Growth and Maturation in Development: A Fly’s Perspective
Abstract
:1. Steroid Hormones Promote the Juvenile to Adult Maturation Transition
2. The Insulin/IGF Signal Controls Juvenile Growth
3. Feedback Mechanisms between Maturation and Growth Hormones
4. The Relaxin-Like System, DILP8/Lgr3, Coordinates Juvenile Regeneration, and Time of Maturation
5. DILP8/GCL System Determines Bilateral Organ Size Symmetry Ensuring Developmental Stability
6. AstA/KISS System Coordinates Growth and Maturation in Drosophila
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plant, T.M. The hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015, 226, T41–T54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tena-Sempere, M. Keeping puberty on time. In Novel Signals and Mechanisms Involved, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 105, pp. 299–329. [Google Scholar] [CrossRef]
- Plant, T.M. Neuroendocrine control of the onset of puberty. Front. Neuroendocrinol. 2015, 38, 73–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, V.B.; Nazian, S.J. Role of sex steroids in the initiation of puberty. J. Steroid Biochem. 1979, 11, 587–591. [Google Scholar] [CrossRef]
- Kopec, S. Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. 1922, 36, 459–466. [Google Scholar]
- Wigglesworth, V.B. The Physiology of Ecdysis in Rhodnius Pro- lixus (Hemiptera). II. Factors controlling Moulting and “Metamorphosis”. Quart. J. Micr. Sci. 1934, 77, 193–221. [Google Scholar]
- McBrayer, Z.; Ono, H.; Shimell, M.; Parvy, J.-P.; Beckstead, R.B.; Warren, J.T.; Thummel, C.S.; Dauphin-Villemant, C.; Gilbert, L.I.; O’Connor, M.B. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 2007, 13, 857–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimell, M.; Pan, X.; Martín, F.A.; Ghosh, A.C.; Léopold, P.; O’Connor, M.B.; Romero, N.M. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018, 145, dev159699. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.T.; Yerushalmi, Y.; Shimell, M.J.; O’Connor, M.B.; Restifo, L.L.; Gilbert, L.I. Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development of Drosophila melanogaster: Correlations with changes in gene activity. Dev. Dyn. 2006, 235, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, N.; Romero, N.M.; Martin, F.A.; Rewitz, K.F.; Sun, M.; O’Connor, M.B.; Léopold, P. Neuroendocrine control of Drosophila larval light preference. Science 2013, 341, 1113–1116. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; O’Connor, M.B. Developmental Maturation: Drosophila AstA Signaling Provides a Kiss to Grow Up. Curr. Boil. 2019, 29, R161–R164. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.; Sävendahl, L.; Luca, F.D.; Dauber, A.; Phillip, M.; Wit, J.M.; Nilsson, O. Short and tall stature: A new paradigm emerges. Nat. Rev. Endocrinol. 2016, 11, 735–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulan, L.; Milán, M.; Léopold, P. The Systemic Control of Growth. Cold Spring Harb. Perspect. Biol. 2015, 7, a019117. [Google Scholar] [CrossRef]
- Nijhout, H.F.; Riddiford, L.M.; Shingleton, A.W. The Developmental Control of Size in Insects. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Tennessen, J.M.; Thummel, C.S. Coordinating growth and maturation - insights from Drosophila. Curr. Boil. 2011, 21, R750–R757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stieper, B.C.; Kupershtok, M.; Driscoll, M.V.; Shingleton, A.W. Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev. Boil. 2008, 321, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, B.A. How flies get their size: Genetics meets physiology. Nat. Rev. Genet. 2006, 7, 907–916. [Google Scholar] [CrossRef]
- LeRoith, D.; Yakar, S. Mechanisms of Disease: Metabolic effects of growth hormone and insulin-like growth factor 1. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 302–310. [Google Scholar] [CrossRef]
- Okamoto, N.; Yamanaka, N.; Yagi, Y.; Nishida, Y.; Kataoka, H.; O’Connor, M.B.; Mizoguchi, A. A Fat Body-Derived IGF-like Peptide Regulates Postfeeding Growth in Drosophila. Dev. Cell 2009, 17, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Gronke, S.; Partridge, L.; Le, P. A Drosophila Insulin-like Peptide Promotes Growth during Nonfeeding States. Dev. Cell 2009, 17, 874–884. [Google Scholar]
- Colombani, J.; Andersen, D.S.; Léopold, P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 2012, 336, 582–585. [Google Scholar] [CrossRef]
- Garelli, A.; Gontijo, A.M.; Miguela, V.; Caparros, E.; Dominguez, M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 2012, 336, 579–582. [Google Scholar] [CrossRef]
- Rulifson, E.J.; Kim, S.K.; Nusse, R. Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes. Science 2002, 296, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Colombani, J.; Raisin, S.; Pantalacci, S.; Radimerski, T.; Montagne, J.; Le, P. A nutrient sensor mechanism controls Drosophila growth. Cell 2003, 114, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Géminard, C.; Rulifson, E.J.; Léopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 2009, 10, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, A.; Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012, 151, 123–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulay, J.; Shea, J.J.O.; Paul, W.E. Molecular Phylogeny within Type I Cytokines and Their Cognate Receptors. Immunity 2003, 19, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Sano, H.; Nakamura, A.; Texada, M.J.; Truman, J.W.; Ishimoto, H.; Kamikouchi, A.; Nibu, Y.; Kume, K.; Ida, T.; Kojima, M. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLoS Genet. 2015, 3, 1–26. [Google Scholar]
- Feng, Y.; Guan, X.-M.; Li, J.; Metzger, J.M.; Zhu, Y.; Juhl, K.; Zhang, B.B.; Thornberry, N.A.; Reitman, M.L.; Zhou, Y.-P. Glucose-Stimulated Insulin Secretion in Pancreatic Islets across Multiple Species. Endocrinology 2011, 152, 4106–4115. [Google Scholar] [CrossRef] [Green Version]
- Delanoue, R.; Meschi, E.; Agrawal, N.; Mauri, A.; Tsatskis, Y.; McNeill, H.; Léopold, P. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 2016, 353, 1553–1556. [Google Scholar] [CrossRef] [Green Version]
- Koyama, T.; Mirth, C.K. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation. PLoS Biol. 2016, 14, 1–23. [Google Scholar]
- Meschi, E.; Le, P.; Delanoue, R. An EGF-Responsive Neural Circuit Couples Insulin Secretion with Nutrition in Drosophila. Dev. Cell 2019, 48, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, N.; Delanoue, R.; Mauri, A.; Basco, D.; Pasco, M.; Thorens, B.; Léopold, P. The Drosophila TNF Eiger Is an Adipokine that Acts on Insulin-Producing Cells to Mediate Nutrient Response. Cell Metab. 2016, 23, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhang, M.; Feng, J.; Gong, Z. Cold sensing regulates. Nat. Commun. 2015, 6, 10083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Texada, M.J.; Jørgensen, A.F.; Christensen, C.F.; Koyama, T.; Malita, A.; Smith, D.K.; Marple, D.F.M.; Danielsen, E.T.; Petersen, S.K.; Hansen, J.L.; et al. A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat. Commun. 2019, 10, 1955. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Barretto, E.C.; Grewal, S.S. TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011, 14, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Colombani, J.; Bianchini, L.; Layalle, S.; Pondeville, E.; Dauphin-Villemant, C.; Antoniewski, C.; Carré, C.; Noselli, S.; Léopold, P. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 2005, 310, 667–670. [Google Scholar] [CrossRef]
- Koyama, T.; Rodrigues, M.A.; Athanasiadis, A.; Shingleton, A.W.; Mirth, C.K. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. Elife 2014, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, P.E.; Walkiewicz, M.; Stern, M. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 2005, 15, 1785–1795. [Google Scholar] [CrossRef] [Green Version]
- Mirth, C.; Truman, J.W.; Riddiford, L.M. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 2005, 15, 1796–1807. [Google Scholar] [CrossRef] [Green Version]
- Mila, M.; Boulan, L.; Martı, D.; Reixac, D.B. bantam miRNA Promotes Systemic Growth by Connecting Insulin Signaling and Ecdysone Production. Curr. Boil. 2013, 23, 473–478. [Google Scholar]
- Layalle, S.; Arquier, N.; Léopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 2008, 15, 568–577. [Google Scholar] [CrossRef]
- Gibbens, Y.Y.; Warren, J.T.; Gilbert, L.I.; O’Connor, M.B. Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/Activin signaling. Development 2011, 138, 2693–2703. [Google Scholar] [CrossRef] [Green Version]
- Moeller, M.E.; Nagy, S.; Gerlach, S.U.; Soegaard, K.C.; Danielsen, E.T.; Texada, M.J.; Rewitz, K.F. Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Curr. Biol. 2017, 27, 1652–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Texada, M.J.; Malita, A.; Christensen, C.F.; Dall, K.B.; Faergeman, N.J.; Nagy, S.; Halberg, K.A.; Rewitz, K. Autophagy-Mediated Cholesterol Trafficking Controls Steroid Production. Dev. Cell 2019, 48, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Neufeld, T.P.; O’Connor, M.B. A Tissue- and Temporal-Specific Autophagic Switch Controls Drosophila Pre-metamorphic Nutritional Checkpoints. Curr. Biol. 2019, 29, 2840–2851. [Google Scholar] [CrossRef]
- Shimada-Niwa, Y.; Niwa, R. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nat. Commun. 2014, 5, 5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galagovsky, D.; Depetris-Chauvin, A.; Manière, G.; Geillon, F.; Berthelot-Grosjean, M.; Noirot, E.; Alves, G.; Grosjean, Y. Sobremesa L-type Amino Acid Transporter Expressed in Glia Is Essential for Proper Timing of Development and Brain Growth. Cell Rep. 2018, 24, 3156–3166. [Google Scholar] [CrossRef] [Green Version]
- Delanoue, R.; Slaidina, M.; Léopold, P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev. Cell 2010, 18, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Herboso, L.; Oliveira, M.M.; Talamillo, A.; Pérez, C.; González, M.; Martín, D.; Sutherland, J.D.; Shingleton, A.W.; Mirth, C.K.; Barrio, R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci. Rep. 2015, 5, 12383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.J.; Han, G.; Yun, H.M.; Lim, J.J.; Noh, S.; Lee, J.; Hyun, S. Steroid signaling mediates nutritional regulation of juvenile body growth via IGF-binding protein in Drosophila. Proc. Natl. Acad. Sci. USA 2018, 115, 5992–5997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.; Lin, J.; Cranna, N.; Lee, A.J.E.; Mitchell, N.; Hannan, R. Steroid hormones in Drosophila: How ecdysone coordinates developmental signalling with cell growth and division. In Steroids—Basic Science; InTech: London, UK, 2012. [Google Scholar]
- Russell, A. Pattern Formation in the lmaginal Mutant Discs of a Temperature-Sensitive melanogaster of Drosophila. Dev. Biol. 1974, 39, 24–39. [Google Scholar] [CrossRef]
- Halme, A.; Cheng, M.; Hariharan, I.K. Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr. Biol. 2010, 20, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo, D.M.; Juarez-Carreño, S.; Bolivar, J.; Morante, J.; Dominguez, M. A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 2015, 350, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Colombani, J.; Andersen, D.S.; Boulan, L.; Boone, E.; Romero, N.; Virolle, V.; Texada, M.; Léopold, P. Drosophila Lgr3 Couples Organ Growth with Maturation and Ensures Developmental Stability. Curr. Biol. 2015, 25, 2723–2729. [Google Scholar] [CrossRef] [Green Version]
- Garelli, A.; Heredia, F.; Casimiro, A.P.; Macedo, A.; Nunes, C.; Garcez, M.; Dias, A.R.M.; Volonte, Y.A.; Uhlmann, T.; Caparrós, E.; et al. Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat. Commun. 2015, 6, 8732. [Google Scholar] [CrossRef] [Green Version]
- Jaszczak, J.S.; Wolpe, J.B.; Bhandari, R.; Jaszczak, R.G.; Halme, A. Growth coordination during Drosophila melanogaster imaginal disc regeneration is mediated by signaling through the relaxin receptor Lgr3 in the prothoracic gland. Genetics 2016, 204, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Joyner, A.L. Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth in developing mice. PLoS Boil. 2018, 16, 1–28. [Google Scholar]
- Boulan, L.; Andersen, D.; Colombani, J.; Boone, E.; Le, P. Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila Short Article Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila. Dev. Cell 2019, 49, 811–818. [Google Scholar] [CrossRef]
- Andersen, D.S.; Colombani, J.; Léopold, P. Drosophila growth and development: Keeping things in proportion. Cell Cycle 2012, 11, 2971–2972. [Google Scholar] [CrossRef] [Green Version]
- Boone, E.; Colombani, J.; Andersen, D.S.; Le, P. The Hippo signalling pathway coordinates organ. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Van Hiel, M.B.; Vandersmissen, H.P.; Van Loy, T.; Vanden Broeck, J. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 2012, 34, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bathgate, R.A.D.; Halls, M.L.; van der Westhuizen, E.T.; Callander, G.E.; Kocan, M.; Summers, R.J. Relaxin family peptides and their receptors. Physiol. Rev. 2013, 93, 405–480. [Google Scholar] [CrossRef] [PubMed]
- Van Hiel, M.B.; Vandersmissen, H.P.; Proost, P.; Vanden Broeck, J. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster. Peptides 2015, 68, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, A.M.; Garelli, A. The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control. Mech. Dev. 2018, 154, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Kanasaki, H.; Tumurbaatar, T.; Tumurgan, Z.; Oride, A.; Okada, H.; Kyo, S. Effect of relaxin-3 on Kiss-1, gonadotropin-releasing hormone, and gonadotropin subunit gene expression. Reprod. Med. Biol. 2019, 18, 397–404. [Google Scholar] [CrossRef]
- Hanafy, S.; Sabry, J.H.; Akl, E.M.; Elethy, R.A.; Mostafa, T. Serum relaxin-3 hormone relationship to male delayed puberty. Andrologia 2018, 50, 1–5. [Google Scholar] [CrossRef]
- Deveci, D.; Martin, F.A.; Leopold, P.; Romero, N.M. AstA Signaling Functions as an Evolutionary Conserved Mechanism Timing Juvenile to Adult Transition. Curr. Biol. 2019, 29, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Félix, R.C.; Trindade, M.; Pires, I.R.P.; Fonseca, V.G.; Martins, R.S.; Silveira, H.; Power, D.M.; Cardoso, J.C.R. Unravelling the evolution of the allatostatin-type A, KISS and galanin peptide-receptor gene families in bilaterians: Insights from Anopheles mosquitoes. PLoS ONE 2015, 10, 1–30. [Google Scholar] [CrossRef]
- Elphick, M.R.; Mirabeau, O.; Larhammar, D. Evolution of neuropeptide signalling systems. J. Exp. Biol. 2018, 221, jeb151092. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.C.R.; Félix, R.C.; Bjärnmark, N.; Power, D.M. Allatostatin-type A, kisspeptin and galanin GPCRs and putative ligands as candidate regulatory factors of mantle function. Mar. Genom. 2016, 27, 25–35. [Google Scholar] [CrossRef]
- Jékely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 8702–8707. [Google Scholar] [CrossRef] [Green Version]
- Mirabeau, O.; Joly, J.S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. USA 2013, 110, E2028–E2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.-K.; Yun, S.; Son, G.H.; Hwang, J.-I.; Park, C.R.; Kim, J.I.; Kim, K.; Vaudry, H.; Seong, J.Y. Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 2014, 155, 1864–1873. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.A.; Song, W.J.; Wolfe, A. There is Kisspeptin—And Then There is Kisspeptin. Trends Endocrinol. Metab. 2015, 26, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.T.; Clifton, D.K.; Steiner, R.A. Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction 2006, 131, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedes, I. Kisspeptins and the control of gonadotrophin secretion. Syst. Biol. Reprod. Med. 2012, 58, 121–128. [Google Scholar] [CrossRef]
- Meinhardt, U.J.; Ho, K.K.Y. Modulation of growth hormone action by sex steroids. Clin. Endocrinol. 2006, 65, 413–422. [Google Scholar] [CrossRef]
- Chang, J.P.; Mar, A.; Wlasichuk, M.; Wong, A.O.L. General and Comparative Endocrinology Kisspeptin-1 directly stimulates LH and GH secretion from goldfish pituitary cells in a Ca 2 + -dependent manner. Gen. Comp. Endocrinol. 2012, 179, 38–46. [Google Scholar] [CrossRef]
- Kadokawa, H.; Suzuki, S.; Hashizume, T. Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Anim. Reprod. Sci. 2008, 105, 404–408. [Google Scholar] [CrossRef]
- Tena-sempere, M.; Kineman, R.D.; Castan, J.P. Kisspeptin Regulates Gonadotroph and Somatotroph Function in Nonhuman Primate Pituitary via Common and Distinct Signaling Mechanisms. Endocrinology 2011, 152, 957–966. [Google Scholar]
- Martı, A.J. Direct Pituitary Effects of Kisspeptin: Activation of Gonadotrophs and Somatotrophs and Stimulation of Luteinising Hormone and Growth Hormone Secretion. Neuroendocrinology 2007, 54, 521–530. [Google Scholar]
- Ahmed, A.E.; Saito, H.; Sawada, T.; Yaegashi, T.; Yamashita, T.; Hirata, T.-I.; Sawai, K.; Hashizume, T. Characteristics of the Stimulatory Effect of Kisspeptin-10 on the Secretion of Luteinizing Hormone, Follicle-Stimulating Hormone and Growth Hormone in Prepubertal Male and Female Cattle. J. Reprod. Dev. 2009, 55, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, T.; Saito, H.; Sawada, T.; Yaegashi, T.; Ezzat, A.A.; Sawai, K.; Yamashita, T. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim. Reprod. Sci. 2010, 118, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lents, C.A.; Heidorn, N.L.; Barb, C.R.; Ford, J.J. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008, 135, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delanoue, R.; Romero, N.M. Growth and Maturation in Development: A Fly’s Perspective. Int. J. Mol. Sci. 2020, 21, 1260. https://doi.org/10.3390/ijms21041260
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly’s Perspective. International Journal of Molecular Sciences. 2020; 21(4):1260. https://doi.org/10.3390/ijms21041260
Chicago/Turabian StyleDelanoue, Renald, and Nuria M. Romero. 2020. "Growth and Maturation in Development: A Fly’s Perspective" International Journal of Molecular Sciences 21, no. 4: 1260. https://doi.org/10.3390/ijms21041260
APA StyleDelanoue, R., & Romero, N. M. (2020). Growth and Maturation in Development: A Fly’s Perspective. International Journal of Molecular Sciences, 21(4), 1260. https://doi.org/10.3390/ijms21041260