Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations
Abstract
:1. Introduction
2. Academic Genomics Education
2.1. High School Education
2.2. Undergraduate and Graduate Education
2.3. Medical School Education
2.4. Education for Genetic Counselor Students
3. Genomics Education for Clinical Professionals and the Public
3.1. Nurse Genomic Education
3.2. Genomic Education for Practicing Physicians
3.3. Public Education
4. Benefits, Challenges, and Potential Strategies of Genomic Education
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GINA | Genetic Information Nondiscrimination Act |
GWAS | Genome-wide association studies |
TtGG | Teaching the Genome Generation |
CUREs | Course-based undergraduate research experiences |
GEP | Genomics Education Partnership |
SEA-PHAGES | Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science |
ATG | Anatomy to Genomics |
SNPs | single nucleotide polymorphisms |
G2NA | Global Genomics Nursing Alliance |
ISCC-PEG | Inter-Society Coordinating Committee for Practitioner Education in Genomics |
GPCI | Genetics in Primary Care Institute |
References
- Levy, S.E.; Myers, R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.; Linossi, C.; Esteban, I.; Gadea, N.; Carrasco, E.; Bonache, S.; Gutierrez-Enriquez, S.; Cruz, C.; Diez, O.; Balmana, J. Germline BRCA testing is moving from cancer risk assessment to a predictive biomarker for targeting cancer therapeutics. Clin. Transl. Oncol. 2016, 18, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Bloss, C.S.; Jeste, D.V.; Schork, N.J. Genomics for disease treatment and prevention. Psychiatr. Clin. North. Am. 2011, 34, 147–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starling, R.C.; Pham, M.; Valantine, H.; Miller, L.; Eisen, H.; Rodriguez, E.R.; Taylor, D.O.; Yamani, M.H.; Kobashigawa, J.; McCurry, K.; et al. Molecular testing in the management of cardiac transplant recipients: Initial clinical experience. J. Heart Lung Transpl. 2006, 25, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Pielstick, B.A.; Bell, K.A.; Nieman, T.B.; Stubbs, O.A.; Yeates, E.L.; Baltrus, D.A.; Grose, J.H. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front. Microbiol. 2019, 10, 1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arens, D.K.; Brady, T.S.; Carter, J.L.; Pape, J.A.; Robinson, D.M.; Russell, K.A.; Staley, L.A.; Stettler, J.M.; Tateoka, O.B.; Townsend, M.H.; et al. Characterization of two related Erwinia myoviruses that are distant relatives of the PhiKZ-like Jumbo phages. PLoS ONE 2018, 13, e0200202. [Google Scholar] [CrossRef]
- Shaikh, F.Y.; Gills, J.J.; Sears, C.L. Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine 2019, 48, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Sipe, B.; Cheng, Y.W.; Phelps, E.; Rogers, N.; Sagi, S.; Bohm, M.; Xu, H.; Kassam, Z. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: A promising treatment approach. Gut Microbes 2017, 8, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Barathikannan, K.; Chelliah, R.; Rubab, M.; Daliri, E.B.; Elahi, F.; Kim, D.H.; Agastian, P.; Oh, S.Y.; Oh, D.H. Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019, 7, 456. [Google Scholar] [CrossRef] [Green Version]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: www.genome.gov/sequencingcostsdata (accessed on 18 December 2019).
- Roberts, J.S.; Ostergren, J. Direct-to-Consumer Genetic Testing and Personal Genomics Services: A Review of Recent Empirical Studies. Curr. Genet. Med. Rep. 2013, 1, 182–200. [Google Scholar] [CrossRef] [Green Version]
- Francke, U.; Dijamco, C.; Kiefer, A.K.; Eriksson, N.; Moiseff, B.; Tung, J.Y.; Mountain, J.L. Dealing with the unexpected: Consumer responses to direct-access BRCA mutation testing. Peer J. 2013, 1, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, C.H. What Is the Psychosocial Impact of Providing Genetic and Genomic Health Information to Individuals? An Overview of Systematic Reviews. Hastings Cent. Rep. 2019, 49 (Suppl. 1), S88–S96. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.J. HIPAA’s Individual Right of Access to Genomic Data: Reconciling Safety and Civil Rights. Am. J. Hum. Genet. 2018, 102, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markens, S. ‘I’m not sure if they speak to everyone about this option’: Analyzing disparate access to and use of genetic health services in the US from the perspective of genetic counselors. Crit. Public Health 2017, 27, 111–124. [Google Scholar] [CrossRef]
- Desmond, A.; Kurian, A.W.; Gabree, M.; Mills, M.A.; Anderson, M.J.; Kobayashi, Y.; Horick, N.; Yang, S.; Shannon, K.M.; Tung, N.; et al. Clinical Actionability of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Risk Assessment. JAMA Oncol. 2015, 1, 943–951. [Google Scholar] [CrossRef]
- Tuttle, T.M.; Jarosek, S.; Habermann, E.B.; Arrington, A.; Abraham, A.; Morris, T.J.; Virnig, B.A. Increasing rates of contralateral prophylactic mastectomy among patients with ductal carcinoma in situ. J. Clin. Oncol. 2009, 27, 1362–1367. [Google Scholar] [CrossRef]
- Antoniou, A.; Pharoah, P.D.; Narod, S.; Risch, H.A.; Eyfjord, J.E.; Hopper, J.L.; Loman, N.; Olsson, H.; Johannsson, O.; Borg, A.; et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: A combined analysis of 22 studies. Am. J. Hum. Genet. 2003, 72, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Finney Rutten, L.J.; Gollust, S.E.; Naveed, S.; Moser, R.P. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates. J. Cancer Epidemiol. 2012, 2012, 309109. [Google Scholar] [CrossRef]
- Kennett, D. Using genetic genealogy databases in missing persons cases and to develop suspect leads in violent crimes. Forensic. Sci. Int. 2019, 301, 107–117. [Google Scholar] [CrossRef]
- Guerrini, C.J.; Robinson, J.O.; Petersen, D.; McGuire, A.L. Should police have access to genetic genealogy databases? Capturing the Golden State Killer and other criminals using a controversial new forensic technique. PLoS. Biol. 2018, 16, e2006906. [Google Scholar] [CrossRef]
- Callaghan, T.F. Responsible genetic genealogy. Science 2019, 366, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentagon warns military not to use consumer DNA test kits. Available online: https://abcnews.go.com/Politics/pentagon-warns-military-consumer-dna-test-kits/story?id=67904544 (accessed on 30 December 2019).
- Pentagon Warns Military Personnel Against At-Home DNA Tests. Available online: https://www.nytimes.com/2019/12/24/us/military-dna-tests.html (accessed on 30 December 2019).
- Phillips, C. The Golden State Killer investigation and the nascent field of forensic genealogy. Forensic. Sci. Int. Genet. 2018, 36, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Butrick, M.N.; Vanhusen, L.; Leventhal, K.G.; Hooker, G.W.; Nusbaum, R.; Peshkin, B.N.; Salehizadeh, Y.; Pavlick, J.; Schwartz, M.D.; Graves, K.D. Discussing race-related limitations of genomic testing for colon cancer risk: Implications for education and counseling. Soc. Sci. Med. 2014, 114, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, K.N.; Wubbenhorst, B.; D’Andrea, K.; Garman, B.; Long, J.M.; Powers, J.; Rathbun, K.; Stopfer, J.E.; Zhu, J.; Bradbury, A.R.; et al. Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genet. Med. 2015, 17, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Kurian, A.W.; Li, Y.; Hamilton, A.S.; Ward, K.C.; Hawley, S.T.; Morrow, M.; McLeod, M.C.; Jagsi, R.; Katz, S.J. Gaps in Incorporating Germline Genetic Testing Into Treatment Decision-Making for Early-Stage Breast Cancer. J. Clin. Oncol. 2017, 35, 2232–2239. [Google Scholar] [CrossRef]
- Verhoeff, R.; Boerwinkel, D.J.; Waarlo, A.J. Genomics in school Science & Society Series on Convergence Research. EMBO Rep. 2009, 10, 120–124. [Google Scholar]
- Langenberg, C.; Lotta, L.A. Genomic insights into the causes of type 2 diabetes. Lancet 2018, 391, 2463–2474. [Google Scholar] [CrossRef]
- Talwar, D.; Tseng, T.S.; Foster, M.; Xu, L.; Chen, L.S. Genetics/genomics education for nongenetic health professionals: A systematic literature review. Genet. Med. 2017, 19, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Zusevics, K.L.; Strong, K.A.; Farrell, M.H.; Shimoyama, M.E. Matching the pace of genomic advances through the integration of genomic education into high school health education. J. Sch. Health 2014, 84, 351–354. [Google Scholar] [CrossRef]
- Hicks, M.A.; Cline, R.J.; Trepanier, A.M. Reaching Future Scientists, Consumers, & Citizens: What Do Secondary School Textbooks Say about Genomics & Its Impact on Health? Am. Biol Teach. 2014, 76, 379–383. [Google Scholar]
- Nature. Science in schools. Nature 2013, 497, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, M.; Skinner, P.O.; Conn, L.; Horsma, H.G.; Gregory, P. The involvement of genome researchers in high school science education. Genome Res. 1999, 9, 597–607. [Google Scholar] [PubMed]
- Martins, A.; Fonseca, M.J.; Tavares, F. Mining the Genome: Using Bioinformatics Tools in the Classroom to Support Student Discovery of Genes. Am. Biol. Teach. 2018, 80, 619–624. [Google Scholar] [CrossRef]
- Dedhia, M.; Kohetuk, K.; Crusio, W.E.; Delprato, A. Introducing high school students to the Gene Ontology classification system. F1000Res 2019, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, G.; Jorgensen, F.G.; Cheng, J.Y.; Kjaergaard, P.C.; Schierup, M.H.; Mailund, T. Spitting for Science: Danish High School Students Commit to a Large-Scale Self-Reported Genetic Study. PLoS ONE 2016, 11, e0161822. [Google Scholar] [CrossRef]
- Yang, X.; Hartman, M.R.; Harrington, K.T.; Etson, C.M.; Fierman, M.B.; Slonim, D.K.; Walt, D.R. Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom. CBE Life Sci. Educ. 2017, 16. [Google Scholar] [CrossRef]
- Mueller, A.L.; Knobloch, N.A.; Orvis, K.S. Exploring the Effects of Active Learning on High School Students’ Outcomes and Teachers’ Perceptions of Biotechnology and Genetics Instruction. J. Agric. Educ. 2015, 56, 138–152. [Google Scholar] [CrossRef]
- LaRue, K.M.; McKernan, M.P.; Bass, K.M.; Wray, C.G. Teaching the Genome Generation: Bringing Modern Human Genetics into the Classroom Through Teacher Professional Development. J. STEM Outreach 2008, 1, 48–60. [Google Scholar] [CrossRef]
- Cooper, R.A. Teaching the Big Ideas of Biology with Operon Models. Am. Biol. Teach. 2015, 77, 30–39. [Google Scholar]
- Carver, R.B.; Wiese, E.F.; Breivik, J. Frame Analysis in Science Education: A Classroom Activity for Promoting Media Literacy and Learning about Genetic Causation. Int. J. Sci. Educ. Part. B 2014, 4, 211–239. [Google Scholar] [CrossRef]
- Van Lieshout, E.; Dawson, V. Knowledge of, and Attitudes Towards Health-related Biotechnology Applications Amongst Australian Year 10 High School Students. J. Biol. Educ. 2016, 50, 329–344. [Google Scholar] [CrossRef]
- Carver, R.B.; Rødland, E.A.; Breivik, J. Quantitative Frame Analysis of How the Gene Concept Is Presented in Tabloid and Elite Newspapers. Sci. Commun. 2012, 35, 449–475. [Google Scholar] [CrossRef]
- Weber, K.S.; Jensen, J.L.; Johnson, S.M. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses. PLoS ONE 2015, 10, e0133486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, K.S.; Bridgewater, L.C.; Jensen, J.L.; Breakwell, D.P.; Nielsen, B.L.; Johnson, S.M. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses. PLoS ONE 2018, 13, e0193696. [Google Scholar] [CrossRef] [Green Version]
- Rodenbusch, S.E.; Hernandez, P.R.; Simmons, S.L.; Dolan, E.L. Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees. CBE Life Sci. Educ. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Staub, N.L.; Poxleitner, M.; Braley, A.; Smith-Flores, H.; Pribbenow, C.M.; Jaworski, L.; Lopatto, D.; Anders, K.R. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research. CBE Life Sci. Educ. 2016, 15. [Google Scholar] [CrossRef]
- Dressler, L.G.; Jones, S.S.; Markey, J.M.; Byerly, K.W.; Roberts, M.C. Genomics education for the public: Perspectives of genomic researchers and ELSI advisors. Genet. Test. Mol. Biomark. 2014, 18, 131–140. [Google Scholar] [CrossRef]
- Reeves, T.D.; Warner, D.M.; Ludlow, L.H.; O’Connor, C.M. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course. CBE Life Sci. Educ. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.; Price, C.W.; Lee, C.T.; Dewald, A.H.; Cline, M.A.; McAnany, C.E.; Columbus, L.; Mura, C. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course. Biochem. Mol. Biol. Educ. 2015, 43, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Garber, K.B.; Hyland, K.M.; Dasgupta, S. Participatory Genomic Testing as an Educational Experience. Trends Genet. 2016, 32, 317–320. [Google Scholar] [CrossRef]
- Sadler, T.D.; Fowler, S.R. A threshold model of content knowledge transfer for socioscientific argumentation. Sci. Educ. 2006, 90, 986–1004. [Google Scholar] [CrossRef]
- Read, C.Y.; Ward, L.D. Misconceptions About Genomics Among Nursing Faculty and Students. Nurs. Educ. 2018, 43, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Munroe, T.; Loerzel, V. Assessing Nursing Students’ Knowledge of Genomic Concepts and Readiness for Use in Practice. Nurs. Educ. 2016, 41, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Chair, S.Y.; Waye, M.M.Y.; Calzone, K.; Chan, C.W.H. Genomics education in nursing in Hong Kong, Taiwan and Mainland China. Int Nurs. Rev. 2019, 66, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Calzone, K.A.; Kirk, M.; Tonkin, E.; Badzek, L.; Benjamin, C.; Middleton, A. The Global Landscape of Nursing and Genomics. J. Nurs. Scholarsh. 2018, 50, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kronk, R.; Colbert, A.; Lengetti, E. Assessment of a Competency-Based Undergraduate Course on Genetics and Genomics. Nurs. Educ. 2018, 43, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Dale, R. A Partnership Approach to Genetic and Genomic Graduate Nursing Curriculum: Report of a New Course’s Impact on Student Confidence. J. Nurs. Educ. 2016, 55, 574–578. [Google Scholar] [CrossRef]
- Lopatto, D.; Hauser, C.; Jones, C.J.; Paetkau, D.; Chandrasekaran, V.; Dunbar, D.; MacKinnon, C.; Stamm, J.; Alvarez, C.; Barnard, D.; et al. A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics. CBE Life Sci. Educ. 2014, 13, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.; Dunbar, D.; Ratmansky, L.; Boyd, K.; Lopatto, D. Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude. CBE Life Sci. Educ. 2011, 10, 279–286. [Google Scholar] [CrossRef]
- Olson, J.M.; Evans, C.J.; Ngo, K.T.; Kim, H.J.; Nguyen, J.D.; Gurley, K.G.H.; Ta, T.; Patel, V.; Han, L.; Truong, K.T.-N.; et al. Expression-Based Cell Lineage Analysis in Drosophila Through a Course-Based Research Experience for Early Undergraduates. G3-Genes Genom Genet. 2019, 9, 3791–3800. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.T.; Barlow, A.E.L.; Villarejo, M. Importance of Undergraduate Research for Minority Persistence and Achievement in Biology. J. High. Educ. 2010, 81, 82–115. [Google Scholar] [CrossRef]
- Bhatt, J.M.; Challa, A.K. First Year Course-Based Undergraduate Research Experience (CURE) Using the CRISPR/Cas9 Genome Engineering Technology in Zebrafish. J. Microbiol. Biol. Educ. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, C.D.; Alvarez, C.; Bailey, C.; Barnard, D.; Bhalla, S.; Chandrasekaran, C.; Chandrasekaran, V.; Chung, H.M.; Dorer, D.R.; Du, C.G.; et al. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions. CBE Life Sci. Educ. 2010, 9, 55–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopatto, D.; Alvarez, C.; Barnard, D.; Chandrasekaran, C.; Chung, H.M.; Du, C.; Eckdahl, T.; Goodman, A.L.; Hauser, C.; Jones, C.J.; et al. UNDERGRADUATE RESEARCH Genomics Education Partnership. Science 2008, 322, 684–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatfull, G. Bacteriophage Research: Gateway to Learning Science. Microbe Magazine 2010, 5, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.C.; Burnett, S.H.; Carson, S.; Caruso, S.M.; Clase, K.; DeJong, R.J.; Dennehy, J.J.; Denver, D.R.; Dunbar, D.; Elgin, S.C.; et al. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 2014, 5, e01051-01013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanauer, D.I.; Graham, M.J.; Sea, P.; Betancur, L.; Bobrownicki, A.; Cresawn, S.G.; Garlena, R.A.; Jacobs-Sera, D.; Kaufmann, N.; Pope, W.H.; et al. An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning. Proc. Natl. Acad. Sci. USA 2017, 114, 13531–13536. [Google Scholar] [CrossRef] [Green Version]
- Walt, D.R.; Kuhlik, A.; Epstein, S.K.; Demmer, L.A.; Knight, M.; Chelmow, D.; Rosenblatt, M.; Bianchi, D.W. Lessons learned from the introduction of personalized genotyping into a medical school curriculum. Genet. Med. 2011, 13, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Demmer, L.A.; Waggoner, D.J. Professional Medical Education and Genomics. Annu Rev. Genom Hum. G 2014, 15, 507–516. [Google Scholar] [CrossRef]
- Salari, K.; Pizzo, P.A.; Prober, C.G. Commentary: To Genotype or Not to Genotype? Addressing the Debate Through the Development of a Genomics and Personalized Medicine Curriculum. Acad. Med. 2011, 86, 925–927. [Google Scholar] [CrossRef] [Green Version]
- Ormond, K.E.; Hudgins, L.; Ladd, J.M.; Magnus, D.M.; Greely, H.T.; Cho, M.K. Medical and graduate students’ attitudes toward personal genomics. Genet. Med. 2011, 13, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salari, K.; Karczewski, K.J.; Hudgins, L.; Ormond, K.E. Evidence That Personal Genome Testing Enhances Student Learning in a Course on Genomics and Personalized Medicine. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, G.S.; Jin, Q.Y.; Paynton, B.V.; Popoff, S.N. The Anatomy to Genomics (ATG) Start Genetics medical school initiative: Incorporating exome sequencing data from cadavers used for Anatomy instruction into the first year curriculum. BMC Med. Genom. 2016, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Dougherty, M.; Findlay, G.M.; Geisheker, M.; Klein, J.; Lazar, J.; Machkovech, H.; Resnick, J.; Resnick, R.; Salter, A.I.; et al. Genome Sequencing of Idiopathic Pulmonary Fibrosis in Conjunction with a Medical School Human Anatomy Course. PLoS ONE 2014, 9, e106744. [Google Scholar] [CrossRef] [Green Version]
- Hooker, G.W.; Ormond, K.E.; Sweet, K.; Biesecker, B.B. Teaching Genomic Counseling: Preparing the Genetic Counseling Workforce for the Genomic Era. J. Genet. Couns. 2014, 23, 445–451. [Google Scholar] [CrossRef]
- Berg, J.; Hoskovec, J.; Hashmi, S.S.; Veach, P.M.; Ownby, A.; Singletary, C.N. Relieving the Bottleneck: An Investigation of Barriers to Expansion of Supervision Networks at Genetic Counseling Training Programs. J. Genet. Couns 2018, 27, 241–251. [Google Scholar] [CrossRef]
- Metcalfe, S.A. Genetic counselling, patient education, and informed decision-making in the genomic era. Semin Fetal Neonat M 2018, 23, 142–149. [Google Scholar] [CrossRef]
- Noss, R.; Mills, R.; Callanan, N. The Incorporation of Predictive Genomic Testing into Genetic Counseling Programs. J. Genet. Couns. 2014, 23, 671–678. [Google Scholar] [CrossRef]
- Profato, J.; Gordon, E.S.; Dixon, S.; Kwan, A. Assessing the Integration of Genomic Medicine in Genetic Counseling Training Programs. J. Genet. Couns. 2014, 23, 679–688. [Google Scholar] [CrossRef]
- Grove, M.E.; White, S.; Fisk, D.G.; Rego, S.; Dagan-Rosenfeld, O.; Kohler, J.N.; Reuter, C.M.; Bonner, D.; Wheeler, M.T.; Bernstein, J.A.; et al. Developing a genomics rotation: Practical training around variant interpretation for genetic counseling students. J. Genet. Couns. 2019, 28, 466–476. [Google Scholar] [CrossRef]
- Collins, F.S. Preparing health professionals for the genetic revolution. JAMA J. Am. Med. Assoc. 1997, 278, 1285–1286. [Google Scholar] [CrossRef]
- Feero, W.G.; Green, E.D. Genomics Education for Health Care Professionals in the 21st Century. JAMA J. Am. Med. Assoc. 2011, 306, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Salmon, M.E.; Maeda, A. Investing in nursing and midwifery enterprise to empower women and strengthen health services and systems: An emerging global body of work. Nurs. Outlook 2016, 64, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Calzone, K.A.; Kirk, M.; Tonkin, E.; Badzek, L.; Benjamin, C.; Middleton, A. Increasing nursing capacity in genomics: Overview of existing global genomics resources. Nurs. Educ. Today 2018, 69, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.B. Genomics Education Knowledge of nurses across the profession and integration into practice. Clin J. Oncol. Nurs. 2017, 21, 747–753. [Google Scholar] [CrossRef]
- Calzone, K.A.; Jenkins, J.; Bakos, A.D.; Cashion, A.K.; Donaldson, N.; Feero, W.G.; Feetham, S.; Grady, P.A.; Hinshaw, A.S.; Knebel, A.R.; et al. A Blueprint for Genomic Nursing Science. J. Nurs. Scholarsh. 2013, 45, 96–104. [Google Scholar]
- Van der Wouden, C.H.; Carere, D.A.; van der Zee, A.H.M.; Ruffin, M.T.; Roberts, J.S.; Green, R.C.; Grp, I.P.G.S. Consumer Perceptions of Interactions With Primary Care Providers After Direct-to-Consumer Personal Genomic Testing. Ann. Intern. Med. 2016, 164, 513. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.C.; Makuwaza, T.; Manca, D.P.; Sopcak, N.; Permaul, J.A.; O’Brien, M.A.; Heisey, R.; Eisenhauer, E.A.; Easley, J.; Krzyzanowska, M.K.; et al. Primary care providers’ experiences with and perceptions of personalized genomic medicine. Can. Fam. Physician 2016, 62, E626–E635. [Google Scholar]
- Ha, V.T.D.; Frizzo-Barker, J.; Chow-White, P. Adopting clinical genomics: A systematic review of genomic literacy among physicians in cancer care. BMC Med. Genom. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Korf, B.R.; Berry, A.B.; Limson, M.; Marian, A.J.; Murray, M.F.; O’Rourke, P.P.; Passamani, E.R.; Relling, M.V.; Tooker, J.; Tsongalis, G.J.; et al. Framework for development of physician competencies in genomic medicine: Report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genet. Med. 2014, 16, 804–809. [Google Scholar] [CrossRef]
- Englander, R.; Cameron, T.; Ballard, A.J.; Dodge, J.; Bull, J.; Aschenbrener, C.A. Toward a Common Taxonomy of Competency Domains for the Health Professions and Competencies for Physicians. Acad Med. 2013, 88, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Reed, E.K.; Taber, K.A.J.; Nissen, T.I.; Schott, S.; Dowling, L.O.; O’Leary, J.C.; Scott, J.A. What works in genomics education: Outcomes of an evidenced-based instructional model for community-based physicians. Genet. Med. 2016, 18, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougherty, M.J.; Wicklund, C.; Taber, K.A.J. Challenges and Opportunities for Genomics Education: Insights from an Institute of Medicine Roundtable Activity. J. Contin. Educ. Health 2016, 36, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Rubanovich, C.K.; Cheung, C.; Mandel, J.; Bloss, C.S. Physician preparedness for big genomic data: A review of genomic medicine education initiatives in the United States. Hum. Mol. Genet. 2018, 27, R250–R258. [Google Scholar] [CrossRef] [PubMed]
- Aronson, S.J.; Rehm, H.L. Building the foundation for genomics in precision medicine. Nature 2015, 526, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Stern, F.; Kampourakis, K. Teaching for genetics literacy in the post-genomic era. Stud. Sci. Educ. 2017, 53, 193–225. [Google Scholar] [CrossRef]
- Lamb, N.E.; Myers, R.M.; Gunter, C. Education and personalized genomics: Deciphering the public’s genetic health report. Pers. Med. 2009, 6, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Borzekowski, D.L.G.; Guan, Y.; Smith, K.C.; Erby, L.H.; Roter, D.L. The Angelina effect: Immediate reach, grasp, and impact of going public. Genet. Med. 2014, 16, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Bubela, T.; Nisbet, M.C.; Borchelt, R.; Brunger, F.; Critchley, C.; Einsiedel, E.; Geller, G.; Gupta, A.; Hampel, J.; Hyde-Lay, R.; et al. Science communication reconsidered. Nat. Biotechnol. 2009, 27, 514–518. [Google Scholar] [CrossRef]
- Ouyang, L.M.; Zhang, H.Z.; Zhang, X.X.; Wu, H.Z. Genomics Course Design and Combined Teaching Strategy to Enhance Learning Initiatives in Classroom. Biochem. Mol. Biol. Edu. 2019, 47, 632–637. [Google Scholar] [CrossRef]
Paper Title | Year | Learning Model | Key Finding (s) |
---|---|---|---|
Mining the Genome: Using Bioinformatics Tools in the Classroom to Support Student Discovery of Genes [36] | 2018 |
|
|
* Introducing High School Students to the Gene Ontology Classification System [37] | 2018 |
|
|
* Spitting for Science: Danish High School Students Commit to a Large-Scale Self-Reported Genetic Study [38] | 2016 |
|
|
* Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom [39] | 2017 |
|
|
* Exploring the Effects of Active Learning on High School Students’ Outcomes and Teachers’ Perceptions of Biotechnology and Genetics Instruction [40] | 2015 |
|
|
* Teaching the Genome Generation: Bringing Modern Human Genetics into the Classroom Through Teacher Professional Development [41] | 2018 |
|
|
Teaching the Big Ideas of Biology with Operon Models [42] | 2015 |
|
|
* Frame Analysis in Science Education: A Classroom Activity for Promoting Media Literacy and Learning about Genetic Causation [43] | 2014 |
|
|
* Knowledge of, and Attitudes towards Health-Related Biotechnology Applications amongst Australian Year 10 High School Students [44] | 2016 |
|
|
Benefits of Genomic Education | Challenges of Genomic Education |
---|---|
Improves knowledge, interest, and engagement | Gap in knowledge among healthcare professionals |
Creates positive learning that can be scaled to many | Cost, time commitment, competing priorities |
Drives and strengthens genomic research | Complexity of subject material |
Allows personal investment to drive learning | Misconceptions from media |
Increases retainment of STEM college majors and enhances career skills and capabilities | Genomic science still developing, making implementation challenging |
Develops confidence in knowledge of and communication skills about genomics | Lack of infrastructure or resources for professional development |
Educational Platform | Strategies and Suggestions |
---|---|
High school |
|
Undergraduate and graduate school | |
Medical school |
|
Genetic counseling program |
|
Professional development |
|
Public education |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitley, K.V.; Tueller, J.A.; Weber, K.S. Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations. Int. J. Mol. Sci. 2020, 21, 768. https://doi.org/10.3390/ijms21030768
Whitley KV, Tueller JA, Weber KS. Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations. International Journal of Molecular Sciences. 2020; 21(3):768. https://doi.org/10.3390/ijms21030768
Chicago/Turabian StyleWhitley, Kiara V., Josie A. Tueller, and K. Scott Weber. 2020. "Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations" International Journal of Molecular Sciences 21, no. 3: 768. https://doi.org/10.3390/ijms21030768
APA StyleWhitley, K. V., Tueller, J. A., & Weber, K. S. (2020). Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations. International Journal of Molecular Sciences, 21(3), 768. https://doi.org/10.3390/ijms21030768