miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury
Abstract
:1. Introduction
2. Results
2.1. Lung Function
2.2. Structural Changes
2.3. Ultrastructural Septal Remodeling
2.4. Pulmonary Cytokine Expression
2.5. Proteomics Analysis
3. Discussion
4. Material and Methods
4.1. Animal Model
4.2. Lung Function Analysis
4.3. Histopathology and Stereology
4.4. Gene Expression Analysis
4.5. Cytokine Expression in Lung Tissue
4.6. Sample Preparation for LC-MS Analysis
4.7. LC-MS Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ware, L.; Matthay, M. The acute respiratory distress syndrome. J. Clin. Invest. 2012, 122, 2731–2740. [Google Scholar] [CrossRef]
- Marshall, R.; Bellingan, G.; Laurent, G. The acute respiratory distress syndrome: Fibrosis in the fast lane: Editorial. Thorax 1998, 53, 815–817. [Google Scholar] [CrossRef] [Green Version]
- Mineo, G.; Ciccarese, F.; Modolon, C.; Landini, M.P.; Valentino, M.; Zompatori, M. Post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia: role of follow-up CT. Radiol. Medica 2012, 117, 185–200. [Google Scholar] [CrossRef]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute respiratory distress syndrome advances in diagnosis and treatment. JAMA J. Am. Med. Assoc. 2018, 319, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Kumarswamy, R.; Volkmann, I.; Thum, T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krichevsky, A.M.; Gabriely, G. miR-21: A small multi-faceted RNA. J. Cell. Mol. Med. 2009, 13, 39–53. [Google Scholar] [CrossRef]
- Zhong, X.; Chung, A.C.K.; Chen, H.Y.; Dong, Y.; Meng, X.M.; Li, R.; Yang, W.; Hou, F.F.; Lan, H.Y. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013, 56, 663–674. [Google Scholar] [CrossRef]
- Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456, 980–984. [Google Scholar] [CrossRef]
- Sheedy, F.J. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front. Immunol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Lyu, Y.; Tang, J.; Li, Y. MicroRNAs: Novel regulatory molecules in acute lung injury/acute respiratory distress syndrome (review). Biomed. Reports 2016, 4, 523–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thannickal, V.J.; Kaminski, N.; Abraham, E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Li, H.; Cai, X.H.; Gu, J.Q.; Meng, J.; Xie, H.Q.; Zhang, J.L.; Chen, J.; Jin, X.G.; Tang, Q.; et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury. Lab. Investig. 2015, 95, 1258–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mook Lee, S.; Choi, H.; Yang, G.; Park, K.C.; Jeong, S.; Hong, S. MicroRNAs mediate oleic acid-induced acute lung injury in rats using an alternative injury mechanism. Mol. Med. Rep. 2014, 10, 292–300. [Google Scholar]
- Tan, K.S.; Choi, H.; Jiang, X.; Yin, L.; Seet, J.E.; Patzel, V.; Engelward, B.P.; Chow, V.T. Micro-RNAs in regenerating lungs: An integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Ma, K.; Zhang, S.; Zhang, H.; Liu, J.; Wang, X.; Li, S. Pulmonary microRNA expression profiling in an immature piglet model of cardiopulmonary bypass-induced acute lung injury. Artif. Organs 2015, 39, 327–335. [Google Scholar] [CrossRef]
- Vaporidi, K.; Vergadi, E.; Kaniaris, E.; Hatziapostolou, M.; Lagoudaki, E.; Georgopoulos, D.; Zapol, W.M.; Bloch, K.D.; Iliopoulos, D. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. AJP Lung Cell. Mol. Physiol. 2012, 303, L199–L207. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhao, G.Q.; Chen, T.F.; Chang, J.X.; Wang, H.Q.; Chen, S.S.; Zhang, G.J. Serum miR-21 and miR-155 expression in idiopathic pulmonary fibrosis. J. Asthma 2013, 50, 960–964. [Google Scholar] [CrossRef]
- Makiguchi, T.; Yamada, M.; Yoshioka, Y.; Sugiura, H.; Koarai, A.; Chiba, S.; Fujino, N.; Tojo, Y.; Ota, C.; Kubo, H.; et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir. Res. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.D.; Xu, J.; Zhang, M.; Zhu, T.M.; Zhang, Y.H.; Sun, K.E. Microrna-21 inhibits lipopolysaccharide-induceacute lung injury by targeting nuclear factor-κb. Exp. Ther. Med. 2018, 16, 4616–4622. [Google Scholar]
- Li, J.; Wei, L.; Han, Z.; Chen, Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur. J. Pharmacol. 2019, 852, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, S.; Wang, Y.; Zhang, S.; Luo, L.; Thorlacius, H. Platelet-derived CCL5 regulates CXC chemokine formation and neutrophil recruitment in acute experimental colitis. J. Cell. Physiol. 2016, 231, 370–376. [Google Scholar] [CrossRef] [PubMed]
- De Stoppelaar, S.F.; van ’t Veer, C.; van der Poll, T. The role of platelets in sepsis. Thromb. Haemost. 2014, 112, 666–677. [Google Scholar] [PubMed] [Green Version]
- Page, C.; Pitchford, S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int. Immunopharmacol. 2013, 17, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Grommes, J.; Drechsler, M.; Soehnlein, O. CCR5 and FPR1 mediate neutrophil recruitment in endotoxin-induced lung injury. J. Innate Immun. 2014, 6, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Singbartl, K.; Ley, K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J. Clin. Invest. 2006, 116, 3211–3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwari, T.; Eminaga, S.; Mayr, U.; Lu, R.; Armstrong, P.C.; Chan, M.V.; Sahraei, M.; Fernández-Fuertes, M.; Moreau, T.; Barallobre-Barreiro, J.; et al. Inhibition of profibrotic microRNA-21 affects platelets and their releasate. JCI Insight 2018, 3. [Google Scholar] [CrossRef]
- Li, Y.; Yan, L.; Zhang, W.; Hu, N.; Chen, W.; Wang, H.; Kang, M.; Ou, H. MicroRNA-21 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting activator protein-1. Am. J. Transl. Res. 2014, 6, 507–516. [Google Scholar]
- Kling, K.M.; Lopez-Rodriguez, E.; Pfarrer, C.; Mühlfeld, C.; Brandenberger, C. Aging exacerbates acute lung injury induced changes of the air-blood barrier, lung function and inflammation in the mouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 312, L1–L12. [Google Scholar] [CrossRef] [Green Version]
- Suki, B.; Bartolák-Suki, E. Biomechanics of the Aging Lung Parenchyma. In Mechanical Properties of Aging Soft Tissues; Derby, B., Akhtar, R., Eds.; Springer International Publishing: New York, NY, USA, 2014; pp. 95–133. [Google Scholar]
- Schulte, H.; Mühlfeld, M.; Brandenberger, C. Age-related structural and functional changes in the mouse lung. Front. Physiol. 2019, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lu, J.; Zhang, Y.; Chen, Y.; Gu, Z.; Jiang, X. Baicalein attenuates bleomycin-induced pulmonary fibrosis in rats through inhibition of miR-21. Pulm. Pharmacol. Ther. 2013, 26, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, F.; Chen, L.; Li, Q.; Jin, S.; Zheng, H.; Lin, J.; Zhang, H.; Ma, S.; Mei, J.; et al. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed. Pharmacother. 2018, 105, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kumarswamy, R.; Volkmann, I.; Jazbutyte, V.; Dangwal, S.; Park, D.H.; Thum, T. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by MicroRNA-21. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 2012, 4, 121ra18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenberger, C.; Ochs, M.; Mühlfeld, C. Assessing particle and fiber toxicology in the respiratory system: the stereology toolbox. Part. Fibre Toxicol. 2015, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, C.C.W.; Hyde, D.M.; Ochs, M.; Weibel, E.R. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med. 2010, 181, 394–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschanz, S.A.; Burri, P.H.; Weibel, E.R. A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc 2011, 243, 47–59. [Google Scholar] [CrossRef]
- Brandenberger, C.; Kling, K.M.; Vital, M.; Mühlfeld, C. The role of pulmonary and systemic immunosenescence in acute lung injury. Aging Dis. 2018, 9, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Jochim, N.; Gerhard, R.; Just, I.; Pich, A. Impact of clostridial glucosylating toxins on the proteome of colonic cells determined by isotope-coded protein labeling and LC-MALDI. Proteome Sci. 2011, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
Group | V(collagen,sept) [mm3] | V(elastin,sept) [mm3] | V(amorphous ECM,sept) [mm3] |
---|---|---|---|
WT control | 0.3 / 0.10 | 0.9 / 0.15 | 1.5 / 0.28 |
WT LPS | 0.4 / 0.13 L** | 1.3 / 0.40 L** | 2.0 / 0.51 L* |
KO control | 0.4 / 0.16 | 1.0 / 0.29 | 2.0 / 0.46 S* |
KO LPS | 0.5 / 0.14 | 1.3 / 0.19 | 2.2 / 0.26 |
Cytokines | WT Control | WT LPS | KO Control | KO LPS |
---|---|---|---|---|
IFNγ | 0.08 / 0.01 | 11.94 / 16.67 L* | 0.08 / 0.04 | 10.07 / 9.81 L* |
TNFα | 0.52 / 0.14 | 45.21 / 28.05 L*** | 0.50 / 0.21 | 41.51 / 28.25 L*** |
IL-6 | 1.43 / 0.37 | 43.60 / 31.16 L** | 1.19 / 0.49 | 32.05 / 14.97 L** |
IL-1β | 21.37 / 3.84 | 88.85 / 40.58 L*** | 18.94 / 5.07 | 75.70 / 24.49 L*** |
CXCL1 | 10.19 / 4.18 | 1239.68 / 652.86 L*** | 12.15 / 10.72 | 1241.02 / 563.06 L*** |
CCL2 | 1.56 / 0.43 | 84.29 / 34.42 L*** | 1.85 / 0.67 | 67.63 / 23.20 L*** |
CCL5 | 68.49 / 16.19 | 269.64 / 60.60 L*** | 60.76 / 17.08 | 150.07 / 40.47 L***/ S*** |
WT GO-Term | Reactome Pathway Description | Count in Gene Set | False Discovery Rate |
---|---|---|---|
MMU-168249 | Innate Immune System | 70 of 879 | 1.67 × 10−32 |
MMU-168256 | Immune System | 80 of 1523 | 3.30 × 10−26 |
MMU-6798695 | Neutrophil degranulation | 47 of 476 | 6.37 × 10−25 |
MMU-114608 | Platelet degranulation | 22 of 121 | 4.71 × 10−16 |
MMU-76002 | Platelet activation, signaling and aggregation | 26 of 242 | 3.03 × 10−14 |
MMU-109582 | Hemostasis | 34 of 489 | 1.26 × 10−13 |
MMU-381426 | Regulation of Insulin-like Growth Factor (IGF)transport and uptake | 19 of 129 | 1.48 ×10−12 |
MMU-977606 | Regulation of Complement cascade | 13 of 41 | 3.89 × 10−12 |
MMU-8957275 | Post-translational protein phosphorylation | 17 of 114 | 2.16 × 10−11 |
MMU-5686938 | Regulation of TLR by endogenous ligand | 8 of 13 | 3.26 × 10−9 |
MMU-140877 | Formation of Fibrin Clot (Clotting Cascade) | 10 of 34 | 4.07 × 10−9 |
MMU-1474244 | Extracellular matrix organization | 16 of 246 | 5.55 × 10−6 |
MMU-216083 | Integrin cell surface interactions | 9 of 68 | 1.36 × 10−5 |
MMU-6803157 | Antimicrobial peptides | 9 of 69 | 1.43 × 10−5 |
MMU-140875 | Common Pathway of Fibrin Clot Formation | 6 of 20 | 1.72 × 10−5 |
MMU-76009 | Platelet Aggregation (Plug Formation) | 6 of 29 | 0.0001 |
MMU-166665 | Terminal pathway of complement | 4 of 7 | 0.00018 |
MMU-140837 | Intrinsic Pathway of Fibrin Clot Formation | 5 of 20 | 0.00028 |
MMU-354192 | Integrin alphaIIb beta3 signaling | 5 of 22 | 0.0004 |
MMU-354194 | GRB2: SOS provides linkage to MAPK signaling for integrins | 4 of 11 | 0.00058 |
MMU-6799990 | Metal sequestration by antimicrobial proteins | 3 of 3 | 0.00073 |
MMU-372708 | p130Cas linkage to MAPK signaling for integrins | 4 of 12 | 0.00073 |
MMU-168898 | Toll-like Receptor Cascades | 9 of 131 | 0.0011 |
MMU-202733 | Cell surface interactions at the vascular wall | 8 of 103 | 0.0012 |
MMU-1566948 | Elastic fiber formation | 5 of 37 | 0.0027 |
MMU-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 3 of 7 | 0.0035 |
KO GO-term | Reactome Pathway description | Count in Gene Set | False Discovery Rate |
MMU-6798695 | Neutrophil degranulation | 17 of 476 | 0.00024 |
MMU-168249 | Innate Immune System | 22 of 879 | 0.00088 |
MMU-76002 | Platelet activation, signaling and aggregation | 11 of 242 | 0.00094 |
MMU-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 5 of 31 | 0.00094 |
MMU-114608 | Platelet degranulation | 8 of 121 | 0.00094 |
MMU-2168880 | Scavenging of heme from plasma | 4 of 19 | 0.0016 |
MMU-168256 | Immune System | 27 of 1523 | 0.0073 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansing, J.C.; Fiedler, J.; Pich, A.; Viereck, J.; Thum, T.; Mühlfeld, C.; Brandenberger, C. miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury. Int. J. Mol. Sci. 2020, 21, 822. https://doi.org/10.3390/ijms21030822
Jansing JC, Fiedler J, Pich A, Viereck J, Thum T, Mühlfeld C, Brandenberger C. miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury. International Journal of Molecular Sciences. 2020; 21(3):822. https://doi.org/10.3390/ijms21030822
Chicago/Turabian StyleJansing, Johanna Christine, Jan Fiedler, Andreas Pich, Janika Viereck, Thomas Thum, Christian Mühlfeld, and Christina Brandenberger. 2020. "miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury" International Journal of Molecular Sciences 21, no. 3: 822. https://doi.org/10.3390/ijms21030822
APA StyleJansing, J. C., Fiedler, J., Pich, A., Viereck, J., Thum, T., Mühlfeld, C., & Brandenberger, C. (2020). miR-21-KO Alleviates Alveolar Structural Remodeling and Inflammatory Signaling in Acute Lung Injury. International Journal of Molecular Sciences, 21(3), 822. https://doi.org/10.3390/ijms21030822