Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents
Abstract
:1. Introduction
2. PNOF is Associated with Systemic and Cardiovascular Metabolic Alterations
3. PNOF Affects Blood Pressure and Vascular Function
4. PNOF Affects Heart Structure, Function, and Adaptation to Pathological Situations
4.1. PNOF Impairs the Architecture and Structure of the Heart
4.2. PNOF Induces Short- and Long-Term Alterations of Gene Expression in the Heart
4.3. PNOF is Associated with Increased Oxidative Stress and Mitochondrial Impairment in the Heart
4.4. PNOF Alters Cardiac Function In Vivo
4.5. PNOF Increases Myocardial Susceptibility to Pathological Stresses: Ischemia-Reperfusion Injury and Cardiotoxic Drugs
5. Openings
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haschke, F.; Binder, C.; Huber-Dangl, M.; Haiden, N. Early-Life Nutrition, Growth Trajectories, and Long-Term Outcome. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 107–120. [Google Scholar]
- Langley-Evans, S.C. Developmental programming of health and disease. Proc. Nutr. Soc. 2006, 65, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Plagemann, A.; Harder, T.; Schellong, K.; Schulz, S.; Stupin, J.H. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 641–653. [Google Scholar] [CrossRef]
- Garrido-Miguel, M.; Oliveira, A.; Cavero-Redondo, I.; Alvarez-Bueno, C.; Pozuelo-Carrascosa, D.P.; Soriano-Cano, A.; Martinez-Vizcaino, V. Prevalence of Overweight and Obesity among European Preschool Children: A Systematic Review and Meta-Regression by Food Group Consumption. Nutrients 2019, 11, 1698. [Google Scholar] [CrossRef] [Green Version]
- Larque, E.; Labayen, I.; Flodmark, C.E.; Lissau, I.; Czernin, S.; Moreno, L.A.; Pietrobelli, A.; Widhalm, K. From conception to infancy-early risk factors for childhood obesity. Nat. Rev. Endocrinol. 2019, 15, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Habbout, A.; Delemasure, S.; Goirand, F.; Guilland, J.C.; Chabod, F.; Sediki, M.; Rochette, L.; Vergely, C. Postnatal overfeeding in rats leads to moderate overweight and to cardiometabolic and oxidative alterations in adulthood. Biochimie 2012, 94, 117–124. [Google Scholar] [CrossRef]
- Cunha, A.C.; Pereira, R.O.; Pereira, M.J.; Soares Vde, M.; Martins, M.R.; Teixeira, M.T.; Souza, E.P.; Moura, A.S. Long-term effects of overfeeding during lactation on insulin secretion--the role of GLUT-2. J. Nutr. Biochem. 2009, 20, 435–442. [Google Scholar] [CrossRef]
- Nakano, H.; Minami, I.; Braas, D.; Pappoe, H.; Wu, X.; Sagadevan, A.; Vergnes, L.; Fu, K.; Morselli, M.; Dunham, C.; et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. eLife 2017, 6, e29330. [Google Scholar] [CrossRef]
- Xavier, J.L.P.; Scomparin, D.X.; Pontes, C.C.; Ribeiro, P.R.; Cordeiro, M.M.; Marcondes, J.A.; Mendonca, F.O.; Silva, M.T.D.; Oliveira, F.B.; Franco, G.C.N.; et al. Litter Size Reduction Induces Metabolic and Histological Adjustments in Dams throughout Lactation with Early Effects on Offspring. An. Acad. Bras. Cienc. 2019, 91, e20170971. [Google Scholar] [CrossRef] [Green Version]
- Sefcikova, Z.; Bujnakova, D.; Racek, L.; Kmet, V.; Mozes, S. Developmental changes in gut microbiota and enzyme activity predict obesity risk in rats arising from reduced nests. Physiol. Res. 2011, 60, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Habbout, A.; Li, N.; Rochette, L.; Vergely, C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J. Nutr. 2013, 143, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Guenancia, C.; Rigal, E.; Hachet, O.; Chollet, P.; Desmoulins, L.; Leloup, C.; Rochette, L.; Vergely, C. Short-term moderate diet restriction in adulthood can reverse oxidative, cardiovascular and metabolic alterations induced by postnatal overfeeding in mice. Sci. Rep. 2016, 6, 30817. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.B.; de Carvalho, A.C. Heart regeneration: Past, present and future. World J. Cardiol. 2010, 2, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N.; Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331, 1078–1080. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabe-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Eschenhagen, T.; Bolli, R.; Braun, T.; Field, L.J.; Fleischmann, B.K.; Frisen, J.; Giacca, M.; Hare, J.M.; Houser, S.; Lee, R.T.; et al. Cardiomyocyte Regeneration: A Consensus Statement. Circulation 2017, 136, 680–686. [Google Scholar] [CrossRef]
- Vagnozzi, R.J.; Molkentin, J.D.; Houser, S.R. New Myocyte Formation in the Adult Heart: Endogenous Sources and Therapeutic Implications. Circ. Res. 2018, 123, 159–176. [Google Scholar] [CrossRef]
- Boubred, F.; Daniel, L.; Buffat, C.; Feuerstein, J.M.; Tsimaratos, M.; Oliver, C.; Dignat-George, F.; Lelievre-Pegorier, M.; Simeoni, U. Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats. Am. J. Physiol. Renal Physiol. 2009, 297, F943–F951. [Google Scholar] [CrossRef] [Green Version]
- Yim, H.E.; Ha, K.S.; Bae, I.S.; Yoo, K.H.; Hong, Y.S.; Lee, J.W. Overweight, hypertension and renal dysfunction in adulthood of neonatally overfed rats. J. Nutr. Biochem. 2013, 24, 1324–1333. [Google Scholar] [CrossRef]
- Granado, M.; Fernandez, N.; Monge, L.; Carreno-Tarragona, G.; Figueras, J.C.; Amor, S.; Garcia-Villalon, A.L. Long-term effects of early overnutrition in the heart of male adult rats: Role of the renin-angiotensin system. PLoS ONE 2014, 8, e65172. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hedstrom, D.; Guerra-Menendez, L.; Tejera-Munoz, A.; Amor, S.; de la Fuente-Fernandez, M.; Martin-Carro, B.; Arriazu, R.; Garcia-Villalon, A.L.L.; Granado, M. Overfeeding During Lactation in Rats is Associated with Cardiovascular Insulin Resistance in the Short-Term. Nutrients 2020, 12, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, R.O.; Moreira, A.S.; de Carvalho, L.; Moura, A.S. Overfeeding during lactation modulates insulin and leptin signaling cascade in rats’ hearts. Regul. Pept. 2006, 136, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.S.; Teixeira, M.T.; da Silveira Osso, F.; Pereira, R.O.; de Oliveira Silva-Junior, G.; de Souza, E.G.; de Lacerda, C.M.; Moura, A.S. Left ventricular hypertrophy induced by overnutrition early in life. Nutr. Metab. Cardiovasc. Dis. NMCD 2009, 19, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Achard, V.; Sanchez, C.; Tassistro, V.; Verdier, M.; Alessi, M.C.; Grino, M. Immediate Postnatal Overfeeding in Rats Programs Aortic Wall Structure Alterations and Metalloproteinases Dysregulation in Adulthood. Am. J. Hypertens 2016, 29, 719–726. [Google Scholar] [CrossRef] [Green Version]
- De Moura Freitas, C.; Nascimento, L.; Braz, G.R.F.; Andrade-Silva, S.C.; Lima-Junior, N.C.; de Araujo Silva, T.; Fernandes, M.P.; Ferreira, D.J.S.; Lagranha, C.J. Mitochondrial impairment following neonatal overfeeding: A comparison between normal and ischemic-reperfused hearts. J. Cell. Biochem. 2018. [Google Scholar] [CrossRef]
- De Lade, C.G.; Andreazzi, A.E.; Bolotari, M.; Costa, V.M.G.; Peters, V.M.; Guerra, M.O. Effects of moderate intensity endurance training vs. high intensity interval training on weight gain, cardiorespiratory capacity, and metabolic profile in postnatal overfed rats. Diabetol. Metab. Syndr. 2018, 10, 70. [Google Scholar] [CrossRef]
- Sanchez-Garcia, G.; Del Bosque-Plata, L.; Hong, E. Postnatal overnutrition affects metabolic and vascular function reflected by physiological and histological changes in the aorta of adult Wistar rats. Clin. Exp. Hypertens 2018, 40, 452–460. [Google Scholar] [CrossRef]
- Pedroza, A.; Ferreira, D.S.; Santana, D.F.; da Silva, P.T.; de Aguiar Junior, F.C.A.; Sellitti, D.F.; Lagranha, C.J. A maternal low-protein diet and neonatal overnutrition result in similar changes to glomerular morphology and renal cortical oxidative stress measures in male Wistar rats. Appl. Physiol. Nutr. Metab. 2019, 44, 164–171. [Google Scholar] [CrossRef]
- Junior, M.D.F.; Cavalcante, K.V.N.; Ferreira, L.A.; Lopes, P.R.; Pontes, C.N.R.; Bessa, A.S.M.; Neves, A.R.; Francisco, F.A.; Pedrino, G.R.; Xavier, C.H.; et al. Postnatal early overfeeding induces cardiovascular dysfunction by oxidative stress in adult male Wistar rats. Life Sci. 2019, 226, 173–184. [Google Scholar] [CrossRef]
- Chavaglia Cavalet, L.; Dos Santos Ribeiro, L.C.; Rosa, G.B.; Sousa, K.K.; de Melo, A.B.S.; Campos, D.B.T.; Ferreira, L.A.; Amaral, N.O.; Calisto, Y.T.V.; de Castro, A.G.; et al. Long-term effects of early overfeeding and food restriction during puberty on cardiac remodeling in adult rats. J. Dev. Orig. Health Dis. 2020, 11, 492–498. [Google Scholar] [CrossRef]
- De Araujo, G.A.; Farias, R.D.S.; Pedro, S.S.; Rocha, N.N.; Brito, F.C.F.; Scaramello, C.B.V. Overweight during lactation and its implications for biometric, nutritional and cardiovascular parameters of young and adult male and female rats. J. Nutr. Sci. 2020, 9, e27. [Google Scholar] [CrossRef]
- Habbout, A.; Guenancia, C.; Lorin, J.; Rigal, E.; Fassot, C.; Rochette, L.; Vergely, C. Postnatal overfeeding causes early shifts in gene expression in the heart and long-term alterations in cardiometabolic and oxidative parameters. PLoS ONE 2013, 8, e56981. [Google Scholar] [CrossRef] [PubMed]
- Siddeek, B.; Li, N.; Mauduit, C.; Chehade, H.; Rigal, E.; Tolsa, J.F.; Armengaud, J.B.; Yzydorczyk, C.; Benahmed, M.; Vergely, C.; et al. Transient postnatal over nutrition induces long-term alterations in cardiac NLRP3-inflammasome pathway. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 944–951. [Google Scholar] [CrossRef]
- Rigal, E.; Greco, C.; Porcherot, I.; Meloux, A.; Rochette, L.; Vergely, C. Long-term impact of postnatal nutritional programming on cardiac sensitivity to ischemia-reperfusion injury in vivo and on cardio-protective pathways in mice. Eur. Heart J. 2019, 40, 2824. [Google Scholar] [CrossRef]
- Juvet, C.; Siddeek, B.; Yzydorczyk, C.; Vergely, C.; Nardou, K.; Armengaud, J.B.; Benahmed, M.; Simeoni, U.; Cachat, F.; Chehade, H. Renal Programming by Transient Postnatal Overfeeding: The Role of Senescence Pathways. Front. Physiol. 2020, 11, 511. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.R.; Vieira, A.K.; de Souza, E.P.; Moura, A.S. Early overnutrition impairs insulin signaling in the heart of adult Swiss mice. J. Endocrinol. 2008, 198, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.K.; Soares, V.M.; Bernardo, A.F.; Neves, F.A.; Mattos, A.B.; Guedes, R.M.; Cortez, E.; Andrade, D.C.; Lacerda-Miranda, G.; Garcia-Souza, E.P.; et al. Overnourishment during lactation induces metabolic and haemodynamic heart impairment during adulthood. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, A.F.; Cortez, E.; Neves, F.A.; Vieira, A.K.; Soares, V.D.; Rodrigues-Cunha, A.C.; Andrade, D.C.; Thole, A.A.; Gabriel-Costa, D.; Brum, P.C.; et al. Overnutrition during lactation leads to impairment in insulin signaling, up-regulation of GLUT1 and increased mitochondrial carbohydrate oxidation in heart of weaned mice. J. Nutr. Biochem. 2016, 29, 124–132. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Rake, A.; Voits, M.; Fink, H.; Rohde, W.; Dorner, G. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999, 836, 146–155. [Google Scholar] [CrossRef]
- Heidel, E.; Plagemann, A.; Davidowa, H. Increased response to NPY of hypothalamic VMN neurons in postnatally overfed juvenile rats. Neuroreport 1999, 10, 1827–1831. [Google Scholar] [CrossRef]
- Harder, T.; Rake, A.; Rohde, W.; Doerner, G.; Plagemann, A. Overweight and increased diabetes susceptibility in neonatally insulin-treated adult rats. Endocr. Regul. 1999, 33, 25–31. [Google Scholar] [PubMed]
- Plagemann, A.; Harder, T.; Rake, A.; Melchior, K.; Rohde, W.; Dorner, G. Increased number of galanin-neurons in the paraventricular hypothalamic nucleus of neonatally overfed weanling rats. Brain Res. 1999, 818, 160–163. [Google Scholar] [CrossRef]
- Balonan, L.C.; Sheng, H.P. Perinatal feedings adversely affect lipogenic activities but not glucose handling in adult rats. Pediatr. Res. 2000, 48, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.L.; de Moura, E.G.; Passos, M.C.; Trevenzoli, I.H.; da Conceicao, E.P.; Bonono, I.T.; Neto, J.F.; Lisboa, P.C. Postnatal early overfeeding induces hypothalamic higher SOCS3 expression and lower STAT3 activity in adult rats. J. Nutr. Biochem. 2011, 22, 109–117. [Google Scholar] [CrossRef]
- Conceicao, E.P.; Franco, J.G.; Oliveira, E.; Resende, A.C.; Amaral, T.A.; Peixoto-Silva, N.; Passos, M.C.; Moura, E.G.; Lisboa, P.C. Oxidative stress programming in a rat model of postnatal early overnutrition--role of insulin resistance. J. Nutr. Biochem. 2013, 24, 81–87. [Google Scholar] [CrossRef]
- Boullu-Ciocca, S.; Dutour, A.; Guillaume, V.; Achard, V.; Oliver, C.; Grino, M. Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: Its relationship with the metabolic syndrome. Diabetes 2005, 54, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Boullu-Ciocca, S.; Achard, V.; Tassistro, V.; Dutour, A.; Grino, M. Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood. Diabetes 2008, 57, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Kayser, B.D.; Goran, M.I.; Bouret, S.G. Perinatal overnutrition exacerbates adipose tissue inflammation caused by high-fat feeding in C57BL/6J mice. PLoS ONE 2015, 10, e0121954. [Google Scholar] [CrossRef] [Green Version]
- Bei, F.; Jia, J.; Jia, Y.Q.; Sun, J.H.; Liang, F.; Yu, Z.Y.; Cai, W. Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats. Lipids Health Dis. 2015, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Boullu-Ciocca, S.; Tassistro, V.; Dutour, A.; Grino, M. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine 2015, 50, 608–619. [Google Scholar] [CrossRef]
- Morris, M.J.; Velkoska, E.; Cole, T.J. Central and peripheral contributions to obesity-associated hypertension: Impact of early overnourishment. Exp. Physiol. 2005, 90, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.; Salviano, I.; Mencalha, A.; de Carvalho, S.N.; Thole, A.A.; Carvalho, L.; Cortez, E.; Stumbo, A.C. Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells. Stem. Cell Rev. Rep. 2018, 14, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Plagemann, A.; Harder, T.; Brunn, M.; Harder, A.; Roepke, K.; Wittrock-Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome. J. Physiol. 2009, 587, 4963–4976. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Ma, H.; Li, J.; Meng, C.; Zou, J.; Wang, H.; Liu, K.; Liu, M.; Xiao, X.; Zhang, H.; et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J. Mol. Cell. Cardiol. 2020, 150, 65–76. [Google Scholar] [CrossRef]
- Van Eickels, M.; Grohe, C.; Cleutjens, J.P.; Janssen, B.J.; Wellens, H.J.; Doevendans, P.A. 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001, 104, 1419–1423. [Google Scholar] [CrossRef] [Green Version]
- Velkoska, E.; Cole, T.J.; Morris, M.J. Early dietary intervention: Long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1236–E1243. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.C.; Yellon, D.M. Adipocytokines, cardiovascular pathophysiology and myocardial protection. Pharmacol. Ther. 2011, 129, 206–219. [Google Scholar] [CrossRef]
- Su, X.; Peng, D. Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases. Mol. Biol. Rep. 2020, 47, 7991–8006. [Google Scholar] [CrossRef]
- Yim, H.E.; Ha, K.S.; Bae, I.S.; Yoo, K.H.; Hong, Y.S.; Lee, J.W. Postnatal early overnutrition dysregulates the intrarenal renin-angiotensin system and extracellular matrix-linked molecules in juvenile male rats. J. Nutr. Biochem. 2012, 23, 937–945. [Google Scholar] [CrossRef]
- Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther. 2013, 140, 239–257. [Google Scholar] [CrossRef]
- Manrique, C.; Lastra, G.; Sowers, J.R. New insights into insulin action and resistance in the vasculature. Ann. N. Y. Acad. Sci. 2014, 1311, 138–150. [Google Scholar] [CrossRef]
- Boden, G.; Song, W.; Pashko, L.; Kresge, K. In vivo effects of insulin and free fatty acids on matrix metalloproteinases in rat aorta. Diabetes 2008, 57, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcazar, M.A.; Boehler, E.; Rother, E.; Amann, K.; Vohlen, C.; von Horsten, S.; Plank, C.; Dotsch, J. Early postnatal hyperalimentation impairs renal function via SOCS-3 mediated renal postreceptor leptin resistance. Endocrinology 2012, 153, 1397–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, H.E.; Yoo, K.H. Early life obesity and chronic kidney disease in later life. Pediatr. Nephrol. 2015, 30, 1255–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granado, M.; Amor, S.; Fernandez, N.; Carreno-Tarragona, G.; Iglesias-Cruz, M.C.; Martin-Carro, B.; Monge, L.; Garcia-Villalon, A.L. Effects of early overnutrition on the renal response to Ang II and expression of RAAS components in rat renal tissue. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Sominsky, L.; Ong, L.K.; Ziko, I.; Dickson, P.W.; Spencer, S.J. Neonatal overfeeding increases capacity for catecholamine biosynthesis from the adrenal gland acutely and long-term in the male rat. Mol. Cell Endocrinol. 2018, 470, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Piquereau, J.; Ventura-Clapier, R. Maturation of Cardiac Energy Metabolism During Perinatal Development. Front. Physiol. 2018, 9, 959. [Google Scholar] [CrossRef] [PubMed]
- Bon-Mathier, A.C.; Rignault-Clerc, S.; Bielmann, C.; Rosenblatt-Velin, N. Oxygen as a key regulator of cardiomyocyte proliferation: New results about cell culture conditions! Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118460. [Google Scholar] [CrossRef]
- Hortells, L.; Johansen, A.K.Z.; Yutzey, K.E. Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. J. Cardiovasc. Dev. Dis. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Quinn, K.P.; Georgakoudi, I.; Black, L.D., 3rd. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 2014, 10, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Vargas, R.; Vasquez, I.C. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish. Fish. Physiol. Biochem. 2017, 43, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Turdi, S.; Ford, S.P.; Hua, Y.; Nijland, M.J.; Zhu, M.; Nathanielsz, P.W.; Ren, J. Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. J. Nutr. Biochem. 2011, 22, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honkoop, H.; de Bakker, D.E.; Aharonov, A.; Kruse, F.; Shakked, A.; Nguyen, P.D.; de Heus, C.; Garric, L.; Muraro, M.J.; Shoffner, A.; et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019, 8, e50163. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.J.; Titmarsh, D.M.; Koenig, X.; Parker, B.L.; Ryall, J.G.; Quaife-Ryan, G.A.; Voges, H.K.; Hodson, M.P.; Ferguson, C.; Drowley, L.; et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl. Acad. Sci. USA 2017, 114, E8372–E8381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, A.C.; Lam, N.T.; Savla, J.J.; Nakada, Y.; Pereira, A.H.M.; Elnwasany, A.; Menendez-Montes, I.; Ensley, E.L.; Petric, U.B.; Sharma, G.; et al. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat. Metab. 2020, 2, 167–178. [Google Scholar] [CrossRef]
- Lim, G.B. Inhibiting fatty acid oxidation promotes cardiomyocyte proliferation. Nat. Rev. Cardiol. 2020, 17, 266–267. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, H.; Yang, D.; Yu, X.; Irwin, D.M.; Niu, G.; Tan, H. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid-Induced Cardiomyocyte Insulin Resistance. J. Diabetes Res. 2017, 2017, 2376893. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Montagnani, M.; Chandrasekran, S.; Quon, M.J. Role of lipotoxicity in endothelial dysfunction. Heart Fail. Clin. 2012, 8, 589–607. [Google Scholar] [CrossRef] [Green Version]
- Velkoska, E.; Cole, T.J.; Dean, R.G.; Burrell, L.M.; Morris, M.J. Early undernutrition leads to long-lasting reductions in body weight and adiposity whereas increased intake increases cardiac fibrosis in male rats. J. Nutr. 2008, 138, 1622–1627. [Google Scholar] [CrossRef]
- Ahmed, A.; Delgado-Olguin, P. Embryonic programming of heart disease in response to obesity during pregnancy. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165402. [Google Scholar] [CrossRef]
- Marousez, L.; Lesage, J.; Eberle, D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019, 11, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The Influence of the Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.W.; Mahmood, S.; Srinivasan, M.; Smiraglia, D.J.; Patel, M.S. Developmental programming in skeletal muscle in response to overnourishment in the immediate postnatal life in rats. J. Nutr. Biochem. 2013, 24, 1859–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramon-Krauel, M.; Pentinat, T.; Bloks, V.W.; Cebria, J.; Ribo, S.; Perez-Wienese, R.; Vila, M.; Palacios-Marin, I.; Fernandez-Perez, A.; Vallejo, M.; et al. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J. 2018, fj201700717RR. [Google Scholar] [CrossRef]
- Li, G.; Petkova, T.D.; Laritsky, E.; Kessler, N.; Baker, M.S.; Zhu, S.; Waterland, R.A. Early postnatal overnutrition accelerates aging-associated epigenetic drift in pancreatic islets. Environ. Epigenet. 2019, 5, dvz015. [Google Scholar] [CrossRef]
- Blin, G.; Liand, M.; Mauduit, C.; Chehade, H.; Benahmed, M.; Simeoni, U.; Siddeek, B. Maternal Exposure to High-Fat Diet Induces Long-Term Derepressive Chromatin Marks in the Heart. Nutrients 2020, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Siddeek, B.; Mauduit, C.; Chehade, H.; Blin, G.; Liand, M.; Chindamo, M.; Benahmed, M.; Simeoni, U. Long-term impact of maternal high-fat diet on offspring cardiac health: Role of micro-RNA biogenesis. Cell Death Discov. 2019, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Vergely, C.; Maupoil, V.; Clermont, G.; Bril, A.; Rochette, L. Identification and quantification of free radicals during myocardial ischemia and reperfusion using electron paramagnetic resonance spectroscopy. Arch. Biochem. Biophys. 2003, 420, 209–216. [Google Scholar] [CrossRef]
- Higuchi, Y.; Otsu, K.; Nishida, K.; Hirotani, S.; Nakayama, H.; Yamaguchi, O.; Matsumura, Y.; Ueno, H.; Tada, M.; Hori, M. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 2002, 34, 233–240. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Pons, H.; Johnson, R.J. Role of the Immune System in Hypertension. Physiol. Rev. 2017, 97, 1127–1164. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Epelman, S.; Liu, P.P.; Mann, D.L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 2015, 15, 117–129. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Dong, M.; Zhang, K.; Tu, E.; Gao, Q.; Chen, W.; Zhang, C.; Zhang, Y. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 2016, 13, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Ilatovskaya, D.V.; Halade, G.V.; DeLeon-Pennell, K.Y. Adaptive immunity-driven inflammation and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H1254–H1257. [Google Scholar] [CrossRef] [PubMed]
- Turdi, S.; Ge, W.; Hu, N.; Bradley, K.M.; Wang, X.; Ren, J. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects. J. Mol. Cell. Cardiol. 2013, 55, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/trastuzumab: New aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci. 2015, 36, 326–348. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Ghibu, S.; Delemasure-Chalumeau, S.; Guilland, J.C.; Des Rosiers, C.; Zeller, M.; Cottin, Y.; Rochette, L.; Vergely, C. Oxidative stress and myocardial gene alterations associated with Doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. J. Pharmacol. Exp. Ther. 2011, 339, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Mitra, M.S.; Donthamsetty, S.; White, B.; Mehendale, H.M. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicol. Appl. Pharmacol. 2008, 231, 413–422. [Google Scholar] [CrossRef]
- Guenancia, C.; Lefebvre, A.; Cardinale, D.; Yu, A.F.; Ladoire, S.; Ghiringhelli, F.; Zeller, M.; Rochette, L.; Cottin, Y.; Vergely, C. Obesity As a Risk Factor for Anthracyclines and Trastuzumab Cardiotoxicity in Breast Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2016, 34, 3157–3165. [Google Scholar] [CrossRef] [Green Version]
- Guenancia, C.; Hachet, O.; Aboutabl, M.; Li, N.; Rigal, E.; Cottin, Y.; Rochette, L.; Vergely, C. Overweight in mice, induced by perinatal programming, exacerbates doxorubicin and trastuzumab cardiotoxicity. Cancer Chemother. Pharmacol. 2016, 77, 777–785. [Google Scholar] [CrossRef]
- Ferguson, D.P.; Monroe, T.O.; Heredia, C.P.; Fleischmann, R.; Rodney, G.G.; Taffet, G.E.; Fiorotto, M.L. Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity. J. Physiol. 2019, 597, 1855–1872. [Google Scholar] [CrossRef] [PubMed]
- Visker, J.R.; Ferguson, D.P. Postnatal undernutrition in mice causes cardiac arrhythmogenesis which is exacerbated when pharmacologically stressed. J. Dev. Orig. Health Dis. 2018, 9, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Pendergrast, L.A.; Leszczynski, E.C.; Visker, J.R.; Triplett, A.N.; Ferguson, D.P. Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Appl. Physiol. Nutr. Metab. 2020, 45, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Yzydorczyk, C.; Li, N.; Chehade, H.; Mosig, D.; Bidho, M.; Keshavjee, B.; Armengaud, J.B.; Nardou, K.; Siddeek, B.; Benahmed, M.; et al. Transient postnatal overfeeding causes liver stress-induced premature senescence in adult mice. Sci. Rep. 2017, 7, 12911. [Google Scholar] [CrossRef] [Green Version]
- Yzydorczyk, C.; Li, N.; Rigal, E.; Chehade, H.; Mosig, D.; Armengaud, J.B.; Rolle, T.; Krishnasamy, A.; Orozco, E.; Siddeek, B.; et al. Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice. Nutrients 2019, 11, 2796. [Google Scholar] [CrossRef] [Green Version]
- Previate, C.; Malta, A.; Miranda, R.A.; Martins, I.P.; Pavanello, A.; de Oliveira, J.C.; Prates, K.V.; Alves, V.S.; Francisco, F.A.; Moreira, V.M.; et al. Early metformin treatment improves pancreatic function and prevents metabolic dysfunction in early overfeeding male rats at adulthood. Exp. Physiol. 2020. [Google Scholar] [CrossRef]
- Gerdts, E.; Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 2019, 25, 1657–1666. [Google Scholar] [CrossRef]
- Parra-Vargas, M.; Ramon-Krauel, M.; Lerin, C.; Jimenez-Chillaron, J.C. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab. 2020, 32, 334–340. [Google Scholar] [CrossRef]
SPECIES: Strain | [E]: Early Alterations (Birth to 1-Month-Old) or [L]: Long-Term Alterations (1 to 12-Months-Old) | Ref. |
---|---|---|
RATS: Sprague Dawley | [L]: ↑ blood pressure Glomerulosclerosis Renal dysfunction | [18] |
RATS: Sprague Dawley | [L]: ↑ blood pressure Renal cell apoptosis and inflammation | [19] |
RATS: Sprague Dawley | [L]: ↑ plasma leptin levels ↑ susceptibility to ex vivo ischemia-reperfusion ↑ apoptotic markers | [20] |
RATS: Sprague Dawley | [E]: ↑ plasma glucose/insulin/leptin/total lipids/cholesterol levels ↓ HDL cholesterol ↓ vasodilation to acetylcholine, SNP and insulin Cardiac and vascular insulin resistance Pro-inflammatory and pro oxidant state | [21] |
RATS: Wistar | [E]: ↑ plasma glucose/insulin/leptin levels Alteration of cardiac insulin and leptin pathways | [22] |
RATS: Wistar | [E]: ↑ plasma total cholesterol/triglycerides levels Left ventricular hypertrophy ↓ intramyocardial vessel density | [23] |
RATS: Wistar | [L]: ↑ plasma insulin/leptin levels = glucose levels Glucose intolerance ↑ glucose-stimulated insulin secretion GLUT2 ↑ insulin content in pancreatic islets | [7] |
RATS: Wistar | [L]: ↑ blood glucose/plasma insulin/leptin levels = triglycerides/cholesterol levels = vasoreactivity to acetylcholine/SNP/phenylephrine ↑ collagen deposit ↑ susceptibility to ex vivo ischemia-reperfusion Alteration of oxidative balance | [6] |
RATS: Wistar | [L]: ↑ blood pressure ↑ aortic thickness ↓ aortic elastin integrity ↑ aortic MMP-2 expression | [24] |
RATS: Wistar | [E]: ↑ plasma glucose/cholesterol/triglycerides levels Alteration of mitochondrial function Alteration of oxidative balance [L]: ↑ plasma glucose/triglycerides levels Alteration of mitochondrial function Alteration of oxidative balance | [25] |
RATS: Wistar | [L]: ↑ blood glucose Glucose and insulin intolerance | [26] |
RATS: Wistar | [L]: ↑ plasma insulin/triglycerides levels = glucose/HDL and LDL cholesterol levels ↑ blood pressure ↑ aortic collagen content ↓ elastic fiber density | [27] |
RATS: Wistar | [E]: ↑ glomerular size and cellularity ↑ renal collagen content Alteration of oxidative balance | [28] |
RATS: Wistar | [L]: ↑ plasma triglycerides ↓ HDL cholesterol ↓ vasodilation to acetylcholine ↑ vasoconstriction to phenylephrine ↑ blood pressure Cardiac hypertrophy and fibrosis = cardiac contractile function Alteration of oxidative balance | [29] |
RATS: Wistar | [L]: ↑ blood pressure Cardiomyocyte hypertrophy Cardiac fibrosis | [30] |
RATS: Wistar | [L]: ↑ blood pressure = cardiac contractile function Cardiac hypertrophy | [31] |
MICE: C57BL/6 | [E]: Alteration of cardiac gene expression [L]: ↑ plasma cholesterol/insulin/leptin levels ↑ blood pressure ↓ cardiac contractile function ↑ collagen deposit ↑ susceptibility to ex vivo ischemia-reperfusion Alteration of myocardial oxidative balance | [32] |
MICE: C57BL/6 | [L]: ↑ plasma insulin/leptin levels = glucose levels Glucose and insulin intolerance ↓ cardiac contractile function ↑ collagen deposit ↑ susceptibility to ex vivo ischemia-reperfusion ↑ cardiac oxidative stress | [12] |
MICE: C57BL/6 | [L]: ↑ plasma IL-6 levels Alteration of cardiac inflammasome NLRP3 and insulin pathways | [33] |
MICE: C57BL/6 | [L]: ↑ infarct size after in vivo ischemia-reperfusion ↓ cardioprotective pathways | Unpublished data [34] |
MICE: C57BL/6 | [E]: ↑ senescence pathways in kidney [L]: ↑ blood pressure ↑ glomerular number | [35] |
MICE: Swiss | [L]: ↑ plasma insulin levels = glucose/triglycerides/cholesterol levels Glucose intolerance Alteration of cardiac insulin pathway ↑ heart weight | [36] |
MICE: Swiss | [L]: ↑ plasma glucose/insulin/leptin levels ↑ collagen deposit Cardiac hypertrophy ↑ susceptibility to ex vivo ischemia-reperfusion Alteration of insulin and fatty acid pathways | [37] |
MICE: Swiss | [E]: ↑ plasma glucose/insulin/triglycerides/total cholesterol levels Alteration of cardiac insulin pathways Cardiac hypertrophy and fibrosis Alteration of cardiac metabolism | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Josse, M.; Rigal, E.; Rosenblatt-Velin, N.; Rochette, L.; Zeller, M.; Guenancia, C.; Vergely, C. Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int. J. Mol. Sci. 2020, 21, 9427. https://doi.org/10.3390/ijms21249427
Josse M, Rigal E, Rosenblatt-Velin N, Rochette L, Zeller M, Guenancia C, Vergely C. Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. International Journal of Molecular Sciences. 2020; 21(24):9427. https://doi.org/10.3390/ijms21249427
Chicago/Turabian StyleJosse, Marie, Eve Rigal, Nathalie Rosenblatt-Velin, Luc Rochette, Marianne Zeller, Charles Guenancia, and Catherine Vergely. 2020. "Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents" International Journal of Molecular Sciences 21, no. 24: 9427. https://doi.org/10.3390/ijms21249427
APA StyleJosse, M., Rigal, E., Rosenblatt-Velin, N., Rochette, L., Zeller, M., Guenancia, C., & Vergely, C. (2020). Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. International Journal of Molecular Sciences, 21(24), 9427. https://doi.org/10.3390/ijms21249427