Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function
Abstract
:1. Introduction
2. Results
2.1. Surface Morphology of Ti Microfiber Scaffold
2.2. Newly Created Hydrophilicity of Ti Microfiber Disks
2.3. Bone Marrow-Derived Osteoblast Attachment and Functional Activity
2.4. Mandibular Osteoblastic Function
2.5. Surface Chemistry of Ti Microfibers
3. Discussion
4. Materials and Methods
4.1. Titanium Microfiber Scaffold Characterization and UV-Photofunctionalization
4.2. Hydrophilicity of Ti Microfiber Scaffolds
4.3. Osteoblastic Cell Culture
4.4. Cell Attachment Assay and Osteoblast Behavior on Ti Microfiber
4.5. ALP Activity and Mineralization Assay
4.6. XPS Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | Alkaline phosphatase |
FTIR | Fourier-transform infrared spectroscopy |
HA | Hydroxyapatite |
SEM | Scanning electron microscopy |
Ti | Titanium |
UV | Ultraviolet |
WST | Water soluble tetrazolium salts |
XPS | X-ray photoelectron spectroscopy |
References
- Vehof, W.; Spauwen, P.H.; Jansen, J.A. Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials 2000, 21, 2003–2009. [Google Scholar] [CrossRef]
- Krose-Deutman, H.C.; Vehof, J.W.; Spauwen, P.H.; Stoelinga, P.J.; Jansen, J.A. Orthotopic bone formation in titanium fiber mesh loaded with platelet-rich plasma and placed in segmental defects. Int J. Oral Maxillofac. Surg. 2008, 37, 542–549. [Google Scholar] [CrossRef]
- Hirota, M.; Hayakawa, T.; Shima, T.; Ametani, A.; Tohnai, I. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 49, 623–631. [Google Scholar] [CrossRef]
- Hirota, M.; Shima, T.; Sato, I.; Ozawa, T.; Iwai, T.; Ametani, A.; Sato, M.; Noishiki, Y.; Ogawa, T.; Hayakawa, T.; et al. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials 2016, 75, 223–236. [Google Scholar] [CrossRef]
- Ogawa, T. Ultraviolet phofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implants 2014, 29, e95–e102. [Google Scholar] [CrossRef] [Green Version]
- Aita, T.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Att, W.; Takeuchi, M.; Suzuki, T.; Kubo, K.; Anpo, M.; Ogawa, T. The effect of UV-phofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys. Biomaterials 2009, 30, 4268–4276. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, F.; Hori, N.; Ueno, T.; Minamikawa, H.; Yamada, M.; Ogawa, T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials 2010, 31, 2717–2727. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Ozawa, S.; Shih, J.H.; Ryu, K.H.; Sukotjo, C.; Yang, J.M.; Nishimura, I. Biomechanical evaluation of osseous implants having different surface topographies in rats. J. Dent. Res. 2000, 11, 1857–1863. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sukotjo, C.; Nishimura, I. Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J. Prosthodont. 2002, 11, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Nishimura, I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int. J. Oral Maxillofac. Implants 2003, 18, 200–210. [Google Scholar] [PubMed]
- Hirota, M.; Ozawa, T.; Iwai, T.; Ogawa, T.; Tohnai, I. Effect of photofunctionalization on early implant failure. Int. J. Oral Maxillofac. Implants 2018, 33, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ozawa, T.; Iwai, T.; Ogawa, T.; Tohnai, I. Implant stability development of photofunctionalized implants placed in regular and complex cases: A case-control study. Int. J. Oral Maxillofac. Implants 2016, 31, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Att, W.; Hori, N.; Takeuchi, M.; Ouyang, J.; Yang, Y.; Anpo, M.; Ogawa, T. Time-dependent degradation of titanium osteoconductivity: An implication of biological aging of implant materials. Biomaterials 2009, 39, 5352–5363. [Google Scholar] [CrossRef]
- Att, W.; Ogawa, T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: A novel understanding of osseointegration. Int J. Oral Maxillofac Implants 2012, 27, 753–761. [Google Scholar] [PubMed]
- Park, W.; Ishijima, M.; Hirota, M.; Soltanzadeh, P.; Ogawa, T. Engineering bone-implant integration with photofunctionalized titanium microfibers. J. Biomater. Appl. 2016, 30, 1242–1250. [Google Scholar] [CrossRef]
- Hirota, M.; Tanaka, M.; Ishijima, M.; Iwasaki, C.; Park, W.; Ogawa, T. Effect of photofunctionalization on Ti6Al4V screw stability placed in segmental bone defect in rat femurs. J. Oral Maxillofac. Surg. 2016, 74, 861-e1. [Google Scholar] [CrossRef]
- Hirota, M.; Ikeda, T.; Sugita, M.; Ishijima, M.; Hirota, S.; Ogawa, T. Impaired osteoblastic behavior and function on saliva-contaminated titanium and its restoration by UV treatment. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 100, 165–177. [Google Scholar] [CrossRef]
- Ghassemi, A.; Ishijima, M.; Hasegawa, M.; Rezaei, N.M.; Nakhari, K.; Sekiya, T.; Torii, Y.; Hirota, M.; Park, W.; Miley, D.D.; et al. Biological and physicochemical characteristics of 2 different hydrophilic surfaces created by saline-storage and ultraviolet treatment. Implant. Dent. 2018, 27, 405–414. [Google Scholar] [CrossRef]
- Miyauchi, T.; Yamada, M.; Yamamoto, A.; Iwasa, F.; Suzawa, T.; Kamijo, R.; Baba, K.; Ogawa, T. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 2010, 31, 3827–3839. [Google Scholar] [CrossRef]
- Yamada, M.; Miyauchi, T.; Yamamoto, A.; Iwasa, F.; Takeuchi, M.; Anpo, M.; Sakurai, K.; Baba, K.; Ogawa, T. Enhancement of adhesion strength and cellular stiffness of osteoblasts on mirror-polished titanium surface by UV-photofunctionalization. Acta Biomater. 2010, 12, 4578–4588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mierke, C.T. The role of vinculin in the regulation of mechanical properties of cells. Cell Biochem. Biophys. 2009, 53, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Carisey, A.; Ballestrem, C. Vinculin, an adapter protein in control of cell adhering signaling. Eur. J. Cell Biol. 2011, 90, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Hayakawa, T.; Ametani, A.; Kuboki, Y.; Sato, I.; Tohnai, I. The effect of hydroxyapatite-coated titanium fiber web on human osteoblast functional activity. Int. J. Oral. Maxillofac. Implants 2011, 245–250. [Google Scholar]
- Aita, H.; Att, W.; Ueno, T.; Yamada, M.; Hori, N.; Iwasa, F.; Tsukimura, N.; Ogawa, T. Ultraviolet light-mediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomater. 2009, 8, 3247–3257. [Google Scholar] [CrossRef]
- Butz, F.; Aita, H.; Wang, C.J.; Ogawa, T. Harder and stiffer bone osseointegration to roughened titanium. J. Dent. Res. 2006, 85, 560–565. [Google Scholar] [CrossRef]
- Takeuchi, K.; Saruwatari, L.; Nakamura, H.K.; Yang, J.M.; Ogawa, T. Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J. Biomed. Mater. Res. Part. A 2005, 72A, 296–305. [Google Scholar] [CrossRef]
- Hirota, M.; Hayakawa, T.; Yoshinari, Y.; Ametani, A.; Shima, Y.; Monden, Y.; Ozawa, T.; Sato, M.; Koyama, C.; Tamai, N.; et al. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. Int. J. Oral Maxillofac. Surg. 2012, 41, 1304–1309. [Google Scholar] [CrossRef]
- Hirota, M.; Ametani, A.; Monden, Y.; Noishiki, Y.; Hayakawa, T.; Tohnai, I. Use of molecular precursor method to facilitates thin hydroxyapatite coating of titanium fiber web scaffold and enhance bone formation: An experimental study in rat cranial bone defects. Int. J. Oral Maxillofaci. Implants 2010, 25, 888–892. [Google Scholar]
- Leslie, L.; Marshall, L.J.; Devitt, A.; Hilton, A.; Tansley, G.D. Cell exclusion in couette flow visualization and mechanical forces. Artif. Organs 2013, 37, 267–275. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwasaki, C.; Hirota, M.; Tanaka, M.; Kitajima, H.; Tabuchi, M.; Ishijima, M.; Park, W.; Sugita, Y.; Miyazawa, K.; Goto, S.; et al. Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function. Int. J. Mol. Sci. 2020, 21, 738. https://doi.org/10.3390/ijms21030738
Iwasaki C, Hirota M, Tanaka M, Kitajima H, Tabuchi M, Ishijima M, Park W, Sugita Y, Miyazawa K, Goto S, et al. Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function. International Journal of Molecular Sciences. 2020; 21(3):738. https://doi.org/10.3390/ijms21030738
Chicago/Turabian StyleIwasaki, Chika, Makoto Hirota, Miyuki Tanaka, Hiroaki Kitajima, Masako Tabuchi, Manabu Ishijima, Wonhee Park, Yoshihiko Sugita, Ken Miyazawa, Shigemi Goto, and et al. 2020. "Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function" International Journal of Molecular Sciences 21, no. 3: 738. https://doi.org/10.3390/ijms21030738
APA StyleIwasaki, C., Hirota, M., Tanaka, M., Kitajima, H., Tabuchi, M., Ishijima, M., Park, W., Sugita, Y., Miyazawa, K., Goto, S., Ikeda, T., & Ogawa, T. (2020). Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function. International Journal of Molecular Sciences, 21(3), 738. https://doi.org/10.3390/ijms21030738