Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model
Abstract
:1. Introduction
2. Results
2.1. Expression of Three Germ Layer Genes on Undifferentiated hESCs and Differentiated hEBs on Day 5 and Day 9
2.2. Expression of Progesterone Receptors (PRs) on Day 9 hEBs and mBLs
2.3. Effects of P4 and MPA Concentrations on the AFP Gene Expression of hEBs
2.4. Expression of Three Germ Layer Genes on hEBs After P4 and MPA Treatment at 10−7 M
2.5. Expression of Three Germ Layer Genes in mBLs after P4 and MPA Treatment
2.6. CG Expression of Embryos Transferred onto Endometrial Cells
3. Discussion
3.1. Main Findings
3.2. Strengths and Limitations
3.3. Interpretation
4. Methods
4.1. Ethics
4.2. Human Embryonic Stem Cells (hESCs) Culture
4.3. Human Embryoid Body (hEB) Formation and Culture
4.4. P4 or MPA Treatment
4.5. Preparation of Mouse Embryos
4.6. Isolation and Culture of Mouse Embryo
4.7. Transfer of Mouse Embryos onto in Vitro Cultured Endometrial Cells
4.8. Morphological Evaluation and Preparation of Paraffin Section for Human Embryoid Body
4.9. Immunostaining of hEBs and Mouse Embryos
4.10. RNA Isolation and Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) of hESCs, hEBs and mBLs
4.11. Statistical Analysis
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AFP | α-fetoprotein |
bFGF | basic fibroblast growth factor |
BSA | bovine serum albumin |
cACT | cardiac actin |
GATA4 | GATA-binding factor 4 |
GnRH | gonadotropin-releasing hormone |
hCG | human chorionic gonadotropin |
hEB | human embryoid body |
hESC | human embryonic stem cell |
HNF-3β | hepatocyte nuclear factor-3β |
HNF-4α | hepatocyte nuclear factor-4α |
IVF | in vitro fertilization |
MPA | Medroxyprogesterone acetate |
PR | progesterone receptor |
qRT-PCR | quantitative reverse transcription PCR |
References
- Van der Linden, M.; Buckingham, K.; Farquhar, C.; Kremer, J.A.; Metwally, M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef] [Green Version]
- Daya, S. Luteal support: Progestogens for pregnancy protection. Maturitas 2009. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, J.H.; Hur, J.Y.; Kim, H.; Ku, S.Y.; Suh, C.S. Predictive value of serum progesterone level on beta-hCG check day in women with previous repeated miscarriages after in vitro fertilization. PLoS ONE 2017. [Google Scholar] [CrossRef] [Green Version]
- Pabuccu, R.; Akar, M.E. Luteal phase support in assisted reproductive technology. Curr. Opin. Obstet. Gynecol. 2005, 17, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.S.C.; Strauss, J.F.; Barbieri, R.L. Yen & Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management, 7th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2014. [Google Scholar]
- Ochsenkuhn, R.; Arzberger, A.; von Schonfeldt, V.; Gallwas, J.; Rogenhofer, N.; Crispin, A.; Thaler, C.J.; Noss, U. Subtle progesterone rise on the day of human chorionic gonadotropin administration is associated with lower live birth rates in women undergoing assisted reproductive technology: A retrospective study with 2555 fresh embryo transfers. Fertil. Steril. 2012, 98, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.Y.; Ying, Y.; Mayer, J.; Imudia, A.N.; Plosker, S.M. Embryo transfer catheter contamination with intravaginal progesterone preparations in a simulated embryo transfer model impairs mouse embryo development: Are there implications for human embryo transfer technique? Reprod. Sci. 2014, 21, 1000–1005. [Google Scholar] [CrossRef]
- Borgatta, L.; Murthy, A.; Chuang, C.; Beardsley, L.; Burnhill, M.S. Pregnancies diagnosed during Depo-Provera use. Contraception 2002, 66, 169–172. [Google Scholar] [CrossRef]
- Pardthaisong, T.; Yenchit, C.; Gray, R. The long-term growth and development of children exposed to Depo-Provera during pregnancy or lactation. Contraception 1992, 45, 313–324. [Google Scholar] [CrossRef]
- Desbaillets, I.; Ziegler, U.; Groscurth, P.; Gassmann, M. Embryoid bodies: An in vitro model of mouse embryogenesis. Exp. Physiol. 2000, 85, 645–651. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [Green Version]
- Aaby, P.; Jensen, H.; Simondon, F.; Whittle, H. High-titer measles vaccination before 9 months of age and increased female mortality: Do we have an explanation? Semin. Pediatric Infect. Dis. 2003, 14, 220–232. [Google Scholar] [CrossRef]
- Oh, S.K.; Kim, H.S.; Ahn, H.J.; Seol, H.W.; Kim, Y.Y.; Park, Y.B.; Yoon, C.J.; Kim, D.W.; Kim, S.H.; Moon, S.Y. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 2005, 23, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.Y.; Ku, S.Y.; Jang, J.; Oh, S.K.; Kim, H.S.; Kim, S.H.; Choi, Y.M.; Moon, S.Y. Use of long-term cultured embryoid bodies may enhance cardiomyocyte differentiation by BMP2. Yonsei Med. J. 2008, 49, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Pekkanen-Mattila, M.; Pelto-Huikko, M.; Kujala, V.; Suuronen, R.; Skottman, H.; Aalto-Setala, K.; Kerkela, E. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem. Cell Biol. 2010, 133, 595–606. [Google Scholar] [CrossRef]
- Pettinato, G.; Wen, X.; Zhang, N. Formation of well-defined embryoid bodies from dissociated human induced pluripotent stem cells using microfabricated cell-repellent microwell arrays. Sci. Rep. 2014. [Google Scholar] [CrossRef] [Green Version]
- Meshorer, E.; Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol. 2006, 7, 540–546. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Ku, S.Y.; Huh, Y.; Liu, H.C.; Kim, S.H.; Choi, Y.M.; Moon, S.Y. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes. Age 2013, 35, 1545–1557. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Y.; Ku, S.Y.; Liu, H.C.; Cho, H.J.; Oh, S.K.; Moon, S.Y.; Choi, Y.M. Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod. Sci. 2011, 18, 252–260. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.J.; Koh, H.; Ku, S.Y.; Kim, S.H.; Choi, Y.M.; Kim, J.G. The association among serum Leptin system, bone biochemical markers and bone mineral density before and after hormone therapy. Osteoporosis 2013, 11, 9–18. [Google Scholar]
- Atwood, C.S.; Meethal, S.V. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol. Cell. Endocrinol. 2016, 430, 33–48. [Google Scholar] [CrossRef]
- Gallego, M.J.; Porayette, P.; Kaltcheva, M.M.; Meethal, S.V.; Atwood, C.S. Opioid and progesterone signaling is obligatory for early human embryogenesis. Stem Cells Dev. 2009, 18, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.J.; Porayette, P.; Kaltcheva, M.M.; Bowen, R.L.; Meethal, S.V.; Atwood, C.S. The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes. Stem Cell Res. Ther. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porayette, P.; Gallego, M.J.; Kaltcheva, M.M.; Meethal, S.V.; Atwood, C.S. Amyloid-beta precursor protein expression and modulation in human embryonic stem cells: A novel role for human chorionic gonadotropin. Biochem. Biophys. Res. Commun. 2007, 364, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Porayette, P.; Gallego, M.J.; Kaltcheva, M.M.; Bowen, R.L.; Meethal, S.V.; Atwood, C.S. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J. Biol. Chem. 2009, 284, 23806–23817. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, K.M.; Burns, W.N.; Olive, D.L.; Riehl, R.M.; Schenken, R.S. Serum progesterone levels predict success of in vitro fertilization/embryo transfer in patients stimulated with leuprolide acetate and human menopausal gonadotropins. J. Clin. Endocrinol. Metab. 1991, 73, 797–803. [Google Scholar] [CrossRef]
- Hong, S.H.; Nah, H.Y.; Lee, Y.J.; Lee, J.W.; Park, J.H.; Kim, S.J.; Lee, J.B.; Yoon, H.S.; Kim, C.H. Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol. Cells 2004, 18, 320–325. [Google Scholar]
- Juneja, S.C.; Dodson, M.G. Effect of RU486 on different stages of mouse preimplantation embryos in vitro. Can. J. Physiol. Pharmacol. 1990, 68, 1457–1460. [Google Scholar] [CrossRef]
- Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 2000, 6, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Reubinoff, B.E.; Pera, M.F.; Fong, C.Y.; Trounson, A.; Bongso, A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat. Biotechnol. 2000, 18, 399–404. [Google Scholar] [CrossRef]
- Han, S.W.; Kim, Y.Y.; Kang, W.J.; Kim, H.C.; Ku, S.Y.; Kang, B.C.; Yun, J.W. The use of normal stem cells and cancer stem cells for potential anti-cancer therapeutic strategy. Tissue Eng. Regen. Med. 2018, 15, 365–380. [Google Scholar] [CrossRef]
- Cho, M.S.; Kim, S.J.; Ku, S.Y.; Park, J.H.; Lee, H.; Yoo, D.H.; Park, U.C.; Song, S.A.; Choi, Y.M.; Yu, H.G. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res. 2012, 9, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.M.; Kyba, M.; Perlingeiro, R.; Daley, G.Q.; Zandstra, P.W. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng. 2002, 78, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Khoo, M.L.; McQuade, L.R.; Smith, M.S.; Lees, J.G.; Sidhu, K.S.; Tuch, B.E. Growth and differentiation of embryoid bodies derived from human embryonic stem cells: Effect of glucose and basic fibroblast growth factor. Biol. Reprod. 2005, 73, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Niakan, K.K.; Han, J.; Pedersen, R.A.; Simon, C.; Pera, R.A. Human pre-implantation embryo development. Development 2012, 139, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Schuldiner, M.; Yanuka, O.; Itskovitz-Eldor, J.; Melton, D.A.; Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2000, 97, 11307–11312. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.B.; Kim, Y.Y.; Oh, S.K.; Chung, S.G.; Ku, S.Y.; Kim, S.H.; Choi, Y.M.; Moon, S.Y. Alterations of proliferative and differentiation potentials of human embryonic stem cells during long-term culture. Exp. Mol. Med. 2008, 40, 98–108. [Google Scholar] [CrossRef]
- Viotti, M.; Foley, A.C.; Hadjantonakis, A.K. Gutsy moves in mice: Cellular and molecular dynamics of endoderm morphogenesis. Philos. Trans. R. Soc. Lond. Ser. BBiol. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Gorski, J. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development. Proc. Natl. Acad. Sci. USA 1993, 90, 9460–9464. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.A.; Speroff, L. Clinical Gynecologic Endocrinology and Infertility, 8th ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; pp. ix, 1439. [Google Scholar]
- Smit, J.; Botha, J.; McFadyen, L.; Beksinska, M. Serum medroxyprogesterone acetate levels in new and repeat users of depot medroxyprogesterone acetate at the end of the dosing interval. Contraception 2004, 69, 3–7. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, R.; Camacho-Arroyo, I.; Velasco, I. Progesterone and 17beta-estradiol increase differentiation of mouse embryonic stem cells to motor neurons. Iubmb Life 2011, 63, 930–939. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; et al. Observation of an excited Bc(+/−) meson state with the ATLAS detector. Phys. Rev. Lett. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, O.P.; Slone, D.; Monson, R.R.; Hook, E.B.; Shapiro, S. Cardiovascular birth defects and antenatal exposure to female sex hormones. New Engl. J. Med. 1977, 296, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Pabuccu, R.; Ceyhan, S.T.; Onalan, G.; Goktolga, U.; Ercan, C.M.; Selam, B. Successful treatment of cervical stenosis with hysteroscopic canalization before embryo transfer in patients undergoing IVF: A case series. J. Minim. Invasive Gynecol. 2005, 12, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Abadie, J.; Abbott, B.P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; et al. Directional limits on persistent gravitational waves using LIGO S5 science data. Phys. Rev. Lett. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanczyk, F.Z.; Hapgood, J.P.; Winer, S.; Mishell, D.R., Jr. Progestogens used in postmenopausal hormone therapy: Differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr. Rev. 2013, 34, 171–208. [Google Scholar] [CrossRef] [Green Version]
- Ghatge, R.P.; Jacobsen, B.M.; Schittone, S.A.; Horwitz, K.B. The progestational and androgenic properties of medroxyprogesterone acetate: Gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res. Bcr. 2005. [Google Scholar] [CrossRef] [Green Version]
- Katz, Z.; Lancet, M.; Skornik, J.; Chemke, J.; Mogilner, B.M.; Klinberg, M. Teratogenicity of progestogens given during the first trimester of pregnancy. Obstet. Gynecol. 1985, 65, 775–780. [Google Scholar] [CrossRef]
- Yovich, J.L.; Turner, S.R.; Draper, R. Medroxyprogesterone acetate therapy in early pregnancy has no apparent fetal effects. Teratology 1988, 38, 135–144. [Google Scholar] [CrossRef]
- Eibs, H.G.; Spielmann, H.; Hagele, M. Teratogenic effects of cyproterone acetate and medroxyprogesterone treatment during the pre- and postimplantation period of mouse embryos. I. Teratology 1982, 25, 27–36. [Google Scholar] [CrossRef]
- Voelcker, V.; Gebhardt, C.; Averbeck, M.; Saalbach, A.; Wolf, V.; Weih, F.; Sleeman, J.; Anderegg, U.; Simon, J. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp. Dermatol. 2008, 17, 100–107. [Google Scholar] [CrossRef]
- Voora, D.; Koboldt, D.C.; King, C.R.; Lenzini, P.A.; Eby, C.S.; Porche-Sorbet, R.; Deych, E.; Crankshaw, M.; Milligan, P.E.; McLeod, H.L.; et al. A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin. Pharmacol. Ther. 2010, 87, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.Y.; Choi, B.B.; Lim, J.W.; Kim, Y.J.; Kim, S.Y.; Ku, S.Y. Efficient production of murine uterine damage model. Tissue Eng. Regen. Med. 2019, 16, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, Y.Y.; Song, D.Y.; Lee, S.H.; Park, C.W.; Kim, H.; Ku, S.Y. Proliferation profile of uterine endometrial stromal cells during in vitro culture with gonadotropins: Recombinant versus urinary follicle stimulating hormone. Tissue Eng. Regen. Med. 2019, 16, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Kim, Y.J.; Kim, H.; Kang, B.C.; Ku, S.Y.; Suh, C.S. Modulatory effects of single and complex vitamins on the in vitro growth of murine ovarian follicles. Tissue Eng. Regen. Med. 2019, 16, 275–283. [Google Scholar] [CrossRef]
- Ku, S.Y.; Suh, C.S.; Kim, S.H.; Choi, Y.M.; Kim, J.G.; Moon, S.Y. A pilot study of the use of low dose human menopausal gonadotropin in ovulation induction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 109, 55–59. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, S.H.; Lee, J.R.; Jee, B.C.; Ku, S.-Y.; Suh, C.S.; Choi, Y.M.; Kim, J.G.; Moon, S.Y. Association of leptin receptor polymorphisms Lys109Arg and Gln223Arg with serum leptin profile and bone mineral density in Korean women. Am. J. Obstet. Gynecol. 2008, 198, 421.e1–421.e8. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Kim, H.S.; Park, Y.B.; Seol, H.W.; Kim, Y.Y.; Cho, M.S.; Ku, S.Y.; Choi, Y.M.; Kim, D.W.; Moon, S.Y. Methods for expansion of human embryonic stem cells. Stem Cells 2005, 23, 605–609. [Google Scholar] [CrossRef] [PubMed]
Name | Company | Cat. No. |
---|---|---|
Human | ||
rabbit anti-human progesterone receptor (PR) | Abcam | ab32085 |
mouse anti-human Nestin | Abcam | ab22035 |
rabbit anti-human Brachyury | Abcam | ab20680 |
goat anti-human HNF3β | R&D Systems | AF2400 |
Mouse | ||
mouse anti-PR | Abcam | ab2765 |
mouse anti-mouse Nestin | Abcam | ab6142 |
rabbit anti-mouse Brachyury | Abcam | ab20680 |
rabbit anti-mouse HNF3β | Abcam | ab108422 |
Gene | Forward | Reverse |
---|---|---|
Human | ||
AFP | AGAACCTGTCACAAGCTGTG | GACAGCAAGCTGAGGATGTC |
HNF3β | CTACGCCAACATGAACTCCA | GAGGTCCATGATCCACTGGT |
HNF4α | TGTCCCGACAGATCACCTC | CACTCAACGAGAACCAGCAG |
Brachyury | TAAGGTGGATCTTCAGGTAGC | CATCTCATTGGTGAGCTCCCT |
cACT | GGAGTTATGGTGGGTATGGGTC | AGTGGTGACAAAGGAGTAGCCA |
GATA4 | TTACACGCTGATGGGACTGGAG | GGGGAACGCAGGGGACAAG |
Nestin | CAGCTGGCGCACCTCAAGATG | AGGGAAGTTGGGCTCAGGACTGG |
Oct4 | GAGAACAATGAGAACCTTCAGGA | CTCGAACCACATCCTTCTCT |
β-actin | AGAGCTACGAGCTGCCTGAC | AGCACTGTGTTGGCGTACAG |
Mouse | ||
AFP | AGTTTCCAGAACCTGCCGAG | ACCTTGTCGTACTGAGCAGC |
CGβ | GTCAACACCACCATCTGTGC | GGCAGAGTGCACATTGACAG |
HNF3β | TATTGGCTGCAGCTAAGCGG | GACTCGGACTCAGGTGAGGT |
HNF4α | CTTCCTTCTTCATGCCAG | ACACGTCCCCATCTGAAG |
Brachyury | AACTTTCCTCCATGTGCTGAGAC | TGATTCCCAACACAAAAAGCT |
cACT | GGATTCTGGCGATGGTGTAA | CTCGTTGCCAATGGTGATGAC |
GATA4 | CCTTCGACAGCCCGGTCCT | TGCACAGATAGTGACCCGTCCC |
Nestin | GGATACAGTTTATTCAAGG | CAGCCGCTGAAGTTCACTCT |
β-actin | CGCCACCAGTTCGCCATGGA | TACAGCCCGGGGAGCATCGT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.Y.; Kim, H.; Suh, C.S.; Liu, H.-C.; Rosenwaks, Z.; Ku, S.-Y. Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model. Int. J. Mol. Sci. 2020, 21, 769. https://doi.org/10.3390/ijms21030769
Kim YY, Kim H, Suh CS, Liu H-C, Rosenwaks Z, Ku S-Y. Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model. International Journal of Molecular Sciences. 2020; 21(3):769. https://doi.org/10.3390/ijms21030769
Chicago/Turabian StyleKim, Yoon Young, Hoon Kim, Chang Suk Suh, Hung-Ching Liu, Zev Rosenwaks, and Seung-Yup Ku. 2020. "Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model" International Journal of Molecular Sciences 21, no. 3: 769. https://doi.org/10.3390/ijms21030769
APA StyleKim, Y. Y., Kim, H., Suh, C. S., Liu, H. -C., Rosenwaks, Z., & Ku, S. -Y. (2020). Effects of Natural Progesterone and Synthetic Progestin on Germ Layer Gene Expression in a Human Embryoid Body Model. International Journal of Molecular Sciences, 21(3), 769. https://doi.org/10.3390/ijms21030769