Evolution of MicroRNA Biogenesis Genes in the Sterlet (Acipenser ruthenus) and Other Polyploid Vertebrates
Abstract
:1. Introduction
2. Results
2.1. Paralogs of Drosha
2.2. Paralogs of dgcr8
2.3. Paralogs of dicer1
2.4. Paralogs of Exportin 5
2.5. Paralogs of Exportin 1
2.6. Paralogs of Argonaute Genes
2.7. Paralogs of Piwi-Like Proteins
3. Discussion
3.1. Paralog Retention in Recent Polyploids
3.2. Ago Paralogs and Rediploidization by Segment Excision
3.3. Dicer Paralogs: Discovery of an Ancient Segmental Duplication
3.4. Xpo and Ago Genes: Variable Copy Number across Recent Polyploids
3.5. Subgenome Dominance and Paralog Retention
3.6. Hexanucleotide Expansion in Drosha Genes
3.7. Ago2 and Its Potential Slicing Activity in the Sterlet
3.8. Expression Analysis
4. Materials and Methods
4.1. Retrieving Paralogs from Sterlet Databases
4.2. Retrieving Orthologs from Databases
4.3. Phylogenetic Analysis
4.4. Expression Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohno, S. Evolution by Gene Duplication; Springer: Berlin, Heidelberg, 1970; ISBN 978-3-642-86661-6. [Google Scholar]
- Dehal, P.; Boore, J.L. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate. PLoS Biol. 2005, 3, e314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatani, Y.; Takeda, H.; Kohara, Y.; Morishita, S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007, 17, 1254–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoegg, S.; Brinkmann, H.; Taylor, J.S.; Meyer, A. Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. J. Mol. Evol. 2004, 59, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.; Van de Peer, Y. From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD). Bioessays 2005, 27, 937–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasauer, S.M.K.; Neuhauss, S.C.F. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, S.; Koop, B.F.; Sandve, S.R.; Miller, J.R.; Kent, M.P.; Nome, T.; Hvidsten, T.R.; Leong, J.S.; Minkley, D.R.; Zimin, A.; et al. The Atlantic salmon genome provides insights into rediploidization. Nature 2016, 533, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Omori, Y.; Koren, S.; Shirokiya, T.; Kuroda, T.; Miyamoto, A.; Wada, H.; Fujiyama, A.; Toyoda, A.; Zhang, S.; et al. De novo assembly of the goldfish (Carassius auratus ) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 2019, 5, eaav0547. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Xu, J.; Liu, G.; Chen, L.; Zhou, Z.; Peng, W.; Jiang, Y.; Zhao, Z.; Jia, Z.; Sun, Y.; et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 2019, 10, 4625. [Google Scholar] [CrossRef] [Green Version]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Stöck, M.; Kneitz, S.; Klopp, C.; Woltering, J.M.; Adolfi, M.C.; Feron, R.; Prokopov, D.; Makunin, A.; Kichigin, I.; et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020, 4, 841–852. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, C.; Brunet, F.; Chalopin, D.; Juanchich, A.; Bernard, M.; Noël, B.; Bento, P.; Da Silva, C.; Labadie, K.; Alberti, A.; et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 2014, 5, 3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flot, J.-F.; Hespeels, B.; Li, X.; Noel, B.; Arkhipova, I.; Danchin, E.G.J.; Hejnol, A.; Henrissat, B.; Koszul, R.; Aury, J.-M.; et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 2013, 500, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwager, E.E.; Sharma, P.P.; Clarke, T.; Leite, D.J.; Wierschin, T.; Pechmann, M.; Akiyama-Oda, Y.; Esposito, L.; Bechsgaard, J.; Bilde, T.; et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Nong, W.; Qu, Z.; Li, Y.; Barton-Owen, T.; Wong, A.Y.P.; Yip, H.Y.; Lee, H.T.; Narayana, S.; Baril, T.; Swale, T.; et al. Horseshoe crab genomes reveal the evolutionary fates of genes and microRNAs after three rounds (3R) of whole genome duplication. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Peatman, E.; Tang, H.; Lewis, J.; Liu, Z. Profiling of gene duplication patterns of sequenced teleost genomes: Evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genom. 2012, 13, 246. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.; Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 2020, 4, 524–533. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O’Carroll, D.; Zamore, P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2019, 20, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Grimson, A.; Srivastava, M.; Fahey, B.; Woodcroft, B.J.; Chiang, H.R.; King, N.; Degnan, B.M.; Rokhsar, D.S.; Bartel, D.P. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008, 455, 1193–1197. [Google Scholar] [CrossRef]
- Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 2011, 12, 846–860. [Google Scholar] [CrossRef]
- Bråte, J.; Neumann, R.S.; Fromm, B.; Haraldsen, A.A.B.; Tarver, J.E.; Suga, H.; Donoghue, P.C.J.; Peterson, K.J.; Ruiz-Trillo, I.; Grini, P.E.; et al. Unicellular Origin of the Animal MicroRNA Machinery. Curr. Biol. 2018, 28, 3288–3295. [Google Scholar] [CrossRef] [Green Version]
- Kerner, P.; Degnan, S.M.; Marchand, L.; Degnan, B.M.; Vervoort, M. Evolution of RNA-Binding Proteins in Animals: Insights from Genome-Wide Analysis in the Sponge Amphimedon queenslandica. Mol. Biol. Evolut. 2011, 28, 2289–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohnsack, M.T. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lee, J.E.; Riemondy, K.; Yu, Y.; Marquez, S.M.; Lai, E.C.; Yi, R. XPO5 promotes primary miRNA processing independently of RanGTP. Nat. Commun. 2020, 11, 1845. [Google Scholar] [CrossRef] [Green Version]
- Martinez, I.; Hayes, K.E.; Barr, J.A.; Harold, A.D.; Xie, M.; Bukhari, S.I.A.; Vasudevan, S.; Steitz, J.A.; DiMaio, D. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence. Proc. Natl. Acad. Sci. USA 2017, 114, E4961–E4970. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, K.; Campos, H.; Kolaczkowski, B. Evolution of Animal and Plant Dicers: Early Parallel Duplications and Recurrent Adaptation of Antiviral RNA Binding in Plants. Mol. Biol. Evol. 2013, 30, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Aharoni, R.; Tobi, D. Dynamical comparison between Drosha and Dicer reveals functional motion similarities and dissimilarities. PLoS ONE 2019, 14, e0226147. [Google Scholar] [CrossRef]
- De Jong, D.; Eitel, M.; Jakob, W.; Osigus, H.-J.; Hadrys, H.; DeSalle, R.; Schierwater, B. Multiple Dicer Genes in the Early-Diverging Metazoa. Mol. Biol. Evol. 2009, 26, 1333–1340. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, M.; Blair, D.; Zheng, Y.; Dou, Y. Phylogenetic Analysis of the Endoribonuclease Dicer Family. PLoS ONE 2014, 9, e95350. [Google Scholar] [CrossRef]
- Drinnenberg, I.A.; Weinberg, D.E.; Xie, K.T.; Mower, J.P.; Wolfe, K.H.; Fink, G.R.; Bartel, D.P. RNAi in Budding Yeast. Science 2009, 326, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsolver, M.B.; Huang, Z.; Hardy, R.W. Insect Antiviral Innate Immunity: Pathways, Effectors, and Connections. J. Mol. Biol. 2013, 425, 4921–4936. [Google Scholar] [CrossRef] [Green Version]
- Gammon, D.B.; Mello, C.C. RNA interference-mediated antiviral defense in insects. Curr. Opin. Insect Sci. 2015, 8, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirier, E.Z.; Goic, B.; Tomé-Poderti, L.; Frangeul, L.; Boussier, J.; Gausson, V.; Blanc, H.; Vallet, T.; Loyd, H.; Levi, L.I.; et al. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host Microbe 2018, 23, 353–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouché, N.; Lauressergues, D.; Gasciolli, V.; Vaucheret, H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 2006, 25, 3347–3356. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Li, B.; Fan, Y.; Zhang, X.; Yu, Z.; Ryabov, E.; Zhao, M.; Wang, H.; Shi, N.; Zhang, P.; et al. Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. Plant Physiol. 2017, 174, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Deleris, A.; Gallego-Bartolome, J.; Bao, J.; Kasschau, K.D.; Carrington, J.C.; Voinnet, O. Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science 2006, 313, 68–71. [Google Scholar] [CrossRef]
- Fukudome, A.; Fukuhara, T. Plant dicer-like proteins: Double-stranded RNA-cleaving enzymes for small RNA biogenesis. J. Plant Res. 2017, 130, 33–44. [Google Scholar] [CrossRef]
- Wynant, N.; Santos, D.; Vanden Broeck, J. The evolution of animal Argonautes: Evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci. Rep. 2017, 7, 9230. [Google Scholar] [CrossRef] [Green Version]
- Hutvagner, G.; Simard, M.J. Argonaute proteins: Key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 2008, 9, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Meister, G. Argonaute proteins: Functional insights and emerging roles. Nat. Rev. Genet. 2013, 14, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Waldron, F.M.; Stone, G.N.; Obbard, D.J. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 2018, 14, e1007533. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, L.; Svingen, T.; Braasch, I.; Koopman, P.; Schartl, M.; Wilhelm, D. Expansion of the Ago gene family in the teleost clade. Dev. Genes Evol. 2011, 221, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bemis, W.E.; Findeis, E.K.; Grande, L. An overview of Acipenseriformes. In Sturgeon Biodiversity and Conservation; Birstein, V.J., Waldman, J.R., Bemis, W.E., Eds.; Developments in Environmental Biology of Fishes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume 17, pp. 25–71. ISBN 978-0-7923-4517-6. [Google Scholar]
- Luo, D.; Li, Y.; Zhao, Q.; Zhao, L.; Ludwig, A.; Peng, Z. Highly Resolved Phylogenetic Relationships within Order Acipenseriformes According to Novel Nuclear Markers. Genes 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.; Huang, Y.; Du, H.; Li, C.; Lv, Y.; Ruan, R.; Ye, H.; Bian, C.; You, X.; Xu, J.; et al. Draft Genome and Complete Hox-Cluster Characterization of the Sterlet (Acipenser ruthenus). Front. Genet. 2019, 10, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrbek, T.; Seckinger, J.; Meyer, A. A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Mol. Phylogenet. Evol. 2007, 43, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Sankoff, D.; Zheng, C.; Wang, B.; Abad Najar, C.F.B. Structural vs. functional mechanisms of duplicate gene loss following whole genome doubling. BMC Bioinf. 2015, 16, S9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Guo, H.; Chen, K.; Cheng, H.; Zhou, R. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Genetica 2010, 138, 805–812. [Google Scholar] [CrossRef]
- Höck, J.; Meister, G. The Argonaute protein family. Genome Biol. 2008, 9, 210. [Google Scholar] [CrossRef]
- Mendivil Ramos, O.; Ferrier, D.E.K. Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution. Int. J. Evol. Biol. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Woods, I.G.; Wilson, C.; Friedlander, B.; Chang, P.; Reyes, D.K.; Nix, R.; Kelly, P.D.; Chu, F.; Postlethwait, J.H.; Talbot, W.S. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res. 2005, 15, 1307–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.A.; Jo, M.H.; Choi, Y.-G.; Park, J.; Kwon, S.C.; Hohng, S.; Kim, V.N.; Woo, J.-S. Functional Anatomy of the Human Microprocessor. Cell 2015, 161, 1374–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.C.; Nguyen, T.A.; Choi, Y.-G.; Jo, M.H.; Hohng, S.; Kim, V.N.; Woo, J.-S. Structure of Human DROSHA. Cell 2016, 164, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Zhang, Y.; Tucker, L.; Ramratnam, B. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res. 2010, 38, 6610–6619. [Google Scholar] [CrossRef]
- Tang, X.; Li, M.; Tucker, L.; Ramratnam, B. Glycogen Synthase Kinase 3 Beta (GSK3β) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302. PLoS ONE 2011, 6, e20391. [Google Scholar] [CrossRef]
- Tang, X.; Wen, S.; Zheng, D.; Tucker, L.; Cao, L.; Pantazatos, D.; Moss, S.F.; Ramratnam, B. Acetylation of Drosha on the N-Terminus Inhibits Its Degradation by Ubiquitination. PLoS ONE 2013, 8, e72503. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Li, W.; She, H.; Dou, J.; Duong, D.M.; Du, Y.; Yang, S.-H.; Seyfried, N.T.; Fu, H.; Gao, G.; et al. Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival. Mol. Cell 2015, 57, 721–734. [Google Scholar] [CrossRef] [Green Version]
- Link, S.; Grund, S.E.; Diederichs, S. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Res. 2016, 44, 5330–5343. [Google Scholar] [CrossRef]
- Lee, D.; Shin, C. Emerging roles of DROSHA beyond primary microRNA processing. RNA Biol. 2018, 15, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.R.; Sive, H.; Bartel, D.P. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Mol. Cell 2017, 68, 1095–1107.e5. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, E.; Levanon, E.Y. Human housekeeping genes, revisited. Trends Genet. 2013, 29, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yue, H.; Ye, H.; Shan, X.; Xie, X.; Li, C.; Wei, Q. Identification and characterization of two piwi genes and their expression in response to E2 (17β-estradiol) in Dabry’s sturgeon Acipenser dabryanus. Fish Sci. 2020, 86, 307–317. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinf. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Durand, D.; Halldórsson, B.V.; Vernot, B. A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 2006, 13, 320–335. [Google Scholar] [CrossRef]
- Vernot, B.; Stolzer, M.; Goldman, A.; Durand, D. Reconciliation with non-binary species trees. J. Comput. Biol. 2008, 15, 981–1006. [Google Scholar] [CrossRef] [Green Version]
- Stolzer, M.; Lai, H.; Xu, M.; Sathaye, D.; Vernot, B.; Durand, D. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 2012, 28, i409–i415. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, L.; Roat Kultima, J.; Andersson, S.G.E. genoPlotR: Comparative gene and genome visualization in R. Bioinformatics 2010, 26, 2334–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Gene ID | Scaffold Number 1 | Number of Exons | Gene Length, bp | CDS Length, bp | Accession Number in the NCBI Protein Database | Protein Length, aa | Protein Coverage 2, % | Protein Identity, % |
---|---|---|---|---|---|---|---|---|---|
drosha1 | 117399785 | 3 | 32 | 50,094 | 3984 | XP_034771022.1 | 1327 | 100 | 96.88 |
drosha2 | 117435344 | 4 | 33 | 46,432 | 4035 | XP_034777036.1 | 1344 | ||
dgcr8_1 | 117426576 | 12 | 14 | 9918 | 2388 | XP_033900174.1 | 795 | 100 | 99.62 |
dgcr8_2 | 117427952 | 19 | 14 | 10,349 | 2388 | XP_033902252.2 | |||
dicerA_1 | 117422667 | 24 | 29 | 25,425 | 5685 | XP_033893800.2 | 1894 | 100 | 99.89 |
dicerA_2 | 117968189 | Unplaced scaffold | 29 | 25,366 | 5685 | XP_034771689.1 | |||
dicerB_1 | 117421295 | 24 | 28 | 26,733 | 5691 | XP_033891399.2 | 1896 | 100 | 99.79 |
dicerB_2 | 117973855 | 16 | 28 | 22,595 | 5691 | XP_034783126.1 | |||
exportin5_1, xpo5_1 | 117403025 | 5 | 32 | 25,720 | 3630 | XP_033860739.2 | 1209 | 100 | 92.40 |
exportin5_2, xpo5_2 | 117411517 | 6 | 35 | 30,397 | 3630 | XP_033875025.2 | |||
exportin1_1, xpo1_1 | 117402968 | 5 | 25 | 26,506 | 3216 | XP_033860602.1 | 1071 | 100 | 99.16 |
exportin1_2, xpo1_2 | 117410930 | 6 | 26 | 35,355 | 3216 | XP_033873783.1 | |||
argonaute1, ago1 | 117413876 | 59 | 9 | 5366 | 1347 | XP_034771551.1 | 448 | ||
argonaute2_1, ago2_1 | 117400353 | 3 | 23 | 48,512 | 2673 | XP_033856074.1 | 890 | 100 | 99.66 |
argonaute2_2, ago2_2 | 117435258 | Unplaced scaffold | 22 | 46,489 | 2673 | XP_033914178.1 | |||
argonaute3, ago3 | 117413875 | 59 | 19 | 16,232 | 2604 | XP_034771548.1 | 867 | ||
argonaute4_1, ago4_1 | 117971566 | Unplaced scaffold | 10 | 8446 | 1314 | XP_034775638.1 | 437 | 98 | 99.54 |
argonaute4_2, ago4_2 | 117413873 | Unplaced scaffold | 18 | 14,817 | 2625 | XP_034775645.1 | 874 | ||
piwi-like1_1 | 117426896 | 12 | 22 | 45,126 | 2583 | XP_034781427.1 | 860 | 100 | 99.19 |
piwi-like1_2 | 117428443 | 19 | 21 | 16,714 | 2583 | XP_034758183.1 | |||
piwi-like2_1 | 117397939 | 41 | 23 | 12,687 | 3201 | XP_034768456.1 | 1066 | 100 | 98.87 |
piwi-like2_2 | 117968944 | Unplaced scaffold | 23 | 12,655 | 3201 | XP_034772717.1 |
Species | Ploidy | Number of Gene Copies and the Type of Duplication Origin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
drosha | dgcr8 | dicer | xpo1 | xpo5 | ago1 | ago2 | ago3 | ago4 | piwil1 | piwil2 | ||
Acipenser ruthenus | 4n | 2 WGD | 2 WGD | 4 SD, WGD | 2 WGD | 2 WGD | 1 | 2 WGD | 1 | 2 WGD | 2 WGD | 2 WGD |
Anolis carolinensis | 2n | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
Carassius auratus | 4n | 2 WGD | 2 WGD | 2 WGD | 5 SD, WGD | 1 | 2 WGD | 2 WGD | 5 WGD, SD | 2 WGD | 2 WGD | 3 WGD |
Cyprinus carpio | 4n | 1 | 2 SD | 2 WGD | 3 SD, WGD | 1 | 4 SD, WGD | 1 | 3 SD, WGD | 4 WGD | 2 WGD | 1 |
Danio rerio | 2n | 1 | 1 | 1 | 2 WGD | 1 | 1 | 1 | 2 WGD | 1 | 1 | 1 |
Gallus gallus | 2n | 1 | - | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 |
Homo sapiens | 2n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Latimeria chalumnae | 2n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Lepisosteus oculatus | 2n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 |
Mus musculus | 2n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Oncorhynchus mykiss | 4n | 1 | 2 WGD | 2 WGD | 4 WGD | 2 WGD | 2 WGD | 2 WGD | 3 WGD | 2 WGD | 1 | 1 |
Oryzias latipes | 2n | 1 | - | 1 | 2 WGD | 1 | 1 | 1 | 2 WGD | 1 | 1 | 1 |
Salmo salar | 4n | 1 | 2 WGD | 2 WGD | 2 WGD | 2 WGD | 2 WGD | 1 | 3 WGD | 2 WGD | 1 | 1 |
Takifugu rubripes | 2n | 1 | 1 | 1 | 2 WGD | 1 | 1 | 1 | 2 WGD | 1 | 1 | 1 |
Xenopus laevis | 4n | 2 WGD | 2 SD | 2 WGD | 2 WGD | 3 SD | 2 WGD | 2 WGD | 2 WGD | 1 | 2 WGD | 1 |
Xenopus tropicalis | 2n | 1 | 1 | 1 | 1 | 3 SD | 1 | 1 | 1 | 1 | 1 | 1 |
Protein | Model | Protein | Model |
---|---|---|---|
Drosha | JTT +G + I + F | Ago2 | JTT + G + I |
Dgcr8 | JTT +G | Ago3 | JTT + G + I |
Dicer | JTT +G + I + F | Ago4 | JTT + G + I |
Xpo5 | JTT +G + F | Piwi-like1 | LG + G + I + F |
Xpo1 | JTT + G + I + F | Piwi-like2 | JTT + G + I + F |
Ago1 | JTT + G + I + F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fofanov, M.V.; Prokopov, D.Y.; Kuhl, H.; Schartl, M.; Trifonov, V.A. Evolution of MicroRNA Biogenesis Genes in the Sterlet (Acipenser ruthenus) and Other Polyploid Vertebrates. Int. J. Mol. Sci. 2020, 21, 9562. https://doi.org/10.3390/ijms21249562
Fofanov MV, Prokopov DY, Kuhl H, Schartl M, Trifonov VA. Evolution of MicroRNA Biogenesis Genes in the Sterlet (Acipenser ruthenus) and Other Polyploid Vertebrates. International Journal of Molecular Sciences. 2020; 21(24):9562. https://doi.org/10.3390/ijms21249562
Chicago/Turabian StyleFofanov, Mikhail V., Dmitry Yu. Prokopov, Heiner Kuhl, Manfred Schartl, and Vladimir A. Trifonov. 2020. "Evolution of MicroRNA Biogenesis Genes in the Sterlet (Acipenser ruthenus) and Other Polyploid Vertebrates" International Journal of Molecular Sciences 21, no. 24: 9562. https://doi.org/10.3390/ijms21249562
APA StyleFofanov, M. V., Prokopov, D. Y., Kuhl, H., Schartl, M., & Trifonov, V. A. (2020). Evolution of MicroRNA Biogenesis Genes in the Sterlet (Acipenser ruthenus) and Other Polyploid Vertebrates. International Journal of Molecular Sciences, 21(24), 9562. https://doi.org/10.3390/ijms21249562