic phosphate transport in bovine articular chondrocytes. Cell. Physiol. Biochem. 2007, 20, 099–108. [Google Scholar] [CrossRef] [PubMed]
- Villa-Bellosta, R.; Bogaert, Y.E.; Levi, M.; Sorribas, V. Characterization of phosphate transport in rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, L.; Béliveau, R. Phosphate transport by capillaries of the blood-brain barrier. J. Biol. Chem. 1992, 267, 22323–22327. [Google Scholar]
- Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Cosentino-Gomes, D.; Nascimento, M.T.C.; Carvalho-Kelly, L.F.; Gomes, T.; Rodrigues, M.F.; König, S.; Rumjanek, F.D.; Monteiro, R.Q.; et al. H+-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2180–2188. [Google Scholar] [CrossRef]
- Camalier, C.E.; Young, M.R.; Bobe, G.; Perella, C.M.; Colburn, N.H.; Beck, G.R. Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev. Res. 2010, 3, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Monteiro, R.D.Q.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 291–298. [Google Scholar] [CrossRef]
- Davis, G.R.; Zerwekh, J.E.; Parker, T.F.; Krejs, G.J.; Pak, C.; Fordtran, J.S. Absorption of phosphate in the jejunum of patients with chronic renal failure before and after correction of vitamin D deficiency. Gastroenterology 1983, 85, 908–916. [Google Scholar] [CrossRef]
- Lee, G.J.; Marks, J. Intestinal phosphate transport: A therapeutic target in chronic kidney disease and beyond? Pediatr. Nephrol. 2014, 30, 363–371. [Google Scholar] [CrossRef]
- Solomon, D.H.; Browning, J.; Wilkins, R.J. Inorganic phosphate transport in matrix vesicles from bovine articular cartilage. Acta Physiol. 2007, 190, 119–125. [Google Scholar] [CrossRef]
- Katai, K.; Tanaka, H.; Tatsumi, S.; Fukunaga, Y.; Genjida, K.; Morita, K.; Kuboyama, N.; Suzuki, T.; Akiba, T.; Miyamoto, K.; et al. Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol. Dial. Transplant. 1999, 14, 1195–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, J.; Lee, G.J.; Nadaraja, S.P.; Debnam, E.S.; Unwin, R.J. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol. Rep. 2015, 3, e12281. [Google Scholar] [CrossRef]
- Fujita, H.; Sugimoto, K.; Inatomi, S.; Maeda, T.; Osanai, M.; Uchiyama, Y.; Yamamoto, Y.; Wada, T.; Kojima, T.; Yokozaki, H.; et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell 2008, 19, 1912–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candeal, E.; Caldas, Y.A.; Guillén, N.; Levi, M.; Sorribas, V. Intestinal phosphate absorption is mediated by multiple transport systems in rats. Am. J. Physiol. Liver Physiol. 2017, 312, G355–G366. [Google Scholar] [CrossRef] [PubMed]
- Muscher-Banse, A.S.; Breves, G. Mechanisms and regulation of epithelial phosphate transport in ruminants: Approaches in comparative physiology. Pflügers Archiv Eur. J. Physiol. 2018, 471, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Shirazi-Beechey, S.P.; Penny, J.I.; Dyer, J.; Wood, I.S.; Tarpey, P.S.; Scott, D.; Buchan, W. Epithelial phosphate transport in ruminants, mechanisms and regulation. Kidney Int. 1996, 49, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Huber, K.; Walter, C.; Schröder, B.; Breves, G. Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. Am. J. Physiol. Integr. Comp. Physiol. 2002, 283, R296–R302. [Google Scholar] [CrossRef] [Green Version]
- Teitelbaum, S.L.; Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 2003, 4, 638–649. [Google Scholar] [CrossRef]
- Goyal, R.; Jialal, I. Hyperphosphatemia; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Carlson, B.M. The urinary system. In The Human Body; Academic Press: London, UK, 2019; pp. 357–372. [Google Scholar] [CrossRef]
- Burckhardt, B.C.; Burckhardt, G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 2003, 146, 95–158. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, N.; Thees, M.; Kinne, R. Phosphate transport by isolated renal brush border vesicles. Pflügers Archiv Eur. J. Physiol. 1976, 362, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. The Isolated Brain Microvessel: A Versatile experimental model of the blood-brain barrier. Front. Physiol. 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, L.; Giroux, S.; Béliveau, R. Regulation of phosphate transport by second messengers in capillaries of the blood-brain barrier. Biochim. Biophys. Acta Biomembr. 1992, 1110, 59–61. [Google Scholar] [CrossRef]
- Elser, J.J.; Kyle, M.M.; Smith, M.S.; Nagy, J.D. Biological stoichiometry in human cancer. PLoS ONE 2007, 2, e1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.B.; Razzaque, M.S. Phosphate toxicity and tumorigenesis. Biochim. Biophys. Acta Bioenergy 2018, 1869, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Papaloucas, C.; Papaloucas, M.; Kouloulias, V.E.; Neanidis, K.; Pistevou-Gompaki, K.; Kouvaris, J.; Zygogianni, A.; Mystakidou, K.; Papaloucas, A. Measurement of blood phosphorus: A quick and inexpensive method for detection of the existence of cancer in the body. Too good to be true, or forgotten knowledge of the past? Med. Hypotheses 2014, 82, 24–25. [Google Scholar] [CrossRef]
- Jin, H.; Xu, C.-X.; Lim, H.-T.; Park, S.-J.; Shin, J.-Y.; Chung, Y.-S.; Park, S.-C.; Chang, S.-H.; Youn, H.-J.; Lee, K.-H.; et al. High dietary inorganic phosphate increases lung tumorigenesis and alters akt signaling. Am. J. Respir. Crit. Care Med. 2008, 179, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.-X.; Jin, H.; Lim, H.-T.; Ha, Y.-C.; Chae, C.-H.; An, G.-H.; Lee, K.-H.; Cho, M.-H. Low Dietary inorganic phosphate stimulates lung tumorigenesis through altering protein translation and cell cycle in K-rasLA1Mice. Nutr. Cancer 2010, 62, 525–532. [Google Scholar] [CrossRef]
- Ge, G.; Zhou, C.; Ren, Y.; Tang, X.; Wang, K.; Zhang, W.; Niu, L.; Zhou, Y.; Yan, Y.; He, J. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumor Biol. 2015, 37, 5049–5062. [Google Scholar] [CrossRef]
- Chen, D.; Chien, S.-Y.; Kuo, S.-J.; Teng, Y.-H.; Tsai, H.-T.; Kuo, J.-H.; Chung, J.-G. SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res. 2010, 30, 4135–4140. [Google Scholar]
- Russo-Abrahão, T.; Lacerda-Abreu, M.A.; Gomes, T.; Cosentino-Gomes, D.; Carvalho-De-Araújo, A.D.; Rodrigues, M.F.; De Oliveira, A.C.L.; Rumjanek, F.D.; Monteiro, R.D.Q.; Meyer-Fernandes, J.R. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231. PLoS ONE 2018, 13, e0191270. [Google Scholar] [CrossRef] [Green Version]
- Bobko, A.A.; Eubank, T.D.; Driesschaert, B.; Dhimitruka, I.; Evans, J.; Mohammad, R.; Tchekneva, E.E.; Dikov, M.M.; Khramtsov, V.V. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci. Rep. 2017, 7, srep41233. [Google Scholar] [CrossRef]
- De Carvalho, C.C.; Caramujo, M.J.; De Carvalho, C.C.C.R. Tumour metastasis as an adaptation of tumour cells to fulfil their phosphorus requirements. Med. Hypotheses 2012, 78, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; McKinnon, K.E.; Ha, S.W.; Beck, G.R., Jr. Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Mol. Carcinog. 2015, 54, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell 2008, 14, 818–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, J.W.; Levinson, C. Phosphate concentration and transport in Ehrlich ascites tumor cells: Effect of sodium. J. Cell. Physiol. 1982, 110, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Kestenbaum, B.R.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 2004, 16, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzer, P.; Boehm, M.; Sorribas, V.; Thiriet, M.; Janzen, J.; Zeller, T.; Hilaire, C.S.; Shanahan, C. Medial vascular calcification revisited: Review and perspectives. Eur. Heart J. 2014, 35, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Giachelli, C.M. The emerging role of phosphate in vascular calcification. Kidney Int. 2009, 75, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortells, L.; Guillén, N.; Sosa, C.; Sorribas, V. Several phosphate transport processes are present in vascular smooth muscle cells. Am. J. Physiol. Circ. Physiol. 2020, 318, H448–H460. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.; Harris, B.; Dieppe, P.A.; Clift, S.E. Wear of articular cartilage: The effect of crystals. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1993, 207, 41–58. [Google Scholar] [CrossRef]
- Michigami, T. Skeletal mineralization: Mechanisms and diseases. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Cecil, D.L.; Rose, D.M.; Terkeltaub, R.; Liu-Bryan, R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis Rheum. 2005, 52, 144–154. [Google Scholar] [CrossRef] [PubMed]
Cell Type or Tissue | Pi Transport | Affinity | Km (mM Pi) | Vmax | Ref |
---|---|---|---|---|---|
Intestinal Caco2BBE cells at 1 mM Pi | Na+-independent proton-activated | High * | 0.071 ± 0.020 | 0.073 ± 0.017 nmol Pi·mg cell protein−1·min−1 | [9] |
Intestinal Caco2BBE cells at 4 mM Pi | Na+-independent | High * | 0.155 ± 0.025 | 0.849 ± 0.11 nmol Pi·mg cell protein−1·min−1 | [9] |
Vascular smooth muscle cells | Na+-independent | High | 0.10 ± 0.04 | 180.7 ± 32.8 pmol/mg protein−1·min−1 | [13] |
Chondrocytes from articular cartilage | Na+-independent | High | 0.22 ± 0.07 | 0.50 ± 0.005 mmol (L cells)−1 (10 min)−1 | [12] |
Matrix vesicles from articular cartilage | Na+-independent | High | 0.16 ± 0.04 | 0.67 ± 0.04 nmoles (mg protein)−1 (min)−1 | [20] |
Osteoclast-like cells | H+-dependent | High | 0.35 | ~15 nmol/mg/10 min | [11] |
H+-dependent | Low | 7.5 | ~55 nmol/mg/10 min | [11] | |
Capillaries of the blood–brain barrier | Anion exchanger | High | 0.16 | 0.37 nmol/mg protein/30 s | [14] |
Renal basolateral membranes | Na+-independent | Low | 10.1 ± 1.2 | 13.6 ± 2.0 nmol (mg protein)−1 min−1 | [10] |
Breast cancer cells MDA-MB-231 | H+-dependent | Low | 1.387 ± 0.1674 | 198.6 ± 10.23 Pi × h−1 × mg protein−1 | [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Meyer-Fernandes, J.R. The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. Int. J. Mol. Sci. 2020, 21, 9298. https://doi.org/10.3390/ijms21239298
Lacerda-Abreu MA, Russo-Abrahão T, Meyer-Fernandes JR. The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. International Journal of Molecular Sciences. 2020; 21(23):9298. https://doi.org/10.3390/ijms21239298
Chicago/Turabian StyleLacerda-Abreu, Marco Antonio, Thais Russo-Abrahão, and Jose Roberto Meyer-Fernandes. 2020. "The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases" International Journal of Molecular Sciences 21, no. 23: 9298. https://doi.org/10.3390/ijms21239298
APA StyleLacerda-Abreu, M. A., Russo-Abrahão, T., & Meyer-Fernandes, J. R. (2020). The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. International Journal of Molecular Sciences, 21(23), 9298. https://doi.org/10.3390/ijms21239298