Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood
Abstract
:1. Introduction
2. Results
2.1. Growth
2.1.1. PN1–21
2.1.2. PN22–80
2.2. Heart Mass and Tibia Length
2.2.1. PN21
2.2.2. PN80
2.3. 2D DIGE and LC/MS/MS Analysis
2.4. Western Blotting of p57kip2
2.4.1. PN21
2.4.2. PN80
2.5. Silver Nitrate Staining
2.5.1. PN21
2.5.2. PN80
2.6. Pathway Analysis
2.7. Interaction Network
2.8. Echocardiography
3. Discussion
Impaired Extracellular Matrix, Cardiac Cell Cycle
4. Materials and Methods
4.1. Nutritive Model
4.2. Two-Dimensional Differential In-Gel Electrophoresis (2D DIGE)
4.3. Western Blotting
4.4. Silver Nitrate Staining
4.5. Generation of a Potential Mechanism by which PGR Influences Cardiac Impairment
4.6. Echocardiography
4.7. Statistics
5. Conclusions
Limitations and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wells, J.C. Environmental quality, developmental plasticity and the thrifty phenotype: A review of evolutionary models. Evol. Bioinform. 2007, 3, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The fetal origins of coronary heart disease. Acta Paediatr. 1997, 422, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Osmond, C.; Barker, D.J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 2000, 108, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Osmond, C.; Golding, J.; Kuh, D.; Wadsworth, M.E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989, 298, 564–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D. In utero programming of cardiovascular disease. Theriogenology 2000, 53, 555–574. [Google Scholar] [CrossRef]
- Barker, D.J.P. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Thornburg, K.L. The programming of cardiovascular disease. J. Dev. Orig. Health Dis. 2015, 6, 366–376. [Google Scholar] [CrossRef]
- Fall, C.H.; Barker, D.J.; Osmond, C.; Winter, P.D.; Clark, P.M.; Hales, C.N. Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. BMJ 1992, 304, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P. Developmental origins of chronic disease. Public Health 2012, 126, 185–189. [Google Scholar] [CrossRef]
- Barker, D.; Osmond, C.; Winter, P.; Margetts, B.; Simmonds, S. WEIGHT IN INFANCY AND DEATH FROM ISCHAEMIC HEART DISEASE. Lancet 1989, 334, 577–580. [Google Scholar] [CrossRef]
- Painter, R.C.; Roseboom, T.J.; Bleker, O.P. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reprod. Toxicol. 2005, 20, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Visker, J.R.; Ferguson, D.P. Postnatal undernutrition in mice causes cardiac arrhythmogenesis which is exacerbated when pharmacologically stressed. J. Dev. Orig. Health Dis. 2018, 9, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Farahbakhsh, N.; Sharma, P. Intrauterine growth restriction—Part 1. J. Matern. Fetal Neonatal Med. 2016, 29, 3977–3987. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Intrauterine growth restriction—Part 2. J. Matern. Fetal Neonatal Med. 2016, 29, 4037–4048. [Google Scholar] [CrossRef]
- Bubb, K.J.; Cock, M.L.; Black, M.J.; Dodic, M.; Boon, W.-M.; Parkington, H.C.; Harding, R.; Tare, M. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J. Physiol. 2006, 578, 871–881. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wu, D.; Sun, Z.; Tan, Z.; Qiao, J.; Ran, T.; Tang, S.; Zhou, C.; Han, X.; Wang, M.; et al. Protein or energy restriction during late gestation alters fetal growth and visceral organ mass: An evidence of intrauterine programming in goats. Anim. Reprod. Sci. 2013, 137, 177–182. [Google Scholar] [CrossRef]
- Ferguson, D.P.; Monroe, T.O.; Heredia, C.P.; Fleischman, R.E.; Rodney, G.G.; Taffet, G.E.; Fiorotto, M.L.; Fleischmann, R. Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity. J. Physiol. 2019, 597, 1855–1872. [Google Scholar] [CrossRef]
- Ferguson, D.P.; Dangott, L.J.; Schmitt, E.E.; Vellers, H.L.; Lightfoot, J.T. Differential skeletal muscle proteome of high- and low-active mice. J. Appl. Physiol. 2014, 116, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, D.P.; Dangott, L.J.; Vellers, H.L.; Schmitt, E.E.; Lightfoot, J.T. Differential protein expression in the nucleus accumbens of high and low active mice. Behav. Brain Res. 2015, 291, 283–288. [Google Scholar] [CrossRef]
- Fiorotto, M.L.; Davis, T.A.; Sosa, H.A.; Villegas-Montoya, C.; Estrada, I.; Fleischmann, R. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. J. Physiol. 2014, 592, 5269–5286. [Google Scholar] [CrossRef]
- Botting, K.; Wang, K.; Padhee, M.; McMillen, I.; Summers-Pearce, B.; Rattanatray, L.; Cutri, N.; Posterino, G.; Brooks, D.A.; Morrison, J.; et al. Early origins of heart disease: Low birth weight and determinants of cardiomyocyte endowment. Clin. Exp. Pharmacol. Physiol. 2012, 39, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Knott, M.H.; Haskell, S.E.; Strawser, P.E.; Rice, O.M.; Bonthius, N.T.; Movva, V.C.; Reinking, B.; Roghair, R.D. Neonatal Growth Restriction Slows Cardiomyocyte Development and Reduces Adult Heart Size. Anat. Rec. 2018, 301, 1398–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drenckhahn, J.-D.; Strasen, J.; Heinecke, K.; Langner, P.; Yin, K.V.; Skole, F.; Hennig, M.; Spallek, B.; Fischer, R.; Blaschke, F.; et al. Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart. Cardiovasc. Res. 2015, 106, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louey, S.; Jonker, S.S.; Giraud, G.D.; Thornburg, K.L. Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J. Physiol. 2007, 580, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Dodson, R.B.; Miller, T.A.; Powers, K.N.; Yang, Y.; Yu, B.; Albertine, K.H.; Zinkhan, E.K. Intrauterine growth restriction influences vascular remodeling and stiffening in the weanling rat more than sex or diet. Am. J. Physiol. Circ. Physiol. 2017, 312, H250–H264. [Google Scholar] [CrossRef] [PubMed]
- Dodson, R.B.; Rozance, P.J.; Fleenor, B.S.; Petrash, C.C.; Shoemaker, L.G.; Hunter, K.S.; Ferguson, V.L. Increased arterial stiffness and extracellular matrix reorganization in intrauterine growth-restricted fetal sheep. Pediatr. Res. 2013, 73, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Darby, J.R.T.; McMillen, I.C.; Morrison, J.L. Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart. J. Physiol. 2018, 596, 2345–2358. [Google Scholar] [CrossRef] [Green Version]
- Evans-Anderson, H.J.; Alfieri, C.M.; Yutzey, K.E. Regulation of Cardiomyocyte Proliferation and Myocardial Growth During Development by FOXO Transcription Factors. Circ. Res. 2008, 102, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.M.; Slotkin, T.A. Postnatal nutritional status influences development of cardiac adrenergic receptor binding sites. Brain Res. Bull. 1988, 21, 893–896. [Google Scholar] [CrossRef]
- Morton, M.; Tsang, H.; Hohimer, R.; Ross, D.; Thornburg, K.; Faber, J.; Metcalfe, J. Left ventricular size, output, and structure during guinea pig pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1984, 246, R40–R48. [Google Scholar] [CrossRef]
- Lim, K.; Zimanyi, M.; Black, M.J. Effect of Maternal Protein Restriction in Rats on Cardiac Fibrosis and Capillarization in Adulthood. Pediatr. Res. 2006, 60, 83–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, A.H.; Li, C.; Li, J.; Huber, H.F.; Nathanielsz, P.W.; Clarke, G.D. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J. Physiol. 2016, 595, 1093–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Lim, C.H.; McMillen, I.C.; Duffield, J.A.; Brooks, D.A.; Morrison, J.L. Alteration of cardiac glucose metabolism in association to low birth weight: Experimental evidence in lambs with left ventricular hypertrophy. Metabolism 2013, 62, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Botting, K.J.; Zhang, S.; McMillen, I.C.; Brooks, D.A.; Morrison, J.L. Akt signaling as a mediator of cardiac adaptation to low birth weight. J. Endocrinol. 2017, 233, R81–R94. [Google Scholar] [CrossRef] [Green Version]
- Taffet, G.E.; Pham, T.T.; Hartley, C.J. The Age-Associated Alterations in Late Diastolic Function in Mice Are Improved by Caloric Restriction. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1997, 52, B285–B290. [Google Scholar] [CrossRef] [Green Version]
- Leszczynski, E.C.; Visker, J.R.; Ferguson, D.P. The Effect of Growth Restriction on Voluntary Physical Activity Engagement in Mice. Med. Sci. Sports Exerc. 2019, 51, 2201–2209. [Google Scholar] [CrossRef]
- Pendergrast, L.A.; Leszczynski, E.C.; Visker, J.R.; Triplett, A.N.; Ferguson, D.P. Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Appl. Physiol. Nutr. Metab. 2020, 45, 240–250. [Google Scholar] [CrossRef]
- Nezar, M.A.-S.; El-Baky, A.M.A.; Soliman, O.A.-S.; Abdel-Hady, H.; Hammad, A.M.; Al-Haggar, M.S. Endothelin-1 and leptin as markers of intrauterine growth restriction. Indian J. Pediatr. 2009, 76, 485–488. [Google Scholar] [CrossRef]
- Neerhof, M.G.; Khan, S.; Synowiec, S.; Qu, X.-W.; Thaete, L.G. The Significance of Endothelin in Platelet-Activating Factor–Induced Fetal Growth Restriction. Reprod. Sci. 2012, 19, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- De Blasio, M.J.; Gatford, K.L.; Robinson, J.S.; Owens, J.A. Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb. Am. J. Physiol. Integr. Comp. Physiol. Regul. 2007, 292, R875–R886. [Google Scholar] [CrossRef]
- Dusick, A.M.; Poindexter, B.B.; Ehrenkranz, R.A.; Lemons, J.A. Growth failure in the preterm infant: Can we catch up? Semin. Perinatol. 2003, 27, 302–310. [Google Scholar] [CrossRef]
- Baum, M.; Ortiz, L.; Quan, A. Fetal origins of cardiovascular disease. Curr. Opin. Pediatr. 2003, 15, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.; Isganaitis, E.; Cerletti, M.; Fitzpatrick, C.; Wagers, A.J.; Jimenez-Chillaron, J.; Patti, M.E. Early Life Nutrition Modulates Muscle Stem Cell Number: Implications for Muscle Mass and Repair. Stem Cells Dev. 2011, 20, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Feltes, B.C.; de Faria Poloni, J.; Bonatto, D. The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology 2011, 12, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Nawathe, A.; Christian, M.; Kim, S.H.; Johnson, M.R.; Savvidou, M.D.; Terzidou, V. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clin. Epigenet. 2016, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrazzi, P.; Iascone, M.R.; Senni, M.; Quaini, E. The Titan can help titin: From micro to macro myocardial elasticity. J. Cardiovasc. Med. 2006, 7, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Radke, M.H.; Peng, J.; Wu, Y.; McNabb, M.; Nelson, O.L.; Granzier, H.; Gotthardt, M. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 3444–3449. [Google Scholar] [CrossRef] [Green Version]
- Cahill, T.J.; Ashrafian, H.; Watkins, H. Genetic Cardiomyopathies Causing Heart Failure. Circ. Res. 2013, 113, 660–675. [Google Scholar] [CrossRef]
- Hamaguchi, S.; Kawakami, Y.; Honda, Y.; Nemoto, K.; Sano, A.; Namekata, I.; Tanaka, H. Developmental Changes in Excitation–Contraction Mechanisms of the Mouse Ventricular Myocardium as Revealed by Functional and Confocal Imaging Analyses. J. Pharmacol. Sci. 2013, 123, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Chattergoon, N.N.; Giraud, G.D.; Louey, S.; Stork, P.; Fowden, A.L.; Thornburg, K.L. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2012, 26, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Chattergoon, N.N.; Louey, S.; Stork, P.; Giraud, G.D.; Thornburg, K.L. Mid-Gestation Ovine Cardiomyocytes Are Vulnerable to Mitotic Suppression by Thyroid Hormone. Reprod. Sci. 2012, 19, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Hammer, D.; Leier, C.V.; Baba, N.; Vasko, J.S.; Wooley, C.F.; Pinnell, S.R. Altered collagen composition in a prolapsing mitral valve with ruptured chordae tendineae. Am. J. Med. 1979, 67, 863–866. [Google Scholar] [CrossRef]
- Cheah, K.S.E. Collagen genes and inherited connective tissue disease. Biochem. J. 1985, 229, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, D.; Lindberg, K.; McLees, B.; Pinnell, S. The collagen of heart valve. Biochim. Biophys. Acta BBA Protein Struct. 1977, 495, 129–139. [Google Scholar] [CrossRef]
- Wang, J.-H.; Su, F.; Wang, S.; Lu, X.-C.; Zhang, S.-H.; Chen, D.; Chen, N.-N.; Zhong, J.-Q. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP9 pathway. Int. J. Clin. Exp. Pathol. 2014, 7, 6514–6523. [Google Scholar]
- Henney, A.M.; Tsipouras, P.; Schwartz, R.C.; Child, A.H.; Devereux, R.B.; Leech, G.J. Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse. Heart 1989, 61, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.-P.; Lü, D.; Zhang, W.; Zhang, L.; Wang, S.-M.; Ma, C.-M.; Qin, C.; Zhang, L.-F. Protective action of tetramethylpyrazine phosphate against dilated cardiomyopathy in cTnTR141W transgenic mice. Acta Pharmacol. Sin. 2010, 31, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Bertoli, C.; Skotheim, J.M.; De Bruin, R.A.M. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 2013, 14, 518–528. [Google Scholar] [CrossRef] [Green Version]
- Haley, S.A.; Zhao, T.C.; Zou, L.; Klysik, J.; Padbury, J.F.; Kochilas, L. Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart. BMC Physiol. 2008, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Liégeois, N.J.; Wong, C.; Finegold, M.J.; Hou, H.; Thompson, J.C.; Silverman, A.; Harper, J.W.; DePinho, R.A.; Elledge, S.J. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 1997, 387, 151–158. [Google Scholar] [CrossRef]
- Ferguson, D.P. Postnatal undernutrition alters female mouse cardiomyocyte structure and function leading to a permanent impairment in exercise capacity in adulthood. In Proceedings of the Integrative Biology of Exercise Conference: APS 2016, Phoenix, AZ, USA, 2–4 November 2016. [Google Scholar]
- Corstius, H.B.; Zimanyi, M.A.; Maka, N.; Herath, T.; Thomas, W.; van der Laarse, A.; Wreford, N.G.; Black, M.J. Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res. 2005, 57, 796–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochilas, L.K.; Li, J.; Jin, F.; Buck, C.A.; Epstein, J.A. p57Kip2 Expression Is Enhanced During Mid-Cardiac Murine Development and Is Restricted to Trabecular Myocardium. Pediatr. Res. 1999, 45, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Geist, J.; Grogan, A.; Hu, L.-Y.R.; Kontrogianni-Konstantopoulos, A. Thick Filament Protein Network, Functions, and Disease Association. Compr. Physiol. 2018, 8, 631–709. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Maruyama, K.; Huang, Y.P. Interactions of Muscle β-Connectin with Myosin, Actin, and Actomyosin at Low Ionic Strengths1. J. Biochem. 1984, 96, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kontrogianni-Konstantopoulos, A.; Ackermann, M.A.; Bowman, A.L.; Yap, S.V.; Bloch, R.J. Muscle Giants: Molecular Scaffolds in Sarcomerogenesis. Physiol. Rev. 2009, 89, 1217–1267. [Google Scholar] [CrossRef]
- Sampson, D.A.; Hunsaker, H.A.; Jansen, G.R. Dietary Protein Quality, Protein Quantity and Food Intake: Effects on Lactation and on Protein Synthesis and Tissue composition in Mammary Tissue and Liver in Rats. J. Nutr. 1986, 116, 365–375. [Google Scholar] [CrossRef]
- Grimble, R.F.; Mansaray, Y.K. Effects in Rats of Dietary Protein Inadequacy on Lactose Production, Milk Volume and Components of the Lactose Synthetase Complex (EC 2.4.1.22). Ann. Nutr. Metab. 1987, 31, 179–184. [Google Scholar] [CrossRef]
- Grigor, M.R.; Allan, J.E.; Carrington, J.M.; Carne, A.; Geursen, A.; Young, D.; Thompson, M.P.; Haynes, E.B.; Coleman, R.A. Effect of Dietary Protein and Food Restriction on Milk Production and Composition, Maternal Tissues and Enzymes in Lactating Rats. J. Nutr. 1987, 117, 1247–1258. [Google Scholar] [CrossRef]
- Pine, A.P.; Jessop, N.S.; Oldham, J.D. Maternal protein reserves and their influence on lactational performance in rats. Br. J. Nutr. 1994, 71, 13–27. [Google Scholar] [CrossRef]
- Crnic, L.S.; Chase, H.P. Models of Infantile Undernutrition in Rats: Effects on Milk. J. Nutr. 1978, 108, 1755–1760. [Google Scholar] [CrossRef]
- Mueller, A.J.; Cox, W.M. The Effect of Changes in Diet on the Volume and Composition of Rat Milk. J. Nutr. 1946, 31, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Agnoux, A.M.; Antignac, J.-P.; Boquien, C.-Y.; David, A.; Desnots, E.; Ferchaud-Roucher, V.; Darmaun, D.; Parnet, P.; Alexandre-Gouabau, M.-C. Perinatal protein restriction affects milk free amino acid and fatty acid profile in lactating rats: Potential role on pup growth and metabolic status. J. Nutr. Biochem. 2015, 26, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Gouma, E.; Simos, Y.V.; Verginadis, I.; Lykoudis, E.; Evangelou, A.; Karkabounas, S. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab. Anim. 2012, 46, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.B.; Raad, M.; Sebag, I.A.; Chalifour, L.E. Lifelong Exposure to Bisphenol A Alters Cardiac Structure/Function, Protein Expression, and DNA Methylation in Adult Mice. Toxicol. Sci. 2013, 133, 174–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, D.H.; Sharkey, N.A.; Lionikas, A.; Mack, H.A.; Larsson, L.; Vogler, G.P.; Vandenbergh, D.J.; Blizard, D.A.; Stout, J.T.; Stitt, J.P.; et al. Adjusting data to body size: A comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes. J. Bone Miner. Res. 2004, 20, 748–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, N.A.; Lilley, K.S. Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes. Proteomics 2005, 5, 3105–3115. [Google Scholar] [CrossRef] [PubMed]
- Karp, N.A.; Lilley, K.S. Design and Analysis Issues in Quantitative Proteomics Studies. Proteomics 2007, 7, 42–50. [Google Scholar] [CrossRef]
- Gorg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21, 1037–1053. [Google Scholar] [CrossRef]
- Nabity, M.B.; Lees, G.E.; Dangott, L.J.; Cianciolo, R.; Suchodolski, J.S.; Steiner, J.M. Proteomic analysis of urine from male dogs during early stages of tubulointerstitial injury in a canine model of progressive glomerular disease. Vet. Clin. Pathol. 2011, 40, 222–236. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, W. Detection and quantification of the giant protein titin by SDS-agarose gel electrophoresis. MethodsX 2017, 4, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidyanathan, J.; Chinnaswamy, K.; Vaidyanathan, T.K. Biomimetic recognition and immunochemical assay of ligand binding to collagen. J. Adhes. Dent. 2003, 5, 7–17. [Google Scholar] [PubMed]
- Mocan, E.; Tagadiuc, O.; Nacu, V. Aspects of Collagen Isolation Procedure. Clin. Res. Stud. 2011, 2, 3–5. [Google Scholar]
- Blum, H.; Beier, H.; Gross, H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987, 8, 93–99. [Google Scholar] [CrossRef]
- Huang, L.; Deng, X.; Li, R.; Xia, Y.; Bai, G.; Siddique, K.H.; Guo, P. A Fast Silver Staining Protocol Enabling Simple and Efficient Detection of SSR Markers using a Non-denaturing Polyacrylamide Gel. J. Vis. Exp. 2018, 134, e57192. [Google Scholar] [CrossRef]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Croft, D.; Mundo, A.F.; Haw, R.; Milacic, M.; Weiser, J.; Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.; Kamdar, M.R.; et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014, 42, D472–D477. [Google Scholar] [CrossRef]
- von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003, 31, 258–261. [Google Scholar] [CrossRef]
- Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; Von Mering, C.; et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012, 41, D808–D815. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Qin, Z. A novel method to identify differential pathways in uterine leiomyomata based on network strategy. Oncol. Lett. 2017, 14, 5765–5772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, J.; Ghatge, M.; Kakkar, V.V.; Shanker, I. Network Analysis of Inflammatory Genes and Their Transcriptional Regulators in Coronary Artery Disease. PLoS ONE 2014, 9, e94328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39, D561–D568. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Zahid, S.; Wan, Y.-J.Y.; Forster, J.; Karim, A.-B.A.; Nawabi, A.; Azhar, A.; Rahman, M.A.; Ahmed, N. Protein expression profiling of nuclear membrane protein reveals potential biomarker of human hepatocellular carcinoma. Clin. Proteom. 2013, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Benavides-Vallve, C.; Corbacho, D.; Iglesias-Garcia, O.; Pelacho, B.; Albiasu, E.; Castaño, S.; Muñoz-Barrutia, A.; Prosper, F.; Ortiz-De-Solorzano, C. New Strategies for Echocardiographic Evaluation of Left Ventricular Function in a Mouse Model of Long-Term Myocardial Infarction. PLoS ONE 2012, 7, e41691. [Google Scholar] [CrossRef] [Green Version]
- Chauveau, C.; Rowell, J.; Ferreiro, A. A Rising Titan:TTNReview and Mutation Update. Hum. Mutat. 2014, 35, 1046–1059. [Google Scholar] [CrossRef]
Spot Number | Spot p-Value | Average Ratio of Spot | Protein | No. of Identified Peptides | Expressed in (CON/PGR) | Category |
---|---|---|---|---|---|---|
1200 | 0.0042 | −1.22 | Peroxiredoxin 6 (Prdx6) | 6 | CON | Metabolism, Cellular Signaling |
600 | 0.019 | −1.2 | Titin (Ttn) | 4 | CON | Muscle Organization |
600 | 0.019 | −1.2 | Rho GTPase-Activating Protein 29 (Arhga29) | 4 | CON | Signal Transduction |
600 | 0.019 | −1.2 | Cyclin-Dependent Kinase Inhibitor 1C-p57kip2 (Cdkn1c) | 3 | CON | Cell Cycle |
600 | 0.019 | −1.2 | SAFB-like Transcription Modulator (Sltm) | 3 | CON | Metabolism |
600 | 0.019 | −1.2 | Exportin 5 (Xpo5) | 3 | CON | Cell Cycle, Signal Transduction |
600 | 0.019 | −1.2 | Crumbs Cell Polarity Complex Component (Patj) | 3 | CON | Cell–Cell Communication |
600 | 0.019 | −1.2 | Collagen Type I α 1 (Col1a1) | 3 | CON | Extracellular Matrix |
600 | 0.019 | −1.2 | Histone-Lysine N-Methyltransferase (Setd2) | 9 | CON | Gene Expression (Transcription) |
600 | 0.019 | −1.2 | Collagen Type IV α 5 (Col4a5) | 5 | CON | Extracellular Matrix |
600 | 0.019 | −1.2 | Collagen Type III α 1 (Col3a1) | 9 | CON | Extracellular Matrix |
600 | 0.019 | −1.2 | Dynein Axonemal Heavy Chain 1 (Dnah1) | 4 | CON | Protein Transportation (Motor) |
856 | 0.064 | −1.26 | Aldolase, Fructose-Bisphosphate A (Aldoa) | 20 | CON | Metabolism (Fatty Acid Oxidation) |
856 | 0.064 | −1.26 | Acetyl-CoA Acetyltransferase 1 (Acat1) | 17 | CON | Metabolism (Fatty Acid Oxidation) |
856 | 0.064 | −1.26 | Acetyl-CoA Acyltransferase 2 (Acaa2) | 13 | CON | Metabolism (Fatty Acid Oxidation) |
856 | 0.064 | −1.26 | Aspartate Aminotransferase (Got1) | 12 | CON | Metabolism (Biosynthesis Proteins) |
856 | 0.064 | −1.26 | Microtubule-Associated Protein 6 (Map6) | 6 | CON | Extracellular Matrix |
856 | 0.064 | −1.26 | Leucine-Rich Repeats and Ig-like Domains 3 (Lrig3) | 5 | CON | Signal Transduction |
856 | 0.064 | −1.26 | Acyl-CoA Dehydrogenase Medium Chain (Acadm) | 4 | CON | Metabolism (Fatty Acid Oxidation) |
856 | 0.064 | −1.26 | Aconitase 2 (Aco2) | 5 | CON | Metabolism (Krebs Cycle) |
584 | 0.075 | 1.34 | Caveolae-Associated Protein 1 (Ptrf) | 11 | PGR | Gene Expression (Transcription) |
584 | 0.075 | 1.34 | Vitamin D-Binding Protein (Gc) | 14 | PGR | Metabolism, Protein Transportation |
584 | 0.075 | 1.34 | Neuroblast Differentiation-Associated Protein (Ahnak) | 3 | PGR | Structural Protein, Cardiac Ca2+ regulation |
584 | 0.075 | 1.34 | Heat Shock Protein Family D (Hspd1) | 4 | PGR | Metabolism, Signal Transduction, Cell Cycle |
584 | 0.075 | 1.34 | Vimentin (Vim) | 4 | PGR | Programmed Cell Death, Muscle Contraction |
584 | 0.075 | 1.34 | Adenomatous Polyposis Coli (Apc) | 4 | PGR | Metabolism, Signal Transduction |
584 | 0.075 | 1.34 | ATP Synthase F1 Subunit β (Atp5b) | 4 | PGR | Metabolism (Ox. Phos.) |
584 | 0.075 | 1.34 | Potassium Calcium-Activated Channel Subfamily M α1 (Kcnma1) | 4 | PGR | Intracellular Ion Regulation |
1410 | 0.075 | 1.34 | Fetuin-A (Ahsg) | 5 | PGR | Immune System |
1410 | 0.075 | 1.34 | Hemoglobin Subunit β (Hbb) | 3 | PGR | Transport of Small Molecules |
Parameter | CON | PGR | p-Value | ||||
---|---|---|---|---|---|---|---|
Males | Females | Males | Females | Diet | Sex | Diet*Sex | |
Global Cardiac Function and Mass | |||||||
Heart Rate (beats·min−1) | 404.5 ± 29.0 | 391.3 ± 41.0 | 365.0 ± 29.0 | 362.6 ± 25.9 | NS | NS | NS |
Area, S (mm2) | 12.1 ± 1.1 | 10.7 ± 1.4 | 9.4 ± 0.9 | 9.4 ± 0.9 | NS | NS | NS |
Area, D (mm2) | 18.7 ± 1.0 | 16.6 ± 1.5 | 14.3 ± 1.0 | 13.6 ± 0.9 | NS | NS | NS |
LV Mass (mg) | 115.7 ± 3.5 A | 111.5 ± 2.3 A | 101.4 ± 1.3 B | 100.0 ± 2.6 B | 0.03 | NS | NS |
Stroke Volume (µL) | 45.7 ± 2.5 A | 43.2 ± 2.8 A | 38.9 ± 2.4 B | 36.8 ± 2.1 B | 0.01 | NS | NS |
Cardiac Output (mL·min−1) | 18.5 ± 1.3 A | 16.9 ± 1.8 A | 14.2 ± 1.3 B | 13.4 ± 1.2 B | 0.02 | NS | NS |
Myocardial Performance Index | 0.49 ± 0.03 A | 0.43 ± 0.04 A | 0.59 ± 0.03 B | 0.55 ± 0.03 B | 0.02 | NS | NS |
LV Mass Corrected (mg) | 92.5 ± 2.0 A | 89.3 ± 1.2 A | 81.1 ± 1.8 B | 80.0 ± 1.2 B | 0.04 | NS | NS |
Diastolic and Systolic Function | |||||||
Ejection Fraction (%) | 66.2 ± 4.5 | 67.3 ± 6.2 | 62.0 ± 4.4 | 61.7 ± 3.9 | NS | NS | NS |
Fractional Shortening (%) | 36.9 ± 3.3 | 37.8 ± 4.6 | 34.2 ± 3.2 | 33.2 ± 2.9 | NS | NS | NS |
LVID, S (mm) | 2.7 ± 0.2 | 2.4 ± 0.2 | 2.8 ± 0.2 | 2.9 ± 0.2 | NS | NS | NS |
LVID, D (mm) | 4.0 ± 0.2 | 3.8 ± 0.3 | 4.2 ± 0.2 | 4.1 ± 0.2 | NS | NS | NS |
AET (ms) | 52.3 ± 1.6 A | 59.2 ± 2.2 B | 51.4 ± 1.6 A | 53.2 ± 1.4 A | - | - | 0.042 |
MVDT (ms) | 26.0 ± 4.6 | 22.0 ± 6.3 | 21.1 ± 4.4 | 21.2 ± 4 | NS | NS | NS |
MV A (mm/s2) | 320.4 ± 30.3 A | 448.1 ± 41.6 B | 335.2 ± 29.5 A | 328.6 ± 27.0 A | - | - | 0.044 |
MV E (mm/s2) | 598.7 ± 46.0 | 675.1 ± 63.2 | 523.4 ± 44.9 | 641.1 ± 40.4 | NS | NS | NS |
MV E/A | 1.9 ± 0.2 A | 1.5 ± 0.2 B | 1.6 ± 0.2 B | 2.0 ± 0.1 A | - | - | 0.045 |
IVCT (ms) | 10.8 ± 1.4 A | 8.6 ± 1.9 A | 12.7 ± 1.4 B | 11.9 ± 1.3 B | 0.02 | NS | NS |
IVRT (ms) | 15.1 ± 1.1 A | 16.9 ± 1.5 A | 18.0 ± 1.1 B | 17.5 ± 0.9 B | 0.03 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visker, J.R.; Dangott, L.J.; Leszczynski, E.C.; Ferguson, D.P. Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. Int. J. Mol. Sci. 2020, 21, 9459. https://doi.org/10.3390/ijms21249459
Visker JR, Dangott LJ, Leszczynski EC, Ferguson DP. Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. International Journal of Molecular Sciences. 2020; 21(24):9459. https://doi.org/10.3390/ijms21249459
Chicago/Turabian StyleVisker, Joseph R., Lawrence J. Dangott, Eric C. Leszczynski, and David P. Ferguson. 2020. "Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood" International Journal of Molecular Sciences 21, no. 24: 9459. https://doi.org/10.3390/ijms21249459
APA StyleVisker, J. R., Dangott, L. J., Leszczynski, E. C., & Ferguson, D. P. (2020). Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. International Journal of Molecular Sciences, 21(24), 9459. https://doi.org/10.3390/ijms21249459