Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides
Abstract
:1. Introduction
1.1. Skeletal Muscle Ceramides and Physical Inactivity-Induced Insulin Resistance
1.2. Source of Substrate for Production and/or Accumulation of Ceramide in Muscle
1.3. Intracellular Biochemical Pathways and Enzymes Controlling Ceramides
2. Aging and Ceramide
3. Longitudinal Studies in Rodents
4. Cross-Sectional Studies in Humans
5. Longitudinal Studies in Humans
6. Mechanisms and Considerations
6.1. Are Ceramides Involved in the Development of IR or a Mechanism to Worsen the Severity of Inactivity-Induced IR in Aging?
6.2. Subcellular Assessments of Ceramide
6.3. Conclusions
6.4. Future Challenges and Directions
7. Summary
- Though lipid/obesity induced insulin resistance is well examined, the mechanism(s) linking activity to insulin sensitivity is largely unknown, particularly in aging.
- Aging is only linked to increased skeletal muscle ceramide content in obese individuals.
- Cross-sectional studies of exercise-trained adults reveal a range of insulin sensitivities related to physical activity level that are independent of skeletal muscle ceramide content and species. Indeed, acute exercise in healthy humans may actually increase ceramide content within skeletal muscle.
- By comparison, longitudinal studies indicate that exercise may not impact ceramides in skeletal muscle of healthy individuals but is rather more likely to decrease skeletal muscle ceramides in individuals with previously elevated ceramides resulting from obesity or T2D.
- Clarity of the role of skeletal muscle ceramides on insulin sensitivity during physical activity may be enhanced with improved methodologies to evaluate distinct ceramide species (e.g., with different acyl-chains), their subcellular distribution, and their turnover. Additionally, there is a need for mechanistic genetic studies of ceramide metabolism examining the interaction between physical activity level and insulin sensitivity. Greater attention to these nuances of ceramide action could unveil relationships which may be masked in prior literature.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Agha, M.; Agha, R. The rising prevalence of obesity: Part A: Impact on public health. Int. J. Surg. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Vorup, J.; Pedersen, M.T.; Brahe, L.K.; Melcher, P.S.; Alstrøm, J.M.; Bangsbo, J. Effect of small-sided team sport training and protein intake on muscle mass, physical function and markers of health in older untrained adults: A randomized trial. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Data & Statistics. Diabetes; CDC: Atlanta, GA, USA, 2017.
- Liao, C.-D.; Tsauo, J.-Y.; Wu, Y.-T.; Cheng, C.-P.; Chen, H.-C.; Huang, Y.-C.; Chen, H.-C.; Liou, T.-H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 1078–1091. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report; U.S. Dept. of Health and Human Services: Atlanta, GA, USA, 2017.
- WHO. Prevalence of Insufficient Physical Activity; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Thyfault, J.P.; Krogh-Madsen, R. Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J. Appl. Physiol. 2011, 111, 1218–1224. [Google Scholar] [CrossRef] [Green Version]
- Thyfault, J.P.; Booth, F.W. Lack of regular physical exercise or too much inactivity. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 374–378. [Google Scholar] [CrossRef]
- Mechling, H.; Netz, Y. Aging and inactivity—Capitalizing on the protective effect of planned physical activity in old age. Eur. Rev. Aging Phys. Act. 2009, 6, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Booth, F.W.; Zwetsloot, K.A. Basic concepts about genes, inactivity and aging. Scand. J. Med. Sci. Sports 2010, 20, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.L.; Chokkalingham, K.; Srinivasan, R. Obesity in the elderly: Who should we be treating, and why, and how? Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 3–9. [Google Scholar] [CrossRef]
- Watson, K.B.; Carlson, S.A.; Gunn, J.P.; Galuska, D.A.; O’Connor, A.; Greenlund, K.J.; Fulton, J.E. Physical Inactivity Among Adults Aged 50 Years and Older-United States, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 954–958. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar]
- Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol. Rev. 2017, 97, 1351–1402. [Google Scholar] [CrossRef] [PubMed]
- Fink, R.I.; Kolterman, O.G.; Griffin, J.; Olefsky, J.M. Mechanisms of Insulin Resistance in Aging. J. Clin. Investig. 1983, 71, 1523–1535. [Google Scholar] [CrossRef] [PubMed]
- Burant, C.F.; Lemmon, S.K.; Treutelaar, M.K.; Buse, M.G. Insulin resistance of denervated rat muscle: A model for impaired receptor-function coupling. Am. J. Physiol. Metab. 1984, 247, E657–E666. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.A.; Boggs, K.P.; Buse, M.G. Okadaic acid, insulin, and denervation effects on glucose and amino acid transport and glycogen synthesis in muscle. Am. J. Physiol. Metab. 1993, 265, E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Sowell, M.O.; Boggs, K.P.; Robinson, K.A.; Dutton, S.L.; Buse, M.G. Effects of insulin and phospholipase C in control and denervated rat skeletal muscle. Am. J. Physiol. Metab. 1991, 260, E247–E256. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, B.; Summers, S.A. Ceramides–Lipotoxic Inducers of Metabolic Disorders: (Trends in Endocrinology and Metabolism 26, 538–550; 2015). Trends Endocrinol. Metab. 2018, 29, 66–67. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Wolf, D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr. Diabetes 2004, 5, 219–226. [Google Scholar] [CrossRef]
- Lee, Y.S.; Li, P.; Huh, J.Y.; Hwang, I.J.; Lu, M.; Kim, J.I.; Ham, M.; Talukdar, S.; Chen, A.; Lu, W.J.; et al. Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet–Induced Insulin Resistance. Diabetes 2011, 60, 2474–2483. [Google Scholar] [CrossRef] [Green Version]
- Summers, S.A.; Goodpaster, B.H. CrossTalk proposal: Intramyocellular ceramide accumulation does modulate insulin resistance. J. Physiol. 2016, 594, 3167–3170. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.C.; Jurczak, M.J. CrossTalk opposing view: Intramyocellular ceramide accumulation does not modulate insulin resistance. J. Physiol. 2016, 594, 3171–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Søgaard, D.; Baranowski, M.; Larsen, S.; Lund, M.T.; Scheuer, C.M.; Abildskov, C.V.; Dideriksen, S.G.; Dela, F.; Helge, J.W. Muscle-Saturated Bioactive Lipids Are Increased with Aging and Influenced by High-Intensity Interval Training. Int. J. Mol. Sci. 2019, 20, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, D.A.; Morris, E.P.; Haran, P.H.; Pasha, E.P.; Morais, M.d.; Dolnikowski, G.G.; Phillips, E.M.; Fielding, R.A. Increased ceramide content and NFkappaB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J. Appl. Physiol. 2012, 113, 1727–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moro, C.; Galgani, J.E.; Luu, L.; Pasarica, M.; Mairal, A.; Bajpeyi, S.; Schmitz, G.; Langin, M.; Liebisch, G.; Smith, S.R. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J. Clin. Endocrinol. Metab. 2009, 94, 3440–3447. [Google Scholar] [CrossRef] [Green Version]
- Søgaard, D.; Baranowski, M.; Dela, F.; Helge, J.W. The Influence of Age and Cardiorespiratory Fitness on Bioactive Lipids in Muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 778–786. [Google Scholar] [CrossRef]
- Chee, C.; Shannon, C.E.; Burns, A.; Selby, A.L.; Wilkinson, D.; Smith, K.; Greenhaff, P.L.; Stephens, F.B. Relative Contribution of Intramyocellular Lipid to Whole-Body Fat Oxidation Is Reduced With Age but Subsarcolemmal Lipid Accumulation and Insulin Resistance Are Only Associated With Overweight Individuals. Diabetes 2016, 65, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.L.; Knotts, T.A.; Chávez, J.A.; Wang, L.-P.; Hoehn, K.L.; Summers, S.A. Lipid Mediators of Insulin Resistance. Nutr. Rev. 2007, 65, 39–46. [Google Scholar] [CrossRef]
- Kirwan, J.P. Plasma ceramides target skeletal muscle in type 2 diabetes. Diabetes 2013, 62, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, A.L.; Ligutti, J.A.; Gellings, N.M.; Castro, E.; Page, M.T.; Klepper, R.E.; Palade, P.T.; McNutt, W.T.; Sabbadini, R.A. The Role of TNFα and Sphingolipid Signaling in Cardiac Hypoxia: Evidence that Cardiomyocytes Release TNFα and Sphingosine. Basic Appl. Myol. 2002, 12, 167–175. [Google Scholar]
- Baranowski, M.; Błachnio-Zabielska, A.U.; Charmas, M.; Helge, J.W.; Dela, F.; Książek, M.; Długołęcka, B.; Klusiewicz, A.; Chabowski, A.; Jan, G. Exercise increases sphingoid base-1-phosphate levels in human blood and skeletal muscle in a time- and intensity-dependent manner. Eur. J. Appl. Physiol. 2015, 115, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012, 441, 789–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; et al. Obesity-Induced CerS6-Dependent C16:0 Ceramide Production Promotes Weight Gain and Glucose Intolerance. Cell Metab. 2014, 20, 678–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichur, S.; Wang, S.T.; Chan, P.W.; Li, Y.; Ching, J.; Chaurasia, B.; Dogra, S.; Ohman, M.K.; Takeda, K.; Sugii, S.; et al. CerS2 Haploinsufficiency Inhibits β-Oxidation and Confers Susceptibility to Diet-Induced Steatohepatitis and Insulin Resistance. Cell Metab. 2014, 20, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, B.C.; Brozinick, J.T.; Strauss, A.; Bacon, S.; Kerege, A.; Bui, H.H.; Sanders, P.; Siddall, P.; Wei, T.; Thomas, M.K.; et al. Muscle sphingolipids during rest and exercise: A C18:0 signature for insulin resistance in humans. Diabetologia 2016, 59, 785–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreault, L.; Newsom, S.A.; Strauss, A.; Kerege, A.; Kahn, D.E.; Harrison, K.A.; Snell-Bergeon, J.K.; Nemkov, T.; D’Alessandro, A.; Jackman, M.R.; et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Tonks, K.T.; Coster, A.C.; Christopher, M.J.; Chaudhuri, R.; Xu, A.; Gagnon-Bartsch, J.; Chisholm, D.J.; James, D.E.; Meikle, P.J.; Greenfield, J.R.; et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity 2016, 24, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.O.; Koutsari, C.; Blachnio-Zabielska, A.U.; Hames, K.C.; Jensen, M.D. Intramyocellular Ceramides: Subcellular Concentrations and Fractional De Novo Synthesis in Postabsorptive Humans. Diabetes 2017, 66, 2082–2091. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.; Lim, X.Y.; Toop, H.D.; Osborne, B.; Brandon, A.E.; Taylor, E.N.; Fiveash, C.E.; Govindaraju, H.; Teo, J.D.; McEwen, H.P.; et al. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018, 9, 3165. [Google Scholar] [CrossRef]
- Bikman, B.T.; Summers, S.A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Investig. 2011, 121, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, J.M.; Halberg, N.; Wang, Q.A.; Holland, W.L.; Xia, J.Y.; Scherer, P.E. Differential transendothelial transport of adiponectin complexes. Cardiovasc. Diabetol. 2014, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halerg, N.; Rutkowski, J.M.; et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasiliauskaité-Brooks, I.; Sounier, R.; Rochaix, P.; Bellot, G.; Fortier, M.; Hoh, F.; De Colibus, L.; Bechara, C.; Saied, E.M.; Arenz, C.; et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 2017, 544, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.X.; Holland, W.L. Adiponectin and its Hydrolase-Activated Receptors. J. Nat. Sci. 2017, 3, e396. [Google Scholar] [PubMed]
- Bergouignan, A.; Schoeller, D.A.; Normand, S.; Gauquelin-Koch, G.; Laville, M.; Shriver, T.; Desage, M.; Le Maho, Y.; Ohshima, H.; Gharib, C.; et al. Effect of Physical Inactivity on the Oxidation of Saturated and Monounsaturated Dietary Fatty Acids: Results of a Randomized Trial. PLoS Clin. Trials 2006, 1. [Google Scholar] [CrossRef] [PubMed]
- Bergouignan, A.; Trudel, G.; Simon, C.; Chopard, A.; Schoeller, D.A.; Votruba, S.B.; Desage, M.; Burdge, G.C.; Gauquelin-koch, G.; Norm, S.; et al. Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking. Diabetes 2009, 58, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, W.L.; Bikman, B.T.; Wang, L.-P.; Yuguang, G.; Sargent, K.M.; Bulchand, S.; Knotts, T.A.; Shui, G.; Clegg, D.J.; Wenk, M.R.; et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Investig. 2011, 121, 1858–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef]
- Strle, K.; Broussard, S.R.; McCusker, R.H.; Shen, W.-H.; Johnson, R.W.; Freund, G.G.; Dantzer, R.; Kelley, K.W. Proinflammatory Cytokine Impairment of Insulin-Like Growth Factor I-Induced Protein Synthesis in Skeletal Muscle Myoblasts Requires Ceramide. Endocrinology 2004, 145, 4592–4602. [Google Scholar] [CrossRef] [Green Version]
- Hammad, S.M.; Pierce, J.S.; Soodavar, F.; Smith, K.J.; Al Gadban, M.M.; Rembiesa, B.; Klein, R.L.; Hannun, Y.A.; Bielawski, J.; Bielawska, A. Blood sphingolipidomics in healthy humans: Impact of sample collection methodology. J. Lipid Res. 2010, 51, 3074–3087. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.S. Insulin resistance with aging: Effects of diet and exercise. Sports Med. 2000, 30, 327–346. [Google Scholar] [CrossRef]
- Amati, F.; Dubé, J.J.; Coen, P.M.; Stefanovic-Racic, M.; Toledo, F.G.; Goodpaster, B.H. Physical Inactivity and Obesity Underlie the Insulin Resistance of Aging. Diabetes Care 2009, 32, 1547–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, I.R.; Short, D.K.; Short, K.R.; Raghavakaimal, S.; Basu, R.; Joyner, M.J.; McConnell, J.P.; Nair, K.S. Endurance Exercise as a Countermeasure for Aging. Diabetes 2008, 57, 2933–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrzyn, A.; Knapp, M.; Gorski, J. Effect of acute exercise and training on metabolism of ceramide in the heart muscle of the rat. Acta Physiol. Scand. 2004, 181, 313–319. [Google Scholar] [CrossRef]
- Tsalouhidou, S.; Petridou, A.; Mougios, V. Effect of chronic exercise on DNA fragmentation and on lipid profiles in rat skeletal muscle. Exp. Physiol. 2009, 94, 362–370. [Google Scholar] [CrossRef]
- Błachnio-Zabielska, A.; Zabielski, P.; Baranowski, M.; Gorski, J. Aerobic Training in Rats Increases Skeletal Muscle Sphingomyelinase and Serine Palmitoyltransferase Activity, While Decreasing Ceramidase Activity. Lipids 2011, 46, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Holloway, G.P.; Han, X.X.; Jain, S.S.; Bonen, A.; Chabowski, A. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia 2014, 57, 832–840. [Google Scholar] [CrossRef]
- Dobrzyn, A.; Zendzian-Piotrowska, M.; Gorski, J. Effect of endurance training on the sphingomyelin-signalling pathway activity in the skeletal muscles of the rat. J. Physiol. Pharmacol. 2004, 55, 305–313. [Google Scholar]
- Zacharewicz, E.; Hesselink, M.K.C.; Schrauwen, P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J. Intern. Med. 2018, 284, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Koonen, D.P.Y.; Benton, C.R.; Arumugam, Y.; Tandon, N.N.; Calles-Escandon, J.; Glatz, J.F.C.; Luiken, J.J.F.P.; Bonen, A. Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am. J. Physiol. Metab. 2004, 286, E1042–E1049. [Google Scholar] [CrossRef]
- Gorski, J.; Bonen, A. Palmitate incorporation into lipids pools of contracting red and white muscles. Mol. Cell. Biochem. 1997, 166, 73–83. [Google Scholar] [CrossRef]
- Reidy, P.T.; McKenzie, A.I.; Mahmassani, Z.; Morrow, V.R.; Yonemura, N.M.; Hopkins, P.N.; Marcus, R.L.; Rondina, M.T.; Lin, Y.K.; Drummond, M.J. Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J. Physiol. 2018, 596, 5217–5236. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.W.; Dobrzyn, A.; Saltin, B.; Gorski, J. Exercise and training effects on ceramide metabolism in human skeletal muscle. Exp. Physiol. 2004, 89, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Skovbro, M.; Baranowski, M.; Skov-Jensen, C.; Flint, A.; Dela, F.; Gorski, J.; Helge, J.W. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 2008, 51, 1253–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amati, F.; Dubé, J.J.; Alvarez-Carnero, E.; Edreira, M.M.; Chomentowski, P.; Coen, P.M.; Switzer, G.E.; Bickel, P.E.; Stefanovic-Racic, M.; Toledo, F.G.S.; et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: Another paradox in endurance-trained athletes? Diabetes 2011, 60, 2588–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.S.; Mashek, U.G.; Austin, E.; Eberly, L.E.; Persson, X.-M.; Mashek, M.T.; Seaquist, E.R.; Jensen, M.D. Training status diverges muscle diacylglycerol accumulation during free fatty acid elevation. Am. J. Physiol. Metab. 2014, 307, E124–E131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.S.; Mashek, D.G.; Wang, Q.; Shepherd, S.O.; Goodpaster, B.H.; Dube, J.J. Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation. J. Appl. Physiol. 2017, 123, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Bergman, B.C.; Perreault, L.; Hunerdosse, D.M.; Koehler, M.C.; Samek, A.M.; Eckel, R.H. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J. Appl. Physiol. 2010, 108, 1134–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowski, M.; Charmas, M.; Dlugolecka, B.; Gorski, J. Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol. 2011, 203, 373–380. [Google Scholar] [CrossRef]
- Bergman, B.C.; Hunerdosse, D.M.; Kerege, A.; Playdon, M.C.; Perreault, L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 2012, 55, 1140–1150. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.C.; Brozinick, J.T.; Strauss, A.; Bacon, S.; Kerege, A.; Bui, H.H.; Sanders, P.; Siddall, P.; Kuo, M.S.; Perreault, L. Serum sphingolipids: Relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E398–E408. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.C.; Perreault, L.; Strauss, A.; Bacon, S.; Kerege, A.; Harrison, K.; Brozinick, J.T.; Hunerdosse, D.M.; Playdon, M.C.; Holmes, W.; et al. Intramuscular triglyceride synthesis: Importance in muscle lipid partitioning in humans. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E152–E164. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Sidossis, L.S. Exercise and Insulin Sensitivity—Where Do We Stand? You’d Better Run! Eur. Endocrinol. 2008, 4, 22–25. [Google Scholar] [CrossRef]
- Bruce, C.R.; Kriketos, A.D.; Cooney, G.J.; Hawley, J.A. Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes. Diabetologia 2004, 47, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, C.R.; Thrush, A.B.; Mertz, V.A.; Bézaire, V.; Chabowski, A.; Heigenhauser, G.J.F.; Dyck, D.J. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am. J. Physiol. Metab. 2006, 291, E99–E107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubé, J.J.; Amati, F.; Stefanovic-Racic, M.; Toledo, F.G.S.; Sauers, S.E.; Goodpaster, B.H. Exercise-induced alterations in intramyocellular lipids and insulin resistance: The athlete’s paradox revisited. Am. J. Physiol. Metab. 2008, 294, E882–E888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubé, J.J.; Amati, F.; Toledo, F.G.S.; Stefanovic-Racic, M.; Rossi, A.; Coen, P.; Goodpaster, B.H. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011, 54, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Devries, M.C.; Samjoo, I.A.; Hamadeh, M.J.; McCready, C.; Raha, S.; Watt, M.J.; Steinberg, G.R.; Tarnopolsky, M.A. Endurance Training Modulates Intramyocellular Lipid Compartmentalization and Morphology in Skeletal Muscle of Lean and Obese Women. J. Clin. Endocrinol. Metab. 2013, 98, 4852–4862. [Google Scholar] [CrossRef] [Green Version]
- Samjoo, I.A.; Safdar, A.; Hamadeh, M.J.; Glover, A.W.; Mocellin, N.J.; Santana, J.; Little, J.P.; Steinberg, G.R.; Raha, S.; Tarnopolsky, M.A. Markers of Skeletal Muscle Mitochondrial Function and Lipid Accumulation Are Moderately Associated with the Homeostasis Model Assessment Index of Insulin Resistance in Obese Men. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Coen, P.M.; Menshikova, E.V.; Distéfano, G.; Zheng, D.; Tanner, C.J.; Standley, R.A.; Helbling, N.L.; Dubis, G.S.; Ritov, V.B.; Xie, H.; et al. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. Diabetes 2015, 64, 3737–3750. [Google Scholar] [CrossRef] [Green Version]
- Kasumov, T.; Solomon, T.P.; Hwang, C.; Huang, H.; Haus, J.M.; Zhang, R.; Kirwan, J.P. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity 2015, 23, 1414–1421. [Google Scholar] [CrossRef]
- Søgaard, D.; Østergård, T.; Blachnio-Zabielska, A.U.; Baranowski, M.; Vigelsø, A.H.; Andersen, J.L.; Dela, F.; Helge, J.W. Training Does Not Alter Muscle Ceramide and Diacylglycerol in Offsprings of Type 2 Diabetic Patients Despite Improved Insulin Sensitivity. J. Diabetes Res. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, A.I.; Briggs, R.A.; Barrows, K.M.; Nelson, D.S.; Kwon, O.S.; Hopkins, P.N.; Higgins, T.F.; Marcus, R.L.; Drummond, M.J. A pilot study examining the impact of exercise training on skeletal muscle genes related to the TLR signaling pathway in older adults following hip fracture recovery. J. Appl. Physiol. 2017, 122, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, O.S.; Cocks, M.; Meikle, P.J.; Mellett, N.A.; Ranasinghe, A.M.; Barker, T.A.; Wagenmakers, A.J.M.; Shaw, C.S. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int. J. Obes. 2017, 41, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Summers, S. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 2006, 45, 42–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Berejnaia, O.; Liu, J.; Wang, S.-P.; Daurio, N.A.; Yin, W.; Mayoral, R.; Petrov, A.; Kasumov, T.; Zhang, G.-F.; et al. Quantifying ceramide kinetics in vivo using stable isotope tracers and LC-MS/MS. Am. J. Physiol. Metab. 2018, 315, E416–E424. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.O.; Koutsari, C.; Blachnio-Zablieska, A.U.; Hames, K.C.; Jensen, M.D. Effects of meal ingestion on intramyocellular ceramide concentrations and fractional de novo synthesis in humans. Am. J. Physiol. Endocrinol. Metab. 2017. [Google Scholar] [CrossRef]
- Lewis, L.S.; Huffman, K.M.; Smith, I.J.; Donahue, M.P.; Slentz, C.A.; Houmard, J.A.; Hubal, M.J.; Hoffman, E.P.; Hauser, E.R.; Siegler, I.C.; et al. Genetic Variation in Acid Ceramidase Predicts Non-completion of an Exercise Intervention. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Chavez, J.A.; Summers, S.A. A Ceramide-Centric View of Insulin Resistance. Cell Metab. 2012, 15, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Bosma, M.; Kersten, S.; Hesselink, M.K.; Schrauwen, P. Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity. Prog. Lipid Res. 2012, 51, 36–49. [Google Scholar] [CrossRef]
- Adams, J.M.; Pratipanawatr, T.; Berria, R.; Wang, E.; DeFronzo, R.A.; Sullards, M.C.; Mandarino, L.J. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004, 53, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Covington, J.D.; Johannsen, D.L.; Coen, P.M.; Burk, D.H.; Obanda, D.N.; Ebenezer, P.J.; Tam, C.S.; Goodpaster, B.H.; Ravussin, E.; Bajpeyi, S. Intramyocellular Lipid Droplet Size Rather Than Total Lipid Content is Related to Insulin Sensitivity After 8 Weeks of Overfeeding. Obesity 2017, 25, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Straczkowski, M.; Kowalska, I.; Baranowski, M.; Nikołajuk, A.; Otziomek, E.; Zabielski, P.; Adamska, A.; Blachnio, A.; Górski, J.; Górska, M. Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 2007, 50, 2366–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahfouz, R.; Khoury, R.; Blachnio-Zabielska, A.; Turban, S.; Loiseau, N.; Lipina, C.; Stretton, C.; Bourron, O.; Ferre, P.; Foufelle, F.; et al. Characterising the Inhibitory Actions of Ceramide upon Insulin Signaling in Different Skeletal Muscle Cell Models: A Mechanistic Insight. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Boon, J.; Hoy, A.J.; Stark, R.; Brown, R.D.; Meex, R.C.; Henstridge, D.C.; Schenk, S.; Meikle, P.J.; Horowitz, J.F.; Kingwell, B.A.; et al. Ceramides Contained in LDL Are Elevated in Type 2 Diabetes and Promote Inflammation and Skeletal Muscle Insulin Resistance. Diabetes 2013, 62, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Galadari, A.; Thayyullathil, F. Role of ceramide in diabetes mellitus: Evidence and mechanisms. Lipids Health Dis. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Pinto, S.N.; Silva, L.C.; Futerman, A.H.; Prieto, M. Effect of ceramide structure on membrane biophysical properties: The role of acyl chain length and unsaturation. Biochim. Biophys. Acta-Biomembr. 2011, 1808, 2753–2760. [Google Scholar] [CrossRef] [Green Version]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991, 40, 280–289. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Saddoughi, S.A.; Song, P.; Sultan, I.; Ponnusamy, S.; Senkal, C.E.; Snook, C.F.; Arnold, H.K.; Sears, R.C.; Hannun, Y.A.; et al. Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J. 2009, 23, 751–763. [Google Scholar] [CrossRef] [Green Version]
- Camell, C.D.; Nguyen, K.Y.; Jurczak, M.J.; Christian, B.E.; Shulman, G.I.; Shadel, G.S.; Dixit, V.D. Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity. J. Biol. Chem. 2015, 290, 29402–29413. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, B.; Summers, S.A. Ceramides–Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol. Metab. 2015, 26, 538–550. [Google Scholar] [CrossRef]
Reference | Subjects | Age (y) | Aerobic Fitness | Health/BMI | Ceramide Method | Muscle Ceramide | Ceramide Species | IS Method | IS | Associations with IS | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
Rivas et al. (2012) [26] | Young (9 M) | 22 ± 1 | - | Lean | HPLC-MS | - | - | - | - | None examined | C:16 - associated with leg lean mass and strength |
Old (10 M) | 74 ± 2 | - | OW | = Young | > C:16, C:20 and Sat vs. Young | - | - | ||||
Moro et al. (2009) [27] | Lean (10 M/6 F) | 24 ± 1 | - | Lean | LC/ESI/MS/MS | HE Clamp ^ | 8.3 ± 0.7 | Ceramides not associated with age | IMTG + correlated with ceramides | ||
Obese (14 M/18 F) | 41 ± 3 | - | Obese | > vs. Lean Young | > Sat vs. Lean Young | 6.1 ± 0.4 | |||||
Søgaard et al. (2019) [28] | Young (11 M) | 23 ± 1 | VO2peak-Rel: 46 ± 1 * | Lean | TLC-HPLC | 622 ± 74 | > C:16, C:18, C:22 vs. both OLD | Insulin 120-min OGTT (pmol·L−1) | 87.9 ± 14.8 | In young: No association in the old | - |
Old (18 M) | 66 ± 1 | VO2peak-Rel: 31 ± 1 * | Lean/OW | 410 ± 66 | - | 97.6 ± 55.3 | - | ||||
Chee et al. 2016 [29] | Young Lean (n = 7) | 21y ± 1 | VO2peak-Rel: 57 ± 2 ‡ | Lean | LC/ESI/MS/MS | - | - | HE Clamp, (mg·kg LBM−1·min−1) & skeletal muscle 2-DG accumulation | 65 ± 6.0 | Only with overweight | - |
Old Lean (n = 7) | 70 ± 1 | VO2peak-Rel: 45 ± 2 ‡ | Lean | - | - | 58 ± 6 | - | ||||
Old Overweight (n = 7) | 69 ± 1 | VO2peak-Rel: 40 ± 2 ‡ | OW | - | C:20: > Young Lean | 42 ± 5 | largely driven by differences in BW | ||||
Søgaard et al. (2019) [25] | Young (5 M/9 F) | 32 ± 2 | VO2max-Rel: 28.3 ± 1.2 | Obese | LC/ESI/MS/MS | - | - | HOMA-IR | 2.14 ± 0.24 | Not reported | - |
Old (11 M/11 F) | 63 ± 1 | VO2max-Rel: 25.2 ± 1.0 | Obese | Sat, C:16, C:18, C:18:1: > Young Obese | Sat, C:16, C:18, C:18:1: > Young Obese | 1.88 0.23 |
Reference | Subjects | Age | Aerobic Fitness | Health/BMI | PA Modification | Ceramide Method | Muscle Ceramide | Ceramide Species | IS Method | IS (PRE) | IS (Post) | Associations | Note |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dobrzyń et al. (2004) [56] | Rat (Wistar) (10 M) | 250–280 g | Sed | Lean | Control | TLC, GLC | ~135 nmol/g | - | - | - | - | - | - |
Rat (Wistar) AET (10 M) | 250–280 g | Sed | Lean | 6 wk forced treadmill running | ~80 nmol/g ↓, sat in oxidative muscles | ↓ C14, C16, C16:1, C18, 20:4, 22, 24:1 | - | - | - | - | ↓ SM, ↑ sphinganine nSMase, ↔ sphingosine | ||
Tsalouhidou et al. (2009) [57] | Rat (Wistar) Sed (15 M) | 7 wk | Sed | Lean | Control | one-dimensional TLC-GC | 0.33 ± 0.16 µmol/g | ↔ | - | - | - | None | PC, PE, PI, PS, CL, SM and LPC unchanged |
Rat (Wistar) AET (20 M) | 7 wk | Sed, Improved | Lean | 8 wk voluntary wheel running | BL=, 0.27 ± 0.06 µmol/g | ↔ | - | - | - | 31% ↓ PI | |||
Błachnio-Zabielska et al. (2011) [58] | Rat (Wistar) Sed (8 M) | 200–250 g | Sed | Lean | Control | HPLC (C17 std) | 24.57 ± 3.53 nmol/g wet wt | - | HOMA-IR | - | 1.13 ± 0.10 | Wrong direction | - |
Rat (Wistar) AET (8 M) | 24 h post | Sed | Lean | 5 wk forced treadmill running | 28.70 ± 3.59 nmol/g wet wt | - | HOMA-IR | - | 0.54 ± 0.04 ↓ | Wrong direction | Plasma FFA >100% lower, > Sphinganine, SPA1P, SPT2 and aSMase. ↓ nCDase and alCDase | ||
Holloway et al. (2014) [59] | Rat (Zucker) (18 F) | ~255 g | Sed | Lean | 6 d e-stim 6 h/d | TLC, GLC | ↔ Red, ↓ White | ↔ Red, ↓ White | 3-OMG in perfused hindlimb | Lean > Obese | ↑, but Lean > Obese | + TAG, lipid droplet size | ↑ lipid droplets |
Rat (Zucker) (18 F) | ~350 g | Sed | Obese | 6 d e-stim 6 h/d | ↓↓ | ↓↓ C18 | - | ↑ | + TAG, lipid droplet size | ↑↑ lipid droplets |
Reference | Subjects | Age (y) | Aerobic Fitness | Health/BMI | Muscle Ceramide | Ceramide Species | IMTG | Associations with IS |
---|---|---|---|---|---|---|---|---|
Helge et al. (2004) [65] | Untrained (n = 8) | 26 ± 1 | VO2peak-, Rel: 50.8 * | Lean | ~200 nmol/g | No difference between groups | - | - |
Trained (n = 8) | 28 ± 2 | VO2peak-, Rel: 62.5 * | Lean | ~200 nmol/g | - | - | ||
Skovbro et al. (2008) [66] | T2D (n = 8) | 54 ± 2 | VO2peak-Rel: 31 ± 3 * | T2D/Obese | 108 ± 7 nmol/g | Trained > IGT | 68.9 ± 21.4 nmol/mg | (r = 0.42, p < 0.05) with IS and muscle Cer |
IGT (n = 9) | 54 ± 2 | VO2peak-Rel: 37 ± 2 * | IGT/Obese | 95 ± 6 nmol/g | 38.5 ± 6.8 nmol/mg | |||
Controls (n = 8) | 53 ± 2 | VO2peak-Rel: 43 ± 2 * | OW | 126 ± 12 nmol/g | 35.6 ± 10.0 nmol/mg | |||
Trained (n = 8) | 51 ± 2 | VO2peak-Rel: 58 ± 2 * | Lean | 156 ± 25 nmol/g | 49.7 ± 12.6 nmol/mg | |||
Amati et al. (2011) [67] | Obese (11 M/10 F) | 67 ± 1 | VO2peak-, Rel: 33 * | Obese, pre-diabetes | 160 ± 18 nmol/g | Obese >, Athletes, NW sed (C18:1, 24:0, 24:1) | Ath, Obese > NW sed for content and droplet density | Total DAGs (r = 0.57, p = 0.05), total Cer (r = −0.48, p < 0.05) |
NW (3 M/4 F) | 67 ± 2 | VO2peak-, Rel: 42 * | NW | 80 ± 27 nmol/g | ||||
Athletes (10 M/4 F) | 65 ± 1 | VO2peak-, Rel: 53 * | Lean/NW | 83 ± 21 nmol/g | ||||
Chow et al. (2014) [68] | Trained (8 M/7 F) | 24 ± 1 | VO2peak-Rel: 49 ± 2 * | Lean | 42.6 ± 4.6 ng/mg | ↑ sat | 4.0 ± 0.5 μg/mg | No |
Sed (7 M/6 F) | 2 w ± 0.6 | VO2peak-Rel: 39 ± 1 * | Lean | 30.3 ± 2.7 ng/mg | 3.9 ± 0.5 μg/mg | |||
Chow et al. (2017) [69] | Trained (16M/13F) | 26 ± 0.9 | VO2peak-Rel: 62–71 ‡ | Lean | - | - | T1: ↑↑ | - |
Sed (15 M/13 F) | 23 ± 0.6 | VO2peak-Rel: 53–56 ‡ | Lean | - | - | T1: ↑ | - | |
Bergman et al. (2010) [70] | Athletes (n = 11) | 23 ± 0.7 | VO2peak-Rel: 68 ± 2 * | Lean | - | - | ~21 = IMTG saturation, | DAG% saturation (curvilinear) |
Controls (n = 11) | 21 ± 0.7 | self-reported < 2 h PA per wk | Lean | - | - | >16:0, 16:1, <18:0, 18:2 | ||
Baranowski et al. (2011) [71] | Sed (n = 10) | 20 ± 0.7 | VO2peak-Rel: 47 ± 3 * | Lean | Plasma 62.4 ± 16.4 < in RBCs | - | - | - |
Trained (n = 10) | 21 ± 0.9 | VO2peak-Rel: 57 ± 6 * | Lean | Plasma 60.8 ± 11.1 | - | - | - | |
Bergman et al. (2012) [72] | Obese (4 M/2 F) | 40 ± 2 | VO2peak-Rel: 25 ± 4 * | Obese | - | - | - | total and Sat DAG in skeletal muscle membranes |
T2D (6 M) | 44 ± 2 | VO2peak-Rel: 25 ± 2 * | OW/ Obese-T2D | - | - | - | ||
Athletes (8 M/2 F) | 35 ± 3 | VO2peak-Rel: 56 ± 5 * | lean | - | - | - | ||
Bergman et al. (2015, 2016, 2018) [37,73,74] | Athletes (11 M/4 F) | 41 ± 1 | VO2peak-Rel: 48 ± 4 * | Lean | Serum: Not different in obese | - | - | C16:0 Cer and C18:0 sphingomyelin correlated w/ whole body insulin resistance |
T2D (11 M/4 F) | 43 ± 1 | VO2peak-Rel: 19 ± 3 * | Obese-T2D | Serum: ↑ | ↑ C18:0, C20:0, C24:1 to Ath and Ob, ↑ C16:0, C23:0 to Ath | - | ||
Obese (9 M/5 F) | 40 ± 2 | VO2peak-Rel: 24 ± 3 * | Obese | Serum: Not different in lean | - | - | ||
Bergman et al. (2016, 2018) [37,74] | Athletes (n = 15) | 41 ± 1 | VO2peak-Rel: 48 ± 4 * | Lean | C:24: > T2D and Obese | - | - | Not total, but C:18 |
T2D (n = 15) | 43 ± 1 | VO2peak-Rel: 19 ± 3 * | Obese-T2D | C:18: > Ath = Obese | - | - | ||
Obese (n = 14) | 40 ± 2 | VO2peak-Rel: 24 ± 3 * | Obese | - | - | - | ||
Søgaard et al. (2019) [28] | Young (11 M) | 23 ± 1 | VO2peak-Rel: 46 ± 1 * | Lean | 622 ± 74 | > C:16, C:18,C:22 vs. both OLD | In young: HOMA-IR correlated with C16:0 and total Cer. No association in the old. | |
Young Trained (16 M) | 23 ± 1 | VO2peak-Rel: 53 ± 2 * | Lean | 661 ± 91 | - | |||
Old (18 M) | 66 ± 1 | VO2peak-Rel: 31 ± 1 * | Lean/OW | 410 ± 66 | - | - | ||
Old Trained (15 M) | 64 ± 1 | VO2peak-Rel: 43 ± 4 * | Lean | 550 ± 74 | - | - | ||
Perreault et al. (2018) [38] | Lean (8 M/6 F) | 43 ± 2 | Sed (<2 h/wk PA) | Lean | - | - | - | (−) Many sarcolemmal lipids, Mito/ER, nuclear C18; (+) mito ER/DAGs |
Athletes (10 M/6 F) | 43 ± 1 | Masters Athletes | Lean | - | - | - | ||
Obese (8 M/7 F) | 42 ± 2 | Sed (<2 h/wk PA) | Obese | - | - | - | ||
T2D (7 M/5 F) | 46 ± 2 | Sed (<2 h/wk PA) | Obese-T2D | > all, most in sarcolemmal | > C16, C18, sarcolemmal, > C18 in nuclear fraction | - |
Reference | Subjects | Age (y) | Aerobic Fitness | Health/BMI | Training | Muscle Ceramide | Ceramide Species | Muscle Fat or IMTG | Associations |
---|---|---|---|---|---|---|---|---|---|
Bruce et al. (2004) [76] | Control (n = 6) | 46 ± 3 | Rel: ~30 * | OW | 8 wk, AET | - | - | BL <, ↔ IMTG | No |
T2D (n = 7) | 48 ± 2 | Obese | - | - | BL >, ↓ IMTG | ||||
Bruce et al. (2006) [77] | Obese (4 M/5 F) | 36 ± 3 | Rel: 24 ± 2 * | Obese | 8 wk, AET | BL (734 nmol/g), ↓ | C16:0, C16:1, C18:0, C18:1, C18:2, C20:0 ↓ | ↔ | No |
Dube et al. (2008) [78] | Old (9 M/16 F) | 66.4 ± 0.8 | Rel: 34 ± 7 *, ↑ 7% | OW/Obese | 16 wk, AET | ↓ | - | ↑ ~21% | Cer (r2 = 0.46, p = 0.01) |
Dube et al. (2011) [79] | DIWL (3 M/5 F) | 67 ± 2 | Rel: 31 ± 2 *, ↔ | OW-Obese, NGT-IGT | DIWL | BL=, ↔ | ↓ C14:0, C20:0, C24:0; ↑C24:1 | BL=, ↓ IMTG | BL total and some cer species, ↓ in C16:0 and C24:1 with improved IS |
Ex (4 M/4 F) | 68 ± 2 | Rel: 32 ± 2 *, ↔ | OW-Obese, NGT-IGT | 16 wk; AET | ↓ 30–40% (>DIWL) | ↓ all but C16:0, C18:1 (>DIWL for C18:0, C24:1) | BL=, ↑ IMTG | ||
Devrives et al. (2013) [80] | Lean (12 F) | 41 ± 2 | Rel: 26 ± 1 *, ↑ | Lean | 12 wk, AET | ~110 nmol/g dw, ↔ | - | AET localizes IMCs close to Mito and IMF, away from SS | - |
Obese (11 F) | 40 ± 3 | Rel: 19 ± 2 *, ↑ | Obese | ~130 nmol/g dw, ↔ | - | - | |||
Samjoo et al. (2013) [81] | Lean (9 M) | 38 ± 3 | Rel: 47 ± 2 ‡, ↑ | Lean | 12 wk, AET | ↔ | - | AET localizes IMCs close to Mito and IMF, away from SS | No |
Obese (9 M) | 39 ± 3 | Rel:45 ± 2 ‡, ↑ | Obese | ~100 nmol/g, ↔ | - | ||||
Coen et al. (2015) [82] | Control (n = 51) | 42.1 ± 9.9 | Rel: ~18 ‡, ↑ | OW/Obese | None, RYGB | ↓ | ↓ 16,18:1, 24:1 | ↓↓ | No |
Ex (n = 50) | 41.6 ± 9.3 | OW/Obese | post RYGB; 12 wk | ↓↓ | ↓ 16,18,18:1, 24:1 | ↓ | |||
Kasumov et al. (2015) [83] | NGT (8 M/6 F) | 62 ± 2 | Absolute: 2 ± 0.1 L/min | Obese | 12 wk | Plasma: BL=, ↓ | ↓ C14:0, C16:0, C24:0 | - | Total and C:14 cer negative with GIR change |
T2D (5 M/5 F) | 65 ± 2 | T2D-Obese | Plasma: BL= ↓ | ↓ C14:0, C16:0, C18:1, C24:0 | - | ||||
Søgaard et al. (2016) [84] | Control (10 M/6 F) | 31.3 ± 1.5 | Rel: 42 * | OW | 10 wk, AET | BL= | No difference at BL, ↓ C22:0 | - | No |
Offspring (12 M/7 F) | 33.1 ± 1.4 | Rel: 38 * | OW-offspring of T2D | 10 wk, AET | BL= | No difference at BL, ↓ C22:0 | - | ||
McKenzie et al. (2017) [85] | HipFx (3 M/4 F) | 78.4 ± 13.3 | Low | OW | 12 wk RE and RET | ~100 nmol/g, ↔ | ↔ | - | No |
Shepherd et al. (2017) [86] | Obese (8 M) | 24 ± 2 | Rel: 34 *; ↑ | Obese | 4 wk, HIIT | ↓ | ↓ Cer 18:0 | ↔ | No |
Obese (8 M) | 26 ± 2 | Obese | 4 wk, AET | ↓ | ↓ Cer 18:0 | ↔ | No | ||
Søgaard et al. 2019 [25] | Young (5 M/9 F) | 32 ± 2 | Rel: ~27* | Obese | 6 wk, HIIT | ↔ | ↔ | ↔ | Not reported |
Old (11 M/11 F) | 63 ± 1 | Obese | 6 wk, HIIT | ↓ | ↓ Cer Sat, 18:0 | ↔ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reidy, P.T.; Mahmassani, Z.S.; McKenzie, A.I.; Petrocelli, J.J.; Summers, S.A.; Drummond, M.J. Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. Int. J. Mol. Sci. 2020, 21, 1514. https://doi.org/10.3390/ijms21041514
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA, Drummond MJ. Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. International Journal of Molecular Sciences. 2020; 21(4):1514. https://doi.org/10.3390/ijms21041514
Chicago/Turabian StyleReidy, Paul T., Ziad S. Mahmassani, Alec I. McKenzie, Jonathan J. Petrocelli, Scott A. Summers, and Micah J. Drummond. 2020. "Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides" International Journal of Molecular Sciences 21, no. 4: 1514. https://doi.org/10.3390/ijms21041514
APA StyleReidy, P. T., Mahmassani, Z. S., McKenzie, A. I., Petrocelli, J. J., Summers, S. A., & Drummond, M. J. (2020). Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. International Journal of Molecular Sciences, 21(4), 1514. https://doi.org/10.3390/ijms21041514