Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc
Abstract
:1. Introduction
2. Results
2.1. Correlation between Tie2+ Cell’s Morphology and the Culture Surface
2.2. Colony Morphology Formed by NPCs in CFU-Assay
2.3. Correlation between Tie2 Positive NPC Proliferation and the Culture Surface
2.4. Spheroid Reformed after Papain Digestion Increased the Yield of Tie2+
2.5. Extracellular Matrix of NPC Spheroids
2.6. Correlation between RNA Expression of NPCs and the Culture Surface
3. Discussion
3.1. The Spheroid-Formation Culture History and Its Implications in Stem Cells
3.2. The Effects of Spheroid-Formation Culture in NPCs
3.3. Can NPPCs Be Used in Cell Transplantation?
4. Materials and Methods
4.1. NPC Isolation
4.2. NPCs Seeding on Different Surfaces
4.3. NPC Freezing and Thawing
4.4. NPC Digestion and Spheroid Isolation
4.5. Tie2+ NPC Characterization by Flow Cytometry and Colony Formation Assay
4.6. Immunofluorescence Staining
4.7. Morphology of Cells
4.8. qPCR
4.9. Statistics
5. Conclusions
- This study showed that the expansion of NPCs in the 2D monolayer is not favorable for the Tie2+ NPC phenotype.
- The gelatin modification did not show any advantage for Tie2+ NPC proliferation compared with the control and spheroid group. The attachment-improved surface did not show the improvement of cultured whole NPCs population compared with standard plastic surface.
- Spheroid-formation assay enriched the Tie2+ population of NPCs from ~10% on monolayer culture to ~36% in suspension culture.
- Generation of 2nd generation spheroid-formation assay by reassembly of NPC spheroids increased the Tie2+ NPC population yield even further from about ~30% to ~43%.
- We introduced a new culture protocol in which Tie2+ NPCs can be maintained and Tie2- NPCs can be inhibited in suspension culture.
- NPC spheroids resulted in more purified Tie2+ NPCs compared to monolayer. However, more research would be required to see if the Tie2+ population could be even further purified with increased passaging into 3rd or even 4th-generation spheroids.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACCUMAX | Accumax cell detachment solution |
AF | Annulus fibrosus |
bFGF | Fibroblast growth factor-basic |
CEP | Cartilage endplates |
CFU | Colony forming unit |
CFU-s | Spheroid colony-forming unit |
CFU-f | Fibroblastic colony-forming unit |
CFU-s/f | Spheroid/fibroblastic colony formation unit |
Calcein-AM | Calcein acetoxymethyl |
DAPI | 4′,6-diamidino-2-phenylindole |
DMSO | Dimethyl sulfoxide |
ECM | Extracellular matrix |
EGF | Epidermal growth factor |
EDTA | Ethylenediaminetetraacetic acid |
LG-DMEM | Low glucose Dulbecco’s Modified Eagle Medium |
HUVEC | human umbilical vein endothelial cells |
IVD | Intervertebral disc |
IVDD | Intervertebral disc degeneration |
MFI | Medians of fluorescence intensity |
NC | Notochordal cell |
NP | Nucleus pulposus |
NPC | Nucleus pulposus cell |
NPPC | Nucleus pulposus progenitor cell |
Oct4 | Octamer-binding transcription factor 4 |
PBS | Phosphate-buffered saline |
P/S/G | Penicillin/Streptomycin/Glutamine |
PFA | Paraformaldehyde |
RT | Room temperature |
Sox2 | Sex-determining region Y-box 2 |
TBS | Tris-buffered saline |
References
- Roberts, N.L.S.; Mountjoy-Venning, W.C.; Anjomshoa, M.; Banoub, J.A.M.; Yasin, Y.J. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study (vol 392, pg 1789, 2018). Lancet 2019, 393, E44. [Google Scholar]
- Luoma, K.; Riihimaki, H.; Luukkonen, R.; Raininko, R.; Viikari-Juntura, E.; Lamminen, A. Low back pain in relation to lumbar disc degeneration. Spine 2000, 25, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Rider, S.M.; Mizuno, S.; Kang, J.D. Molecular Mechanisms of Intervertebral Disc Degeneration. Spine Surg. Relat. Res. 2019, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, B.A.; Camarero-Espinosa, S.; Foster, E.J. Materials for the Spine: Anatomy, Problems, and Solutions. Materials 2019, 12, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S.; Evans, H.; Trivedi, J.; Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Joint Surg.-Am. Vol. 2006, 88A, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Risbud, M.V.; Shapiro, I.M. Notochordal Cells in the Adult Intervertebral Disc: New Perspective on an Old Question. Crit. Rev. Eukaryot. Gene Expr. 2011, 21, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Colombier, P.; Clouet, J.; Boyer, C.; Ruel, M.; Bonin, G.; Lesoeur, J.; Moreau, A.; Fellah, B.-H.; Weiss, P.; Lescaudron, L.; et al. TGF-β 1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells toward Nucleus Pulposus-like Cells. Stem Cells 2016, 34, 653–667. [Google Scholar] [CrossRef] [Green Version]
- Trout, J.J.; Buckwalter, J.A.; Moore, K.C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat. Rec. 1982, 204, 307–314. [Google Scholar] [CrossRef]
- Chen, J.; Yan, W.; Setton, L.A. Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur. Spine J. 2006, 15 (Suppl. 3), S303–S311. [Google Scholar] [CrossRef] [Green Version]
- Sakai, D.; Nakamura, Y.; Nakai, T.; Mishima, T.; Kato, S.; Grad, S.; Alini, M.; Risbud, M.V.; Chan, D.; Cheah, K.S. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 2012, 3, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekari, A.; Chan, S.C.W.; Sakai, D.; Grad, S.; Gantenbein, B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res. Ther. 2016, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauchiger, D.A.; Tekari, A.; May, R.D.; Dzafo, E.; Chan, S.C.W.; Stoyanov, J.; Bertolo, A.; Zhang, X.; Guerrero, J.; Sakai, D.; et al. Fluorescence-Activated Cell Sorting Is More Potent to Fish Intervertebral Disk Progenitor Cells Than Magnetic and Beads-Based Methods. Tissue Eng. Part C-Methods 2019, 25, 571–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razaq, S.; Wilkins, R.J.; Urban, J.P. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur. Spine. J. 2003, 12, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeno, K.K.S.; Negoro, K.; Baba, H.; Urban, J.P.G. The effect of osmolality and oxygen influence on proteoglycan synthesis in bovine nucleus pulposus. In Proceedings of the Orthopaedic Proceedings Vol., London, UK, 15 March 2017. 90-B, No. SUPP_II. [Google Scholar]
- Horner, H.A.; Roberts, S.; Bielby, R.C.; Menage, J.; Evans, H.; Urban, J.P. Cells from different regions of the intervertebral disc: Effect of culture system on matrix expression and cell phenotype. Spine 2002, 27, 1018–1028. [Google Scholar] [CrossRef]
- Mwale, F.; Ciobanu, I.; Giannitsios, D.; Roughley, P.; Steffen, T.; Antoniou, J. Effect of Oxygen Levels on Proteoglycan Synthesis by Intervertebral Disc Cells. Spine 2011, 36, E131–E138. [Google Scholar] [CrossRef]
- Flagler, D.J.; Huang, C.Y.; Yuan, T.Y.; Lu, Z.M.; Cheung, H.S.; Gu, W.Y. Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells. Cell. Mol. Bioeng. 2009, 2, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Preradovic, A.; Kleinpeter, G.; Feichtinger, H.; Balaun, E.; Krugluger, W. Quantitation of collagen I, collagen II and aggrecan mRNA and expression of the corresponding proteins in human nucleus pulposus cells in monolayer cultures. Cell Tissue Res. 2005, 321, 459–464. [Google Scholar] [CrossRef]
- Ashraf, S.; Chatoor, K.; Chong, J.; Pilliar, R.; Santerre, P.; Kandel, R. Transforming Growth Factor β Enhances Tissue Formation by Passaged Nucleus Pulposus Cells in Vitro. J. Orthop. Res. 2020, 38, 438–449. [Google Scholar] [CrossRef]
- Yuan, M.T.; Leong, K.W.; Chan, B.P. Three-dimensional culture of rabbit nucleus pulposus cells in collagen microspheres. Spine J. 2011, 11, 947–960. [Google Scholar] [CrossRef]
- Krouwels, A.; Melchels, F.P.W.; van Rijen, M.H.P.; Oner, F.C.; Dhert, W.J.A.; Tryfonidou, M.A.; Creemers, L.B. Comparing Hydrogels for Human Nucleus Pulposus Regeneration: Role of Osmolarity During Expansion. Tissue Eng. Part C Methods 2018, 24, 222–232. [Google Scholar] [CrossRef]
- Baer, A.E.; Wang, J.Y.; Kraus, V.B.; Setton, L.A. Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J. Orthop. Res. 2001, 19, 2–10. [Google Scholar] [CrossRef]
- Seguin, C.A.; Grynpas, M.D.; Pilliar, R.M.; Waldman, S.D.; Kandel, R.A. Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine 2004, 29, 1299–1306. [Google Scholar] [CrossRef]
- Di Stefano, A.B.; Grisafi, F.; Castiglia, M.; Perez, A.; Montesano, L.; Gulino, A.; Toia, F.; Fanale, D.; Russo, A.; Moschella, F.; et al. Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells. J. Cell. Physiol. 2018, 233, 8778–8789. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.; Ahmed, M.; Lorenzi, F.; Nateri, A.S. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev. Rep. 2016, 12, 492–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastrana, E.; Silva-Vargas, V.; Doetsch, F. Eyes Wide Open: A Critical Review of Sphere-Formation as an Assay for Stem Cells. Cell Stem Cell 2011, 8, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Erwin, W.M.; Islam, D.; Eftekarpour, E.; Inman, R.D.; Karim, M.Z.; Fehlings, M.G. Intervertebral Disc-Derived Stem Cells Implications for Regenerative Medicine and Neural Repair. Spine 2013, 38, 211–216. [Google Scholar] [CrossRef]
- Samoilova, E.M.; Kalsin, V.A.; Kushnir, N.M.; Chistyakov, D.A.; Troitskiy, A.V.; Baklaushev, V.P. Adult Neural Stem Cells: Basic Research and Production Strategies for Neurorestorative Therapy. Stem Cells Int. 2018, 2018, 4835491. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.R.; Li, S.Y.; Peng, B.L.; Ye, Y.F.; Deng, X.B.; Yao, K.T. Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS ONE 2013, 8, e56324. [Google Scholar] [CrossRef]
- Capkovic, K.L.; Stevenson, S.; Johnson, M.C.; Thelen, J.J.; Cornelison, D.D.W. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp. Cell Res. 2008, 314, 1553–1565. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Cao, Z.; Zhu, J.; Zhang, Z.; Zhao, H.; Zhao, L.; Sun, X.; Wang, X. In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS Omega 2019, 4, 18136–18146. [Google Scholar] [CrossRef]
- Lam, M.T.; Longaker, M.T. Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J. Tissue Eng. Regen. Med. 2012, 6, s80–s86. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S.; ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA. Available online: http://imagej.nih.gov/ij/ (accessed on 15 January 2017).
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J.J.B.i. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, B.A.; Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255, 1707–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahmad, H.F.; Cheaito, K.; Chalhoub, R.M.; Hadadeh, O.; Monzer, A.; Ballout, F.; El-Hajj, A.; Mukherji, D.; Liu, Y.N.; Daoud, G.; et al. Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells. Front. Oncol. 2018, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, L.; Ding, J.; Ge, Y.X.; Fan, J.L.; Fan, S.K. Single-Cell-Derived Tumor-Sphere Formation and Drug-Resistance Assay Using an Integrated Microfluidics. Anal. Chem. 2019, 91, 8318–8325. [Google Scholar] [CrossRef]
- Alimperti, S.; Lei, P.; Wen, Y.; Tian, J.; Campbell, A.M.; Andreadis, S.T. Serum-Free Spheroid Suspension Culture Maintains Mesenchymal Stem Cell Proliferation and Differentiation Potential. Biotechnol. Prog. 2014, 30, 974–983. [Google Scholar] [CrossRef]
- Ouyang, A.; Cerchiari, A.E.; Tang, X.; Liebenberg, E.; Alliston, T.; Gartner, Z.J.; Lotz, J.C. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells. J. Orthop. Res. 2017, 35, 61–73. [Google Scholar] [CrossRef]
- Li, X.; Wu, A.; Han, C.; Chen, C.; Zhou, T.; Zhang, K.; Yang, X.; Chen, Z.; Qin, A.; Tian, H.; et al. Bone marrow-derived mesenchymal stem cells in three-dimensional co-culture attenuate degeneration of nucleus pulposus cells. Aging 2019, 11, 9167–9187. [Google Scholar] [CrossRef]
- Tang, R.; Jing, L.; Willard, V.P.; Wu, C.L.; Guilak, F.; Chen, J.; Setton, L.A. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res. Ther. 2018, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Daley, W.P.; Peters, S.B.; Larsen, M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 2008, 121, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo-Castro, E.; Cunningham, C.J.; Miller, J.; Cain, S.A.; Allan, S.M.; Pinteaux, E. Generation of Human Mesenchymal Stem Cell 3D Spheroids Using Low-binding Plates. Bio-Protocol 2018, 8, e2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koito, H.; Li, J. Preparation of rat brain aggregate cultures for neuron and glia development studies. J. Vis. Exp. 2009, e1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcellona, M.N.; Speer, J.E.; Fearing, B.V.; Jing, L.; Pathak, A.; Gupta, M.C.; Buchowski, J.M.; Kelly, M.; Setton, L.A. Control of adhesive ligand density for modulation of nucleus pulposus cell phenotype. Biomaterials 2020, 250, 120057. [Google Scholar] [CrossRef] [PubMed]
No. | Gender | Age | Pfirrmann Grade * | Location | Tissue Wet Weight (g) | Number of Isolated Cells |
---|---|---|---|---|---|---|
1 | female | 37 | 1 | T12/L1 | 0.39 | 125,000 |
2 | male | 39 | 1 | T11/T12 | 1.58 | 500,000 |
3 | male | 19 | 1 | T12/L1 | 0.6 | 200,000 |
4 | male | 28 | 1 | L4/L5 | 1.5 | 200,000 |
5 | male | 28 | 1 | L1/2 | 1.29 | 500,000 |
6 | male | 40 | 1 | L1/L2 | 1.33 | 180,000 |
7 | male | 40 | 2 | T11/T1 | 2.14 | 500,000 |
8 | male | 23 | 1-2 | T11/12 | 0.63 | 50000 |
Name. | Description | Primer Forward | Primer Reverse |
---|---|---|---|
18S | Ribosomal 18s RNA gene | CGA TGC GGC GGC GTT ATT C | TCT GTC AAT CCT GTC CGT GTC C |
GAPDH | Glyceraldenyde-3-phosphate dehydrogenase | ATC TTC CAG GAG CGA GAT | GGA GGC ATT GCT GAT GAT |
ACAN | Aggrecan core protien | CAT CAC TGC AGC TGT CAC | AGC AGC ACT ACC TCC TTC |
COL1 | Collegen type 1 | GTG GCA GTG ATG GAA GTG | CAC CAG TAA GGC CGT TTG |
COL2 | Collegen type 2 | AGC AGC AAG AGC AAG GAG AA | GTA GGA AGG TCA TCT GGA |
KRT19 | Keratin 19 | TGT GTC CTC GTC CTC CTC | GCG GAT CTT CAC CTC TAG C |
TEK | TEK receptor tyrosine kinase | TTA GCC AGC TTA GTT CTC TGT GG | AGC ATC AGA TAC AAG AGG TAG GG |
NANOG | homeobox protein NANOG | AGA ACT CTC CAA CAT CCT GAA CCT | CCT GCG TCA CAC CAT TGC TAT |
OCT4 | octamer-binding transcription factor 4 | GAG AGG CAA CCT GGA GAA TT | CCA CAC TCG GAC CAC ATC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Guerrero, J.; Croft, A.S.; Albers, C.E.; Häckel, S.; Gantenbein, B. Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc. Int. J. Mol. Sci. 2020, 21, 9423. https://doi.org/10.3390/ijms21249423
Zhang X, Guerrero J, Croft AS, Albers CE, Häckel S, Gantenbein B. Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc. International Journal of Molecular Sciences. 2020; 21(24):9423. https://doi.org/10.3390/ijms21249423
Chicago/Turabian StyleZhang, Xingshuo, Julien Guerrero, Andreas S. Croft, Christoph E. Albers, Sonja Häckel, and Benjamin Gantenbein. 2020. "Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc" International Journal of Molecular Sciences 21, no. 24: 9423. https://doi.org/10.3390/ijms21249423
APA StyleZhang, X., Guerrero, J., Croft, A. S., Albers, C. E., Häckel, S., & Gantenbein, B. (2020). Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc. International Journal of Molecular Sciences, 21(24), 9423. https://doi.org/10.3390/ijms21249423