Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach
Abstract
:1. Introduction
2. Insights into Molecular Pathology
2.1. Esophageal Adenocarcinoma
2.2. Gastric Adenocarcinoma
3. Patterns of Metastatic Spread and Common Distant Metastases
4. Surgical Resection of Oligometastatic Gastroesophageal Cancers
4.1. Palliative resection
4.2. Liver Metastases
4.3. Pulmonary Metastases
4.4. Peritoneal Carcinomatosis
4.5. Other Metastases
4.6. Conclusion
5. Prospective Diagnostic and Therapeutic Strategies
Author Contributions
Funding
Conflicts of Interest
References
- Definition of oligometastasis - NCI Dictionary of Cancer Terms - National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/oligometastasis (accessed on 25 May 2019).
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, R.R.; Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 2011, 8, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Broomfield, J.; Greenspoon, J.; Swaminath, A. Utilization of stereotactic ablative radiotherapy in the management of oligometastatic disease. Curr. Oncol. 2014, 21, 115–117. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, T.; Nakamura, K. Analysis of the lodgement and extravasation of tumor cells in experimental models of hematogenous metastasis. Cancer Metastasis Rev. 1986, 5, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.F.; Macdonald, I.C.; Schmidt, E.E.; Koop, S.; Morris, V.L.; Khokha, R.; Groom, A.C. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995, 14, 279–301. [Google Scholar] [CrossRef]
- Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siewert, J.R.; Ott, K. Are Squamous and Adenocarcinomas of the Esophagus the Same Disease? Semin. Radiat. Oncol. 2007, 17, 38–44. [Google Scholar] [CrossRef]
- Lin, D.C.; Wang, M.R.; Koeffler, H.P. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology 2018, 154, 374–389. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.-C.; Hao, J.-J.; Nagata, Y.; Xu, L.; Shang, L.; Meng, X.; Sato, Y.; Okuno, Y.; Varela, A.M.; Ding, L.-W.; et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat. Genet. 2014, 46, 467–473. [Google Scholar] [CrossRef]
- Barghash, A.; Golob-Schwarzl, N.; Helms, V.; Haybaeck, J.; Kessler, S.M. Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma. Oncotarget 2016, 7, 49743–49750. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lin, L.; Thomas, D.G.; Nadal, E.; Chang, A.C.; Beer, D.G.; Lin, J. The role of Dickkopf-3 overexpression in esophageal adenocarcinoma. J. Thorac. Cardiovasc. Surg. 2015, 150, 377–385.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyros, O.; Lamprecht, A.K.; Nie, L.; Thieme, R.; Götzel, K.; Gasparri, M.; Haasler, G.; Rafiee, P.; Shaker, R.; Gockel, I. Dickkopf-1 (DKK1) promotes tumor growth via Akt-phosphorylation and independently of Wnt-axis in Barrett’s associated esophageal adenocarcinoma. Am. J. Cancer Res. 2019, 9, 330. [Google Scholar] [PubMed]
- Xu, Y.; Chen, Y.; Wei, L.; Lai, S.; Zheng, W.; Wu, F. Serum tumor-associated glycoprotein 72, a helpful predictor of lymph nodes invasion in esophagogastric junction adenocarcinoma. Biochem. Biophys. Res. Commun. 2019, 509, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Helminen, O.; Huhta, H.; Leppänen, J.; Kauppila, J.H.; Takala, H.; Lehenkari, P.P.; Saarnio, J.; Karttunen, T.J. Nuclear localization of Toll-like receptor 5 in Barrett’s esophagus and esophageal adenocarcinoma is associated with metastatic behavior. Virchows Archiv 2016, 469, 465–470. [Google Scholar] [CrossRef]
- Castaño-Rodríguez, N.; Kaakoush, N.O.; Mitchell, H.M.; Castaño-Rodriguez, N. Pattern-Recognition Receptors and Gastric Cancer. Front. Immunol. 2014, 5, 336. [Google Scholar]
- Yin, X.; Feng, C.; Han, L.; Ma, Y.; Jiao, Y.; Wang, J.; Jia, L.; Jing, F.; Gao, S.; Zhang, Y. Diallyl disulfide inhibits the metastasis of type Ⅱ esophageal gastric junction adenocarcinoma cells via NF-κB and PI3K/AKT signaling pathways in vitro. Oncol. Rep. 2018, 39, 784–794. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2010, 120, 1786. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jin, J.Q.; Zhou, Y.; Tian, Z.; Jablons, D.M.; He, B. Gli is activated and promotes epithelial-mesenchymal transition in human esophageal adenocarcinoma. Oncotarget 2018, 9, 853. [Google Scholar] [CrossRef] [Green Version]
- Testa, U.; Castelli, G.; Pelosi, E. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. Medinces 2017, 4, 67. [Google Scholar]
- Loges, S.; Schmidt, T.; Carmeliet, P. Mechanisms of Resistance to Anti-Angiogenic Therapy and Development of Third-Generation Anti-Angiogenic Drug Candidates. Genes Cancer 2010, 1, 12–25. [Google Scholar] [CrossRef]
- Nienhüser, H.; Schmidt, T. Angiogenesis and anti-angiogenic therapy in gastric cancer. Int. J. Mol. Sci. 2018, 19, 43. [Google Scholar] [CrossRef] [Green Version]
- Dreikhausen, L.; Blank, S.; Sisic, L.; Heger, U.; Weichert, W.; Jäger, D.; Bruckner, T.; Giese, N.; Grenacher, L.; Falk, C.; et al. Association of angiogenic factors with prognosis in esophageal cancer. BMC Cancer 2015, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Häussler, U.; Bitzer, M.; Bösmüller, H.; Clasen, S.; Götz, M.; Malek, N.; Plentz, R. AFP-produzierendes Adenokarzinom des ösophago-gastralen Übergangs: Ein Fallbericht mit ungewöhnlichen Befunden in der immunhistochemischen Analyse und einem Ansprechen auf eine Chemotherapie mit 5-Fluorouracil, Leucovorin, Oxaliplatin und Docetaxel (FLOT regime). Z. für Gastroenterol. 2016, 54, 1147–1150. [Google Scholar]
- Chiba, N.; Yoshioka, T.; Sakayori, M.; Mikami, Y.; Yoshiki, M.; Miyazaki, S.; Akiyama, S.; Otsuka, K.; Yamaura, G.; Shibata, H.; et al. AFP-producing hepatoid adenocarcinoma in association with Barrett’s esophagus with multiple liver metastasis responding to paclitaxel/CDDP: a case report. Anticancer. Res. 2005, 25, 2965–2968. [Google Scholar]
- Nagai, Y.; Kato, T.; Harano, M.; Satoh, D.; Choda, Y.; Tokumoto, N.; Kanazawa, T.; Matsukawa, H.; Ojima, Y.; Idani, H.; et al. A case of AFP-producing esophagogastric junction cancer with liver metastases with a good response to chemotherapy. Gan kagaku ryoho. Cancer Chemother. 2014, 41, 2349–2351. [Google Scholar]
- Miyazaki, T.; Sohda, M.; Sakai, M.; Kumakura, Y.; Yoshida, T.; Kuriyama, K.; Yokobori, T.; Miyazaki, M.; Hirato, J.; Okumura, T.; et al. Multimodality Therapy Including Proton Beam Therapy for AFP Producing Esophageal Cancer with Multiple Liver Metastases. Intern. Med. 2018, 57, 2333–2339. [Google Scholar] [CrossRef] [Green Version]
- Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef]
- Petrelli, F.; Berenato, R.; Turati, L.; Mennitto, A.; Steccanella, F.; Caporale, M.; Dallera, P.; De Braud, F.; Pezzica, E.; Di Bartolomeo, M.; et al. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis. J. Gastrointest. Oncol. 2017, 8, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; El Hajj, N.; Sittler, S.; Lammert, N.; Barnes, R.; Meloni-Ehrig, A. Gastric cancer: Classification, histology and application of molecular pathology. J. Gastrointest. Oncol. 2012, 3, 251. [Google Scholar]
- Shi, J.; Qu, Y.-P.; Hou, P. Pathogenetic mechanisms in gastric cancer. World J. Gastroenterol. 2014, 20, 13804–13819. [Google Scholar] [CrossRef]
- Saito, T.; Nakanishi, H.; Mochizuki, Y.; Ito, S.; Ito, Y.; Misawa, K.; Yatabe, Y.; Yamamichi, K.; Kondo, E. Preferential HER2 expression in liver metastases and EGFR expression in peritoneal metastases in patients with advanced gastric cancer. Gastric Cancer 2014, 18, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Badary, D.M.; Abdel-Wanis, M.E.; Hafez, M.Z.; Aboulhagag, N.A. Immunohistochemical analysis of PTEN, HER2/neu, and ki67 expression in patients with gastric cancer and their association with survival. Pathophysiol. 2017, 24, 99–106. [Google Scholar] [CrossRef]
- Ikari, N.; Serizawa, A.; Mitani, S.; Yamamoto, M.; Furukawa, T. Near-Comprehensive Resequencing of Cancer-Associated Genes in Surgically Resected Metastatic Liver Tumors of Gastric Cancer. Am. J. Pathol. 2019, 189, 784–796. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y. Wnt pathway is involved in advanced gastric carcinoma. Hepatogastroenterology 2008, 55, 1126–1130. [Google Scholar]
- Wu, W.K.; Cho, C.H.; Lee, C.W.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J. Dysregulation of cellular signaling in gastric cancer. Cancer Lett. 2010, 295, 144–153. [Google Scholar] [CrossRef]
- Ma, H.; Wei, Y.; Leng, Y.; Li, S.; Gao, L.; Hu, H.; Chen, L.; Wang, F.; Xiao, H.; Zhu, C.; et al. TGF-β1-induced expression of Id-1 is associated with tumor progression in gastric cancer. Med. Oncol. 2014, 31, 19. [Google Scholar] [CrossRef]
- Lin, Y.; Kikuchi, S.; Obata, Y.; Yagyu, K. Serum levels of transforming growth factor β1 are significantly correlated with venous invasion in patients with gastric cancer. J. Gastroenterol. Hepatol. 2006, 21, 432–437. [Google Scholar] [CrossRef]
- Hacker, U.T.; Escalona-Espinosa, L.; Consalvo, N.; Goede, V.; Schiffmann, L.; Scherer, S.J.; Hedge, P.; Van Cutsem, E.; Coutelle, O.; Buning, H. Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial. Br. J. Cancer 2016, 114, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N. Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr. Opin. Hematol. 2010, 17, 1. [Google Scholar] [CrossRef]
- Rigamonti, N.; De Palma, M. A role for angiopoietin-2 in organ-specific metastasis. Cell Rep. 2013, 4, 621–623. [Google Scholar] [CrossRef] [Green Version]
- Blank, S.; Deck, C.; Dreikhausen, L.; Weichert, W.; Giese, N.; Falk, C.; Schmidt, T.; Ott, K. Angiogenic and growth factors in gastric cancer. J. Surg. Res. 2015, 194, 420–429. [Google Scholar] [CrossRef]
- Zheng, H.; Tsuneyama, K.; Cheng, C.; Takahashi, H.; Cui, Z.; Nomoto, K.; Murai, Y.; Takano, Y. Expression of KAI1 and tenascin, and microvessel density are closely correlated with liver metastasis of gastrointestinal adenocarcinoma. J. Clin. Pathol. 2006, 60, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A. Update on Metastatic Gastric and Esophageal Cancers. J. Clin. Oncol. 2015, 33, 1760–1769. [Google Scholar] [CrossRef]
- Suga, K.; Shimizu, K.; Kawakami, Y.; Tangoku, A.; Zaki, M.; Matsunaga, N.; Oka, M. Lymphatic Drainage from Esophagogastric Tract: Feasibility of Endoscopic CT Lymphography for Direct Visualization of Pathways. Radiology 2005, 237, 952–960. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Xia, W.; Wang, F. Anatomy of lymphatic drainage of the esophagus and lymph node metastasis of thoracic esophageal cancer. Cancer Manag. Res. 2018, 10, 6295–6303. [Google Scholar] [CrossRef] [Green Version]
- Ai, D.; Zhu, H.; Ren, W.; Chen, Y.; Liu, Q.; Deng, J.; Ye, J.; Fan, J.; Zhao, K. Patterns of distant organ metastases in esophageal cancer: a population-based study. J. Thorac. Dis. 2017, 9, 3023–3030. [Google Scholar] [CrossRef] [Green Version]
- Mandard, A.M.; Chasle, J.; Marnay, J.; Villedieu, B.; Bianco, C.; Roussel, A.; Elie, H.; Vernhes, J.C. Autopsy findings in 111 cases of esophageal cancer. Cancer 1981, 48, 329–335. [Google Scholar] [CrossRef]
- Wu, S.-G.; Zhang, W.-W.; Sun, J.-Y.; Li, F.-Y.; Lin, Q.; He, Z.-Y. Patterns of Distant Metastasis Between Histological Types in Esophageal Cancer. Front. Oncol. 2018, 8, 302. [Google Scholar] [CrossRef]
- Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, A.B.; Mariotto, A.; Lake, A.J.; Wilson, R.; Sherman, R.L.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef]
- Riihimäki, M.; Hemminki, A.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic spread in patients with gastric cancer. Oncotarget 2016, 7, 52307–52316. [Google Scholar] [CrossRef] [Green Version]
- Viadana, E.; Bross, I.; Pickren, J. The Metastatic Spread of Cancers of the Digestive System in Man. Oncology 1978, 35, 114–126. [Google Scholar] [CrossRef]
- Hölscher, A.H.; Schröder, W.; Bollschweiler, E.; Beckurts, K.T.E.; Schneider, P.M. Wie sicher ist die hoch intrathorakale Ösophagogastrostomie? Der Chir. 2003, 74, 726–733. [Google Scholar] [CrossRef]
- Li, B.; Xiang, J.; Zhang, Y.; Li, H.; Zhang, J.; Sun, Y.; Hu, H.; Miao, L.; Ma, L.; Luo, X.; et al. Comparison of Ivor-Lewis vs Sweet esophagectomy for esophageal squamous cell carcinoma: a randomized clinical trial. JAMA Surg. 2015, 150, 292–298. [Google Scholar] [CrossRef]
- Nakagawa, S.; Nishimaki, T.; Kosugi, S.; Ohashi, M.; Kanda, T.; Hatakeyama, K. Cervical lymphadenectomy is beneficial for patients with carcinoma of the upper and mid-thoracic esophagus. Dis. Esophagus 2003, 16, 4–8. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kurokawa, Y.; Mori, M.; Doki, Y. Surgical Treatment of Gastroesophageal Junction Cancer. J. Gastric Cancer 2018, 18, 209–217. [Google Scholar] [CrossRef]
- Blank, S.; Schmidt, T.; Heger, P.; Strowitzki, M.J.; Sisic, L.; Heger, U.; Nienhueser, H.; Haag, G.M.; Bruckner, T.; Mihaljevic, A.L.; et al. Surgical strategies in true adenocarcinoma of the esophagogastric junction (AEG II): thoracoabdominal or abdominal approach? Gastric Cancer 2017, 21, 303–314. [Google Scholar] [CrossRef]
- Heger, P.; Blank, S.; Gooßen, K.; Nienhüser, H.; Diener, M.K.; Ulrich, A.; Mihaljevic, A.L.; Schmidt, T. Thoracoabdominal versus transhiatal surgical approaches for adenocarcinoma of the esophagogastric junction—a systematic review and meta-analysis. Langenbeck’s Arch. Surg. 2019, 404, 103–113. [Google Scholar] [CrossRef]
- Yamashita, H.; Katai, H.; Morita, S.; Saka, M.; Taniguchi, H.; Fukagawa, T. Optimal Extent of Lymph Node Dissection for Siewert Type II Esophagogastric Junction Carcinoma. Ann. Surg. 2011, 254, 274–280. [Google Scholar] [CrossRef]
- Mine, S.; Kurokawa, Y.; Takeuchi, H.; Kishi, K.; Ito, Y.; Ohi, M.; Matsuda, T.; Hamakawa, T.; Hasegawa, S.; Yoshikawa, T.; et al. Distribution of involved abdominal lymph nodes is correlated with the distance from the esophagogastric junction to the distal end of the tumor in Siewert type II tumors. Eur. J. Surg. Oncol. (EJSO) 2015, 41, 1348–1353. [Google Scholar] [CrossRef]
- Fujitani, K.; Miyashiro, I.; Mikata, S.; Tamura, S.; Imamura, H.; Hara, J.; Kurokawa, Y.; Fujita, J.; Nishikawa, K.; Kimura, Y.; et al. Pattern of abdominal nodal spread and optimal abdominal lymphadenectomy for advanced Siewert type II adenocarcinoma of the cardia: results of a multicenter study. Gastric Cancer 2012, 16, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Chiapponi, C.; Berlth, F.; Plum, P.S.; Betzler, C.; Stippel, D.L.; Popp, F.; Bruns, C.J. Oligometastatic Disease in Upper Gastrointestinal Cancer - How to Proceed? Visc. Med. 2017, 33, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Mariette, C.; Bruyère, E.; Messager, M.; Pichot-Delahaye, V.; Paye, F.; Dumont, F.; Brachet, D.; Piessen, G.; FREGAT Working Group. Palliative resection for advanced gastric and junctional adenocarcinoma: which patients will benefit from surgery? Ann. Surg. Oncol. 2013, 20, 1240–1249. [Google Scholar] [CrossRef]
- Fujitani, K.; Yang, H.-K.; Mizusawa, J.; Kim, Y.-W.; Terashima, M.; Han, S.-U.; Iwasaki, Y.; Hyung, W.J.; Takagane, A.; Park, D.J.; et al. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomised controlled trial. Lancet Oncol. 2016, 17, 309–318. [Google Scholar] [CrossRef]
- Kinoshita, T.; Saiura, A.; Esaki, M.; Sakamoto, H.; Yamanaka, T. Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases. BJS 2014, 102, 102–107. [Google Scholar] [CrossRef]
- Ministrini, S.; Solaini, L.; Cipollari, C.; Sofia, S.; Marino, E.; D’Ignazio, A.; Bencivenga, M.; Tiberio, G.A.M. Surgical treatment of hepatic metastases from gastric cancer. Updat. Surg. 2018, 70, 273–278. [Google Scholar] [CrossRef]
- Markar, S.R.; MacKenzie, H.; Mikhail, S.; Mughal, M.; Preston, S.R.; Maynard, N.D.; Faiz, O.; Hanna, G.B. Surgical resection of hepatic metastases from gastric cancer: outcomes from national series in England. Gastric Cancer 2016, 20, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Oki, E.; Kyushu Study Group of Clinical Cancer; Tokunaga, S.; Emi, Y.; Kusumoto, T.; Yamamoto, M.; Fukuzawa, K.; Takahashi, I.; Ishigami, S.; Tsuji, A.; et al. Surgical treatment of liver metastasis of gastric cancer: a retrospective multicenter cohort study (KSCC1302). Gastric Cancer 2015, 19, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Tiberio, G.; Ministrini, S.; Gardini, A.; Marrelli, D.; Marchet, A.; Cipollari, C.; Graziosi, L.; Pedrazzani, C.; Baiocchi, G.L.; La Barba, G.; et al. Factors influencing survival after hepatectomy for metastases from gastric cancer. Eur. J. Surg. Oncol. (EJSO) 2016, 42, 1229–1235. [Google Scholar] [CrossRef]
- Takemura, N.; Saiura, A.; Koga, R.; Yoshioka, R.; Yamamoto, J.; Kokudo, N. Repeat hepatectomy for recurrent liver metastasis from gastric carcinoma. World J. Surg. 2013, 37, 2664–2670. [Google Scholar] [CrossRef]
- Martella, L.; Bertozzi, S.; Londero, A.; Steffan, A.; De Paoli, P.; Bertola, G.; Zapata, E. Surgery for liver metastases from gastric cancer a meta-analysis of observational studies. Medincine 2015, 94, e1113. [Google Scholar]
- Markar, S.R.; Mikhail, S.; Malietzis, G.; Athanasiou, T.; Mariette, C.; Sasako, M.; Hanna, G.B. Influence of surgical resection of hepatic metastases from gastric adenocarcinoma on long-term survival: systematic review and pooled analysis. Ann. Surg. 2016, 263, 1092–1101. [Google Scholar] [CrossRef]
- Huddy, J.R.; Thomas, R.L.; Worthington, T.R.; Karanjia, N.D. Liver metastases from esophageal carcinoma: is there a role for surgical resection? Dis. Esophagus 2014, 28, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Aurello, P.; Petrucciani, N.; Giulitti, D.; Campanella, L.; D’Angelo, F.; Ramacciato, G. Pulmonary metastases from gastric cancer: Is there any indication for lung metastasectomy? A systematic review. Med. Oncol. 2015, 33, 9. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.D.; Kitano, M.; Kerkar, S.; Ripley, R.T.; Marquardt, J.U.; Schrump, D.S.; Avital, I. Pulmonary Resection for Metastatic Gastric Cancer. J. Thorac. Oncol. 2010, 5, 1796–1805. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Fukui, T.; Ito, S.; Shitara, K.; Ito, S.; Hatooka, S.; Mitsudomi, T. Pulmonary metastasectomy for gastric cancer: a 13-year single-institution experience. Surg. Today 2013, 43, 1382–1389. [Google Scholar] [CrossRef]
- Yoshida, Y.; Imakiire, T.; Yoneda, S.; Obuchi, T.; Inada, K.; Iwasaki, A. Ten cases of resected solitary pulmonary metastases arising from gastric cancer. Asian Cardiovasc. Thorac. Ann. 2013, 22, 578–582. [Google Scholar] [CrossRef]
- Kanamori, J.; Aokage, K.; Hishida, T.; Yoshida, J.; Tsuboi, M.; Fujita, T.; Nagino, M.; Daiko, H. The role of pulmonary resection in tumors metastatic from esophageal carcinoma. Jpn. J. Clin. Oncol. 2017, 47, 25–31. [Google Scholar] [CrossRef]
- Seesing, M.F.J.; Van Der Veen, A.; Brenkman, H.J.F.; Stockmann, H.B.A.C.; Nieuwenhuijzen, G.A.P.; Rosman, C.; Wildenberg, F.J.H.V.D.; Van Berge, H.; Van Duijvendijk, P.; Wijnhoven, B.P.L.; et al. Resection of hepatic and pulmonary metastasis from metastatic esophageal and gastric cancer: a nationwide study. Dis. Esophagus 2019. [Google Scholar] [CrossRef]
- Iijima, Y.; Akiyama, H.; Atari, M.; Fukuhara, M.; Nakajima, Y.; Kinosita, H.; Uramoto, H. Pulmonary Resection for Metastatic Gastric Cancer. Ann. Thorac. Cardiovasc. Surg. 2016, 22, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Sato, K.; Sakai, H.; Miyahara, R.; Bando, T.; Okubo, K.; Hirata, T.; Date, H. Pulmonary resection for metastasis from esophageal carcinoma. Interact. Cardiovasc. Thorac. Surg. 2008, 7, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Oguri, Y.; Okui, M.; Yamamichi, T.; Asakawa, A.; Harada, M.; Horio, H. The impact of pulmonary metastasectomy from gastric cancer. Mol. Clin. Oncol. 2019, 11, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mura, G.; Verdelli, B. The features of peritoneal metastases from gastric cancer. J. Cancer Metastasis Treat. 2016, 2, 365. [Google Scholar] [CrossRef]
- Mönig, S.P.; Van Hootegem, S.; Chevallay, M.; Wijnhoven, B.P. The role of surgery in advanced disease for esophageal and junctional cancer. Best Pr. Res. Clin. Gastroenterol. 2018, 36, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Huang, C.-Q.; Suo, T.; Mei, L.-J.; Yang, G.-L.; Cheng, F.-L.; Zhou, Y.-F.; Xiong, B.; Yonemura, Y.; Li, Y. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann. Surg. Oncol. 2011, 18, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, C.S.; The BIG RENAPE Group; You, B.; Decullier, E.; Vaudoyer, D.; Lorimier, G.; Abboud, K.; Bereder, J.-M.; Arvieux, C.; Boschetti, G.; et al. Patients with Peritoneal Carcinomatosis from Gastric Cancer Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: Is Cure a Possibility? Ann. Surg. Oncol. 2016, 23, 1971–1979. [Google Scholar] [PubMed]
- Bonnot, P.-E.; Piessen, G.; Kepenekian, V.; Decullier, E.; Pocard, M.; Meunier, B.; Bereder, J.-M.; Abboud, K.; Marchal, F.; Quenet, F.; et al. Cytoreductive Surgery With or Without Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer With Peritoneal Metastases (CYTO-CHIP study): A Propensity Score Analysis. J. Clin. Oncol. 2019, 37, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Boerner, T.; Graichen, A.; Jeiter, T.; Zemann, F.; Renner, P.; März, L.; Soeder, Y.; Schlitt, H.J.; Piso, P.; Dahlke, M.H. CRS-HIPEC Prolongs Survival but is Not Curative for Patients with Peritoneal Carcinomatosis of Gastric Cancer. Ann. Surg. Oncol. 2016, 23, 3972–3977. [Google Scholar] [CrossRef] [PubMed]
- Rudloff, U.; Langan, R.C.; Mullinax, J.E.; Beane, J.D.; Steinberg, S.M.; Beresnev, T.; Webb, C.C.; Walker, M.; Toomey, M.A.; Schrump, D.; et al. Impact of maximal cytoreductive surgery plus regional heated intraperitoneal chemotherapy (HIPEC) on outcome of patients with peritoneal carcinomatosis of gastric origin: results of the GYMSSA trial. J. Surg. Oncol. 2014, 110, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.H.; Peng, K.W.; Yu, Y.; Li, X.B.; Yonemura, Y.; Liu, Y.; Sugarbaker, P.H.; Li, Y. Current status and future prospects of clinical trials on CRS+ HIPEC for gastric cancer peritoneal metastases. Int. J. Hyperth. 2017, 33, 562–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onal, C.; Yildirim, B.A.; Guler, O.C. Outcomes of aggressive treatment in esophageal cancer patients with synchronous solitary brain metastasis. Mol. Clin. Oncol. 2017, 7, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Inderson, A.; Slingerland, M.; Sarasqueta, A.F.; De Steur, W.O.; Boonstra, J.J. EUS-guided radiofrequency ablation for a left adrenal oligometastasis of an esophageal adenocarcinoma. VideoGIE 2018, 3, 159–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, G.M.; Carty, S.E.; Armstrong, M.J.; Stang, M.T.; McCoy, K.L.; Bartlett, D.L.; Yip, L. Outcome and prognostic factors after adrenalectomy for patients with distant adrenal metastasis. Ann. Surg. Oncol. 2013, 20, 3491–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porschen, R.; Fischbach, W.; Gockel, I.; Hollerbach, S.; Hölscher, A.; Jansen, P.L.; Vanhoefer, U. S3-Leitlinie–Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus. Z. für Gastroenterol. 2019, 57, 336–418. [Google Scholar]
- Badgwell, B.; Roy-Chowdhuri, S.; Chiang, Y.-J.; Matamoros, A.; Blum, M.; Fournier, K.; Mansfield, P.; Ajani, J. Long-term survival in patients with metastatic gastric and gastroesophageal cancer treated with surgery. J. Surg. Oncol. 2015, 111, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Yajima, K.; Kosugi, S.-I.; Ishikawa, T.; Ajioka, Y.; Hatakeyama, K. Gastrectomy as a secondary surgery for stage IV gastric cancer patients who underwent S-1-based chemotherapy: a multi-institute retrospective study. Gastric Cancer 2011, 15, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.R.; Han, N.S.; Kong, S.-H.; Lee, H.-J.; Kim, S.H.; Kim, W.H.; Yang, H.-K. The Value of Palliative Gastrectomy in Gastric Cancer with Distant Metastasis. Ann. Surg. Oncol. 2011, 19, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Mönig, S.; Ott, K.; Gockel, I.; Lorenz, D.; Ludwig, K.; Messmann, H.; Moehler, M.; Pisp, P.; Weimann, A.; Meyer, H.J. S3-Leitlinie Magenkarzinom–Diagnostik und Therapie der Adenokarzinome des Magens und ösophagogastralen Übergangs. Der Chir. 2020, 91, 37–40. [Google Scholar] [CrossRef]
- Kawamoto, M.; Onishi, H.; Koya, N.; Konomi, H.; Mitsugi, K.; Tanaka, R.; Motoshita, J.; Morisaki, T.; Nakamura, M. Stage IV gastric cancer successfully treated by multidisciplinary therapy including chemotherapy, immunotherapy, and surgery: a case report. Surg. Case Rep. 2017, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Ajani, J.A.; Barthel, J.S.; Bentrem, D.J.; D’Amico, T.A.; Das, P.; Denlinger, C.S.; Hofstetter, W.L. Esophageal and esophagogastric junction cancers. J. Natl. Compr. Cancer Netw. 2011, 9, 830–887. [Google Scholar] [CrossRef] [Green Version]
- Blank, S.; Lordick, F.; Dobritz, M.; Grenacher, L.; Burian, M.; Langer, R.; Roth, W.; Schaible, A.; Becker, K.; Blaker, H.; et al. A reliable risk score for stage IV esophagogastric cancer. Eur. J. Surg. Oncol. 2013, 39, 823–830. [Google Scholar] [CrossRef]
- Schmidt, T.; Alldinger, I.; Blank, S.; Klose, J.; Springfeld, C.; Dreikhausen, L.; Weichert, W.; Grenacher, L.; Bruckner, T.; Lordick, F.; et al. Surgery in oesophago-gastric cancer with metastatic disease: Treatment, prognosis and preoperative patient selection. Eur. J. Surg. Oncol. 2015, 41, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Heger, U.; Sisic, L.; Nienhüser, H.; Blank, S.; Hinz, U.; Haag, G.M.; Ott, K.; Ulrich, A.; Büchler, M.W.; Schmidt, T. Neoadjuvant Therapy Improves Outcomes in Locally Advanced Signet-Ring-Cell Containing Esophagogastric Adenocarcinomas. Ann. Surg. Oncol. 2018, 25, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Nienhueser, H.; Kunzmann, R.; Sisic, L.; Blank, S.; Strowitzk, M.J.; Bruckner, T.; Jäger, D.; Weichert, W.; Ulrich, A.; Büchler, M.W.; et al. Surgery of gastric cancer and esophageal cancer: Does age matter? J. Surg. Oncol. 2015, 112, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Haag, G.M.; Czink, E.; Ahadova, A.; Schmidt, T.; Sisic, L.; Blank, S.; Heger, U.; Apostolidis, L.; Berger, A.K.; Springfeld, C.; et al. Prognostic significance of microsatellite-instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy. Int. J. Cancer 2019, 144, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Illerhaus, G.; Martens, U.M.; Stoehlmacher, J.; Schmalenberg, H.; Luley, K.B.; Prasnikar, N.; Egger, M.; et al. Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer: The AIO-FLOT3 Trial. JAMA Oncol. 2017, 3, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Goetze, T.O.; Mueller, D.W.; Vogel, A.; Winkler, M.; Lorenzen, S.; Novotny, A.; Pauligk, C.; Homann, N.; Jungbluth, T.; et al. The RENAISSANCE (AIO-FLOT5) trial: effect of chemotherapy alone vs. chemotherapy followed by surgical resection on survival and quality of life in patients with limited-metastatic adenocarcinoma of the stomach or esophagogastric junction - a phase III trial of the German AIO/CAO-V/CAOGI. BMC Cancer 2017, 17, 893. [Google Scholar]
- Schmidt, T.; Mönig, S.P. Therapeutic approach in oligometastatic gastric and esophageal cancer. Der Chir. Z. fur alle Geb. der Oper. Medizen 2017, 88, 1024–1032. [Google Scholar]
- Sisic, L.; Blank, S.; Nienhueser, H.; Dorr, S.; Haag, G.M.; Jäger, D.; Ott, K.; Ulrich, A.; Schmidt, T.; Strowitzki, M.J.; et al. Postoperative follow-up programs improve survival in curatively resected gastric and junctional cancer patients: a propensity score matched analysis. Gastric Cancer 2017, 21, 552–568. [Google Scholar] [CrossRef] [Green Version]
- Beckert, S.; Königsrainer, A. Oligometastases in gastric and esophageal cancer: Current clinical trials and surgical concepts. Der Chir. Z. fur alle Geb. der Oper. Medizen 2018, 89, 505–509. [Google Scholar]
- Erhunmwunsee, L.; Englum, B.R.; Onaitis, M.W.; D’Amico, T.A.; Berry, M.F. Impact of pretreatment imaging on survival of esophagectomy after induction therapy for esophageal cancer: who should be given the benefit of the doubt?: esophagectomy outcomes of patients with suspicious metastatic lesions. Ann. Surg. Oncol. 2014, 22, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- Arigami, T.; Uenosono, Y.; Yanagita, S.; Okubo, K.; Kijima, T.; Matsushita, D.; Amatatsu, M.; Kurahara, H.; Maemura, K.; Natsugoe, S. Clinical significance of circulating tumor cells in blood from patients with gastric cancer. Ann. Gastroenterol. Surg. 2017, 1, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Ma, X.; Bi, F.; Liu, M. Clinical significance of circulating tumor cells in gastric cancer patients. Oncotarget 2017, 8, 25713–25720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-S.; Yoo, S.Y.; Cho, C.K.; Yoo, H.J.; Yang, K.M.; Kang, J.K.; Lee, N.H.; Lee, J.I.; Bang, H.Y.; Kim, M.S.; et al. Stereotactic Body Radiotherapy for Isolated Para-aortic Lymph Node Recurrence after Curative Resection in Gastric Cancer. J. Korean Med. Sci. 2009, 24, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Tree, A.C.; Khoo, V.S.; Eeles, R.A.; Ahmed, M.; Dearnaley, D.P.; Hawkins, M.A.; Huddart, R.A.; Nutting, C.M.; Ostler, P.J.; Van As, N.J. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013, 14, e28–e37. [Google Scholar] [CrossRef]
- Fode, M.M.; Høyer, M. Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother. Oncol. 2015, 114, 155–160. [Google Scholar] [CrossRef]
- Matsushita, H.; Jingu, K.; Umezawa, R.; Yamamoto, T.; Ishikawa, Y.; Takahashi, N.; Katagiri, Y.; Kadoya, N. Stereotactic Radiotherapy for Oligometastases in Lymph Nodes—A Review. Technol. Cancer Res. Treat. 2018, 17, 1533033818803597. [Google Scholar] [CrossRef]
- Bossé, D.; Ng, T.; Ahmad, C.; Alfakeeh, A.; Alruzug, I.; Biagi, J.; Brierley, J.; Chaudhury, P.; Cleary, S.; Colwell, B.; et al. Eastern Canadian Gastrointestinal Cancer Consensus Conference. Curr. Oncol. 2016, 23, e605–e614. [Google Scholar]
Authors | Year 2 | n | 1 Year Survival | 3 Year Survival | 5 Year Survival | Median Survival | Survival Factors | Ref. |
---|---|---|---|---|---|---|---|---|
Kinoshita et al. | 2015 | 256 | 77.3% | 41.9% | 31.1% | 31 mths. | serosal invasion, metastases amount, diameter of met. | [65] |
Ministrini et al. | 2018 | 144 | 49.9% | 19.4% | 11.6% | 12 mths. | T4-status, H3-met., curability, recurr., no chemotherapy | [66] |
Markar et al. | 2016 | 78 | 64.1% | - | 38.5% | - | mainly comorbidities | [67] |
Oki et al. | 2016 | 69 | 86.5% | 51.4% | 42.3% | 41 mths. | solitary hep. lesions, low-grade lymph node metastases | [68] |
Tiberio et al. | 2016 | 105 | 58.2% | 20.3% | 13.1% | 15 mths. | T-status, curability, met. timing, adj. chemotherapy | [69] |
Takemura et al. 3 | 2013 | 73 | 71.0% | 47.0% | 47.0% | 30.7 mths. | duration of disease-free interval | [70] |
Authors | Year 1 | n | 1 Year Survival | 3 Year Survival | 5 Year Survival | Median Survival | Time Span | Ref. |
---|---|---|---|---|---|---|---|---|
Kemp et al. 2 | 2010 | 43 | - | - | 33% | 29 mths. | 1975–2008 | [75] |
Aurello et al. 2 | 2016 | 44 | see beneath | 45 mths. | 1998–2013 | [74] | ||
Kobayashi et al.2 | 2013 | 12 | - | - | 58.4% | 66.7 mths. | 1998–2011 | [76] |
Yoshida et al. 2 | 2013 | 10 | 100% | 100% | 75% 4 | - | 2003–2012 | [77] |
Kanamori et al. 3 | 2018 | 33 | 79.4% | 47.8% | 43.0% | 17.9 mths. | 1992–2013 | [78] |
Seesing et al. 2,3 | 2019 | 15 | 67% | 53% | 53% | - | 1991–2016 | [79] |
Iijima et al. 2 | 2016 | 10 | - | 30.0% | - | - | 1985–2010 | [80] |
Authors | Type | Year 2 | Groups | n | Survival Rate | Median Survival | Prognostic Factors | Ref. |
---|---|---|---|---|---|---|---|---|
Yang et al. | Phase III RCT | 2011 | CRS alone | 34 | 0% 3 | 6.5 mths. | completeness of cytoreduction, synchronous PC | [85] |
CRS+HIPEC | 34 | 5.9% 3 | 11.0 mths. | |||||
Bonnot et al. | multicenter, pro- and retrospective | 2019 | CRS alone | 97 | 6.4% 4 | 12.1 mths. | tumor location, signet ring cell, pT, pN, low PCI, CCS | [87] |
CRS+HIPEC | 180 | 19.9% 4 | 18.8 mths. | |||||
Chia et al. | multicenter, retrospective | 2016 | CRS+HIPEC | 81 | 18% 4 | 17.3 mths. | synchronous resection, low PCI, CCS | [86] |
Boerner et al. | single center, retrospective | 2016 | standard 5 | 27 | 0% 3 | 11.0 mths. | HIPEC, age | [88] |
CRS+HIPEC | 38 | 24.1% 3 | 17.2 mths. | |||||
Rudloff et al. | prospective randomized trial | 2014 | standard 5 | 8 | 0% 7 | 4.3 mths. | completeness of cytoreduction, low PCI | [89] |
GYMS Arm 6 | 9 | 44.4%7 | 11.3 mths. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-O.; Nienhüser, H.; Schleussner, N.; Schmidt, T. Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach. Int. J. Mol. Sci. 2020, 21, 951. https://doi.org/10.3390/ijms21030951
Jung J-O, Nienhüser H, Schleussner N, Schmidt T. Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach. International Journal of Molecular Sciences. 2020; 21(3):951. https://doi.org/10.3390/ijms21030951
Chicago/Turabian StyleJung, Jin-On, Henrik Nienhüser, Nikolai Schleussner, and Thomas Schmidt. 2020. "Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach" International Journal of Molecular Sciences 21, no. 3: 951. https://doi.org/10.3390/ijms21030951
APA StyleJung, J. -O., Nienhüser, H., Schleussner, N., & Schmidt, T. (2020). Oligometastatic Gastroesophageal Adenocarcinoma: Molecular Pathophysiology and Current Therapeutic Approach. International Journal of Molecular Sciences, 21(3), 951. https://doi.org/10.3390/ijms21030951