Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood
Abstract
:1. Introduction
2. Results
2.1. Feto-Placental Endothelial Cells (fpEC) Expressed MME mRNA and Protein In Vivo and In Vitro
2.2. Maternal Pre-Pregnancy Overweight Reduced MME mRNA and Protein in fpEC
2.3. Maternal Pre-Pregnancy Overweight Reduced Umbilical Cord Blood MME Levels
2.4. MME Protein in fpEC was not Regulated by Oxygen and Tumor Necrosis Factor α (TNFα)
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Cell Culture
4.3. Immunohistochemistry
4.4. Immunocytochemistry
4.5. Quantitative Reverse Transcription PCR (RT-qPCR)
4.6. Immunoblot
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Hypoxia and TNFα Treatments
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramsay, J.E.; Ferrell, W.R.; Crawford, L.; Wallace, A.M.; Greer, I.A.; Sattar, N. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J. Clin. Endocrinol. Metab. 2002, 87, 4231–4237. [Google Scholar] [CrossRef]
- Pantham, P.; Aye, I.L.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 2015, 36, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingvorsen, C.; Brix, S.; Ozanne, S.E.; Hellgren, L.I. The effect of maternal inflammation on foetal programming of metabolic disease. Acta Physiol. 2015, 214, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Pan, Y.X. Pathophysiological basis for compromised health beyond generations: Role of maternal high-fat diet and low-grade chronic inflammation. J. Nutr. Biochem. 2015, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Derraik, J.G.; Ayyavoo, A.; Hofman, P.L.; Biggs, J.B.; Cutfield, W.S. Increasing maternal prepregnancy body mass index is associated with reduced insulin sensitivity and increased blood pressure in their children. Clin. Endocrinol. 2015, 83, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Najman, J.M.; Sterne, J.; Williams, G.M.; Ebrahim, S.; Davey Smith, G. Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: Findings from the mater-university study of pregnancy and its outcomes. Circulation 2004, 110, 2417–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toemen, L.; Gishti, O.; van Osch-Gevers, L.; Steegers, E.A.; Helbing, W.A.; Felix, J.F.; Reiss, I.K.; Duijts, L.; Gaillard, R.; Jaddoe, V.W. Maternal obesity, gestational weight gain and childhood cardiac outcomes: Role of childhood body mass index. Int. J. Obes. 2016, 40, 1070–1078. [Google Scholar] [CrossRef]
- Eriksson, J.G.; Sandboge, S.; Salonen, M.K.; Kajantie, E.; Osmond, C. Long-term consequences of maternal overweight in pregnancy on offspring later health: Findings from the helsinki birth cohort study. Ann. Med. 2014, 46, 434–438. [Google Scholar] [CrossRef]
- Turner, A.J.; Isaac, R.E.; Coates, D. The neprilysin (nep) family of zinc metalloendopeptidases: Genomics and function. Bioessays 2001, 23, 261–269. [Google Scholar] [CrossRef]
- Corti, R.; Burnett, J.C., Jr.; Rouleau, J.L.; Ruschitzka, F.; Luscher, T.F. Vasopeptidase inhibitors: A new therapeutic concept in cardiovascular disease? Circulation 2001, 104, 1856–1862. [Google Scholar] [CrossRef] [Green Version]
- Spillantini, M.G.; Sicuteri, F.; Salmon, S.; Malfroy, B. Characterization of endopeptidase 3.4.24.11 (“enkephalinase”) activity in human plasma and cerebrospinal fluid. Biochem. Pharmacol. 1990, 39, 1353–1356. [Google Scholar] [CrossRef]
- Kuruppu, S.; Rajapakse, N.W.; Minond, D.; Smith, A.I. Production of soluble neprilysin by endothelial cells. Biochem. Biophys. Res. Commun. 2014, 446, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Standeven, K.F.; Hess, K.; Carter, A.M.; Rice, G.I.; Cordell, P.A.; Balmforth, A.J.; Lu, B.; Scott, D.J.; Turner, A.J.; Hooper, N.M.; et al. Neprilysin, obesity and the metabolic syndrome. Int. J. Obes. 2011, 35, 1031–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, G.I.; Jones, A.L.; Grant, P.J.; Carter, A.M.; Turner, A.J.; Hooper, N.M. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 2006, 48, 914–920. [Google Scholar] [CrossRef]
- Muangman, P.; Spenny, M.L.; Tamura, R.N.; Gibran, N.S. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock 2003, 19, 508–512. [Google Scholar] [CrossRef]
- Albrecht, M.; Doroszewicz, J.; Gillen, S.; Gomes, I.; Wilhelm, B.; Stief, T.; Aumuller, G. Proliferation of prostate cancer cells and activity of neutral endopeptidase is regulated by bombesin and il-1beta with il-1beta acting as a modulator of cellular differentiation. Prostate 2004, 58, 82–94. [Google Scholar] [CrossRef]
- Tharaux, P.L.; Stefanski, A.; Ledoux, S.; Soleilhac, J.M.; Ardaillou, R.; Dussaule, J.C. Egf and tgf-beta regulate neutral endopeptidase expression in renal vascular smooth muscle cells. Am. J. Physiol. 1997, 272, C1836–C1843. [Google Scholar] [CrossRef]
- Pavo, N.; Arfsten, H.; Cho, A.; Goliasch, G.; Bartko, P.E.; Wurm, R.; Freitag, C.; Gisslinger, H.; Kornek, G.; Strunk, G.; et al. The circulating form of neprilysin is not a general biomarker for overall survival in treatment-naive cancer patients. Sci. Rep. 2019, 9, 2554. [Google Scholar] [CrossRef] [Green Version]
- Mitra, R.; Chao, O.S.; Nanus, D.M.; Goodman, O.B., Jr. Negative regulation of nep expression by hypoxia. Prostate 2013, 73, 706–714. [Google Scholar] [CrossRef]
- Carpenter, T.C.; Stenmark, K.R. Hypoxia decreases lung neprilysin expression and increases pulmonary vascular leak. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281, L941–L948. [Google Scholar] [CrossRef] [Green Version]
- Zhuravin, I.A.; Dubrovskaya, N.M.; Vasilev, D.S.; Kozlova, D.I.; Kochkina, E.G.; Tumanova, N.L.; Nalivaeva, N.N. Regulation of neprilysin activity and cognitive functions in rats after prenatal hypoxia. Neurochem. Res. 2019, 44, 1387–1398. [Google Scholar] [CrossRef]
- Kiemer, A.K.; Weber, N.C.; Vollmar, A.M. Induction of ikappab: Atrial natriuretic peptide as a regulator of the nf-kappab pathway. Biochem. Biophys. Res. Commun. 2002, 295, 1068–1076. [Google Scholar] [CrossRef]
- Christian, L.M.; Porter, K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: Effects of maternal body mass index. Cytokine 2014, 70, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, P.M.; Presley, L.; Minium, J.; Hauguel-de Mouzon, S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009, 32, 1076–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemas, D.J.; Brinton, J.T.; Shapiro, A.L.; Glueck, D.H.; Friedman, J.E.; Dabelea, D. Associations of maternal weight status prior and during pregnancy with neonatal cardiometabolic markers at birth: The healthy start study. Int. J. Obes. 2015, 39, 1437–1442. [Google Scholar] [CrossRef] [Green Version]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar]
- Dosch, N.C.; Guslits, E.F.; Weber, M.B.; Murray, S.E.; Ha, B.; Coe, C.L.; Auger, A.P.; Kling, P.J. Maternal obesity affects inflammatory and iron indices in umbilical cord blood. J. Pediatr 2016, 172, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Raguz, M.J.; Glamuzina, D.S.; Tomic, V.; Mikulic, I. Does the bmi of expectant mothers influence the concentration of c-reactive protein in newborns in the early neonatal period? Z Geburtshilfe Neonatol. 2016, 220, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Sheffer-Mimouni, G.; Mimouni, F.B.; Dollberg, S.; Mandel, D.; Deutsch, V.; Littner, Y. Neonatal nucleated red blood cells in infants of overweight and obese mothers. J. Am. Coll. Nutr. 2007, 26, 259–263. [Google Scholar] [CrossRef]
- Richardson, B.S.; Ruttinger, S.; Brown, H.K.; Regnault, T.R.H.; de Vrijer, B. Maternal body mass index impacts fetal-placental size at birth and umbilical cord oxygen values with implications for regulatory mechanisms. Early Hum. Dev. 2017, 112, 42–47. [Google Scholar] [CrossRef]
- Thompson, R.C.; Herscovitch, M.; Zhao, I.; Ford, T.J.; Gilmore, T.D. Nf-kappab down-regulates expression of the b-lymphoma marker cd10 through a miR-155/pu.1 pathway. J. Biol. Chem. 2011, 286, 1675–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Feng, H.; Guo, S.; Han, Y.; Chen, X. Danshenol a inhibits tnf-alpha-induced expression of intercellular adhesion molecule-1 (icam-1) mediated by nox4 in endothelial cells. Sci. Rep. 2017, 7, 12953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Perez, F.I.; Hiden, U.; Gauster, M.; Lang, I.; Konya, V.; Heinemann, A.; Logl, J.; Saffery, R.; Desoye, G.; Cvitic, S. Post-transcriptional down regulation of icam-1 in feto-placental endothelium in gdm. Cell Adh. Migr. 2016, 10, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, P.A.; Guinan, A.F.; Walsh, T.G.; Murphy, R.P.; Killeen, M.T.; Tobin, N.P.; Pierotti, A.R.; Cummins, P.M. Down-regulation of neprilysin (ec3.4.24.11) expression in vascular endothelial cells by laminar shear stress involves nadph oxidase-dependent ros production. Int. J. Biochem. Cell Biol. 2009, 41, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019, 62, 1789–1801. [Google Scholar] [CrossRef] [Green Version]
- Nagata, K.; Mano, T.; Murayama, S.; Saido, T.C.; Iwata, A. DNA methylation level of the neprilysin promoter in alzheimer’s disease brains. Neurosci. Lett. 2018, 670, 8–13. [Google Scholar] [CrossRef]
- Ikawa, Y.; Sugimoto, N.; Koizumi, S.; Yachie, A.; Saikawa, Y. Dense methylation of types 1 and 2 regulatory regions of the cd10 gene promoter in infant acute lymphoblastic leukemia with mll/af4 fusion gene. J. Pediatr. Hematol. Oncol. 2010, 32, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Stephen, H.M.; Khoury, R.J.; Majmudar, P.R.; Blaylock, T.; Hawkins, K.; Salama, M.S.; Scott, M.D.; Cosminsky, B.; Utreja, N.K.; Britt, J.; et al. Epigenetic suppression of neprilysin regulates breast cancer invasion. Oncogenesis 2016, 5, e207. [Google Scholar] [CrossRef] [Green Version]
- Nowak, W.; Errasti, A.E.; Armesto, A.R.; Santin Velazque, N.L.; Rothlin, R.P. Endothelial angiotensin-converting enzyme and neutral endopeptidase in isolated human umbilical vein: An effective bradykinin inactivation pathway. Eur. J. Pharmacol. 2011, 667, 271–277. [Google Scholar] [CrossRef]
- Trebbien, R.; Klarskov, L.; Olesen, M.; Holst, J.J.; Carr, R.D.; Deacon, C.F. Neutral endopeptidase 24.11 is important for the degradation of both endogenous and exogenous glucagon in anesthetized pigs. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E431–E438. [Google Scholar] [CrossRef]
- Willard, J.R.; Barrow, B.M.; Zraika, S. Improved glycaemia in high-fat-fed neprilysin-deficient mice is associated with reduced dpp-4 activity and increased active glp-1 levels. Diabetologia 2017, 60, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, N.; Barrow, B.M.; Choung, E.; Shen, N.J.; Zraika, S. Neprilysin inhibition in mouse islets enhances insulin secretion in a glp-1 receptor dependent manner. Islets 2018, 10, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, A.K.; Dankel, S.; Cai, W.; Sakaguchi, M.; Kasif, S.; Kahn, C.R. Membrane metallo-endopeptidase (neprilysin) regulates inflammatory response and insulin signaling in white preadipocytes. Mol. Metab. 2019, 22, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Goodman, O.B., Jr.; Febbraio, M.; Simantov, R.; Zheng, R.; Shen, R.; Silverstein, R.L.; Nanus, D.M. Neprilysin inhibits angiogenesis via proteolysis of fibroblast growth factor-2. J. Biol. Chem. 2006, 281, 33597–33605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauta, T.D.; van den Broek, M.; Gibbs, S.; van der Pouw-Kraan, T.C.; Oudejans, C.B.; van Hinsbergh, V.W.; Koolwijk, P. Identification of hif-2alpha-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis 2017, 20, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Levine, Y.C.; Golan, D.E.; Michel, T.; Lin, A.J. Atrial natriuretic peptide-initiated cgmp pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J. Biol. Chem. 2008, 283, 4439–4447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M.; Volker, K.; Schwarz, K.; Carbajo-Lozoya, J.; Flogel, U.; Jacoby, C.; Stypmann, J.; van Eickels, M.; Gambaryan, S.; Hartmann, M.; et al. The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice. J. Clin. Invest. 2009, 119, 2019–2030. [Google Scholar] [CrossRef] [Green Version]
- Maguer-Satta, V.; Besancon, R.; Bachelard-Cascales, E. Concise review: Neutral endopeptidase (cd10): A multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells 2011, 29, 389–396. [Google Scholar] [CrossRef]
- Loardi, C.; Falchetti, M.; Prefumo, F.; Facchetti, F.; Frusca, T. Placental morphology in pregnancies associated with pregravid obesity. J. Matern. Fetal Neonatal. Med. 2016, 29, 2611–2616. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, M.J.; Zhang, L.; Hein, S.M.; Nathanielsz, P.W.; Ford, S.P. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R249–R258. [Google Scholar] [CrossRef]
- Hayes, E.K.; Lechowicz, A.; Petrik, J.J.; Storozhuk, Y.; Paez-Parent, S.; Dai, Q.; Samjoo, I.A.; Mansell, M.; Gruslin, A.; Holloway, A.C.; et al. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: Role of altered development of the placental vasculature. PLoS ONE 2012, 7, e33370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, T.J.; O’Neill, K.; Condon, D.; Sasson, I.; Sen, P.; Xia, Y.; Simmons, R.A. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol. Reprod. 2018, 98, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, Y.; Li, J.; Wang, H.; Cheng, C.; Yang, L.; Li, Q.; Deng, J.; Liang, Z.; Yin, Y.; et al. Maternal diet-induced obesity compromises oxidative stress status and angiogenesis in the porcine placenta by upregulating nox2 expression. Oxid. Med. Cell. Longev. 2019, 2019, 2481592. [Google Scholar] [CrossRef] [PubMed]
- Bar, J.; Kovo, M.; Schraiber, L.; Shargorodsky, M. Placental maternal and fetal vascular circulation in healthy non-obese and metabolically healthy obese pregnant women. Atherosclerosis 2017, 260, 63–66. [Google Scholar] [CrossRef]
- Lang, I.; Schweizer, A.; Hiden, U.; Ghaffari-Tabrizi, N.; Hagendorfer, G.; Bilban, M.; Pabst, M.A.; Korgun, E.T.; Dohr, G.; Desoye, G. Human fetal placental endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential. Differentiation 2008, 76, 1031–1043. [Google Scholar] [CrossRef]
- Sharan, R.N.; Vaiphei, S.T.; Nongrum, S.; Keppen, J.; Ksoo, M. Consensus reference gene(s) for gene expression studies in human cancers: End of the tunnel visible? Cell Oncol. 2015, 38, 419–431. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Controls | Overweight Subjects |
---|---|---|
Number of cases | 19 | 15 |
Pre-pregnancy BMI (kg/m2) | 21.1 ± 1.7 | 28.7 ± 3.4 *** |
BMI at birth (kg/m2) | 26.9 ± 2.4 | 33.9 ± 2.6 *** |
Maternal age (years) | 34.0 ± 5.7 | 32.3 ± 4.1 |
oGTT (0 h) | 80.6 ± 5.9 | 82.9 ± 4.7 |
oGTT (1 h) | 105.9 ± 27.8 | 116.5 ± 27.8 |
oGTT (2 h) | 95.6 ± 20.5 | 94.1 ± 16.3 |
Gestational age at delivery (weeks) | 39.7 ± 1.0 | 39.2 ±1.6 |
Mode of delivery (vaginal/C-section) | 8/11 | 6/9 |
Fetal weight (g) | 3559 ± 351 | 3477 ± 402 |
Fetal height (cm) | 51.5 ± 1.7 | 51.3 ± 2.5 |
Fetal sex (m/f) | 12/7 | 8/7 |
Placental weight (g) | 634 ± 117 | 602 ± 147 |
Characteristics | Controls | Overweight Subjects |
---|---|---|
Number of cases | 20 | 12 |
Pre-pregnancy BMI (kg/m2) | 21.4 ± 1.2 | 28.6 ± 2.4 *** |
BMI at birth (kg/m2) | 26.7 ± 2.1 | 33.1 ± 2.2 *** |
Maternal age (years) | 31.1 ± 5.3 | 27.8 ± 3.1 |
oGTT (0 h) | 81.1 ± 5.7 | 83.6 ± 4.8 |
oGTT (1 h) | 123.5 ± 34.7 | 112.2 ± 20.4 |
oGTT (2 h) | 98.8 ± 24.4 | 102.4 ± 20.5 |
Maternal CRP at delivery | 2.8 ± 1.9 | 4.9 ± 2.6 * |
Gestational age at delivery (weeks) | 39.1 ± 0.9 | 38.9 ± 0.9 |
Mode of delivery (vaginal/C-section) | 3/17 | 1/11 |
Fetal weight (g) | 3358 ± 370 | 3493 ± 385 |
fetal height (cm) | 50.5 ± 2.1 | 51.8 ± 2.0 |
Fetal sex (m/f) | 10/10 | 8/4 |
Placental weight (g) | 667 ± 89 | 661 ± 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiß, E.; Berger, H.M.; Brandl, W.T.; Strutz, J.; Hirschmugl, B.; Simovic, V.; Tam-Ammersdorfer, C.; Cvitic, S.; Hiden, U. Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. Int. J. Mol. Sci. 2020, 21, 834. https://doi.org/10.3390/ijms21030834
Weiß E, Berger HM, Brandl WT, Strutz J, Hirschmugl B, Simovic V, Tam-Ammersdorfer C, Cvitic S, Hiden U. Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. International Journal of Molecular Sciences. 2020; 21(3):834. https://doi.org/10.3390/ijms21030834
Chicago/Turabian StyleWeiß, Elisa, Hannah M. Berger, Waltraud T. Brandl, Jasmin Strutz, Birgit Hirschmugl, Violeta Simovic, Carmen Tam-Ammersdorfer, Silvija Cvitic, and Ursula Hiden. 2020. "Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood" International Journal of Molecular Sciences 21, no. 3: 834. https://doi.org/10.3390/ijms21030834
APA StyleWeiß, E., Berger, H. M., Brandl, W. T., Strutz, J., Hirschmugl, B., Simovic, V., Tam-Ammersdorfer, C., Cvitic, S., & Hiden, U. (2020). Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. International Journal of Molecular Sciences, 21(3), 834. https://doi.org/10.3390/ijms21030834