A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice
Abstract
:1. Introduction
2. Results
2.1. QTL Analysis for Chlorophyll Content
2.2. Dark-Induced Senescence in Hwaseong and CR2002
2.3. Characterization of gw2-ko
2.4. Transcriptome Analysis using Hwaseong and CR2002
3. Discussion
3.1. qCC2 is Associated with Chlorophyll Content and Leaf Senescence
3.2. GW2 Positively Regulates Leaf Senescence
3.3. Differentially Expressed Genes Associated with Leaf Senescence
3.4. GW2 as an E3 Ubiquitin Ligase
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotypic Evaluation
4.3. DNA Extraction and QTL Analysis
4.4. RNA Isolation and Quantitative Real-Time PCR
4.5. RNA-Seq Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DIS | Dark-induced senescence |
SNP | Single nucleotide polymorphism |
InDel | Insertion and deletion |
qRT-PCR | Quantitative real-time PCR |
SSR | Simple sequence repeat |
CDG | Chlorophyll degradation gens |
QTL | Quantitative trait loci |
SAG | Senescence-associated gene |
WT | Wild type |
References
- Wang, F.H.; Wang, G.X.; Li, X.Y.; Huang, J.L.; Zheng, J.K. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol. 2008, 165, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.H.; He, Y.Q.; Xu, C.G.; Li, X.H.; Zhang, Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor. Appl. Genet. 2004, 108, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.; Qian, Q.; Zeng, D.L.; Kunihiro, Y.; Fujimoto, K.; Huang, D.N.; Zhu, L.H. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 2004, 135, 1–7. [Google Scholar] [CrossRef]
- Takai, T.; Kondo, M.; Yano, M.; Yamamoto, T. A Quantitative Trait Locus for Chlorophyll Content and its Association with Leaf Photosynthesis in Rice. Rice 2010, 3, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.K.; Zhang, X.J.; Zhang, F.M.; Xu, Z.J.; Chen, W.F.; Li, Y.H. Identification and Fine Mapping of qCTH4, a Quantitative Trait Loci Controlling the Chlorophyll Content from Tillering to Heading in Rice (Oryza sativa L.). J. Hered. 2012, 103, 720–726. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalik, A.F.; Shishido, R.; Nomura, K.; Ikehashi, H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor. Appl. Genet. 2005, 110, 1226–1235. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Han, S.H.; Yang, H.J.; Piao, W.L.; Paek, N.C. Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice. Plant Mol. Biol. 2016, 92, 223–234. [Google Scholar] [CrossRef]
- Hortensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, 14, 155–162. [Google Scholar] [CrossRef]
- Thomas, H.; Smart, C.M. Crops That Stay Green. Ann. Appl. Biol. 1993, 123, 193–219. [Google Scholar] [CrossRef]
- Park, S.Y.; Yu, J.W.; Park, J.S.; Li, J.; Yoo, S.C.; Lee, N.Y.; Lee, S.K.; Jeong, S.W.; Seo, H.S.; Koh, H.J.; et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 2007, 19, 1649–1664. [Google Scholar] [CrossRef] [Green Version]
- Kusaba, M.; Ito, H.; Morita, R.; Iida, S.; Sato, Y.; Fujimoto, M.; Kawasaki, S.; Tanaka, R.; Hirochika, H.; Nishimura, M.; et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 2007, 19, 1362–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Morita, R.; Katsuma, S.; Nishimura, M.; Tanaka, A.; Kusaba, M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 2009, 57, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Z.; Wang, Y.Q.; Zhu, Y.N.; Tang, J.Y.; Hu, B.; Liu, L.C.; Ou, S.J.; Wu, H.K.; Sun, X.H.; Chu, J.F.; et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 10013–10018. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.W.; Li, M.R.; Liang, N.B.; Yan, H.B.; Wei, Y.L.; Xu, X.; Liu, J.F.; Xu, Z.; Chen, F.; Wu, G.J. Molecular cloning and function analysis of the stay green gene in rice. Plant J. 2007, 52, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Ardley, H.C.; Robinson, P.A. E3 ubiquitin ligases. Essays Biochem. 2005, 41, 15–30. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.H. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016, 33, 23–32. [Google Scholar] [CrossRef]
- Li, Y.H.; Zheng, L.Y.; Corke, F.; Smith, C.; Bevan, M.W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 2008, 22, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Li, N.; Dumenil, J.; Li, J.; Kamenski, A.; Bevan, M.W.; Gao, F.; Li, Y.H. The Ubiquitin Receptor DA1 Interacts with the E3 Ubiquitin Ligase DA2 to Regulate Seed and Organ Size in Arabidopsis. Plant Cell 2013, 25, 3347–3359. [Google Scholar] [CrossRef] [Green Version]
- Vanhaeren, H.; Nam, Y.J.; De Milde, L.; Chae, E.; Storme, V.; Weigel, D.; Gonzalez, N.; Inze, D. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development. Plant Physiol. 2017, 173, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Disch, S.; Anastasiou, E.; Sharma, V.K.; Laux, T.; Fletcher, J.C.; Lenhard, M. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 2006, 16, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef]
- Song, W.Y.; Lee, H.S.; Jin, S.R.; Ko, D.; Martinoia, E.; Lee, Y.; An, G.; Ahn, S.N. Rice PCR1 influences grain weight and Zn accumulation in grains. Plant Cell Environ. 2015, 38, 2327–2339. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, S.W.; Kim, Y.J.; Koo, Y.J.; Song, J.T.; Seo, H.S. Grain width 2 (GW2) and its interacting proteins regulate seed development in rice (Oryza sativa L.). Bot. Stud. 2018, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.S.; Kim, Y.J.; Markkandan, K.; Koo, Y.J.; Song, J.T.; Seo, H.S. GW2 Functions as an E3 Ubiquitin Ligase for Rice Expansin-Like 1. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- An, S.Y.; Park, S.; Jeong, D.H.; Lee, D.Y.; Kang, H.G.; Yu, J.H.; Hur, J.; Kim, S.R.; Kim, Y.H.; Lee, M.; et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 2003, 133, 2040–2047. [Google Scholar] [CrossRef] [Green Version]
- Raab, S.; Drechsel, G.; Zarepour, M.; Hartung, W.; Koshiba, T.; Bittner, F.; Hoth, S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J. 2009, 59, 39–51. [Google Scholar] [CrossRef]
- Zeng, L.R.; Qu, S.H.; Bordeos, A.; Yang, C.W.; Baraoidan, M.; Yan, H.Y.; Xie, Q.; Nahm, B.H.; Leung, H.; Wang, G.L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 2004, 16, 2795–2808. [Google Scholar] [CrossRef] [Green Version]
- Yamatani, H.; Sato, Y.; Masuda, Y.; Kato, Y.; Morita, R.; Fukunaga, K.; Nagamura, Y.; Nishimura, M.; Sakamoto, W.; Tanaka, A.; et al. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll protein complexes during leaf senescence. Plant J. 2013, 74, 652–662. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, H.; Lee, S.; Lee, J.; Kim, S.J.; Park, J.W.; Woo, H.R.; Lim, P.O.; An, G.; Nam, H.G.; et al. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Qiang, C.G.; Wang, X.Q.; Chen, Y.F.; Deng, J.Q.; Jiang, C.H.; Sun, X.M.; Chen, H.Y.; Li, J.; Piao, W.L.; et al. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, P.L.; Holm, P.B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol. J. 2007, 5, 192–206. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.F.; Gan, S.S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006, 46, 601–612. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.F.; Liu, L.; Chen, T.Y.; Zhou, F.; Lin, Y.J. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.J.; Lu, S.C.; Lv, B.; Zhang, B.; Shen, J.B.; He, J.M.; Luo, L.Q.; Xi, D.D.; Chen, X.; Ming, F. A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. Plant Physiol. 2017, 174, 1747–1763. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, Y.; Piao, W.; Lim, J.H.; Han, S.H.; Kim, Y.S.; An, G.; Paek, N.C. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle. Plant Cell Physiol. 2015, 56, 2325–2339. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, Y.S.; Baek, K.H.; Jung, H.; Ha, S.H.; Do Choi, Y.; Kim, M.; Reuzeau, C.; Kim, J.K. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiol. 2010, 153, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Takehisa, H.; Kamatsuki, K.; Minami, H.; Namiki, N.; Ikawa, H.; Ohyanagi, H.; Sugimoto, K.; Antonio, B.A.; Nagamura, Y. RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Res. 2013, 41, D1206–D1213. [Google Scholar] [CrossRef] [Green Version]
- Sestili, F.; Pagliarello, R.; Zega, A.; Saletti, R.; Pucci, A.; Botticella, E.; Masci, S.; Tundo, S.; Moscetti, I.; Foti, S.; et al. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theor. Appl. Genet. 2019, 132, 419–429. [Google Scholar] [CrossRef]
- Geng, J.; Li, L.Q.; Lv, Q.; Zhao, Y.; Liu, Y.; Zhang, L.; Li, X.J. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta 2017, 246, 1153–1163. [Google Scholar] [CrossRef]
- Yoon, D.B.; Kang, K.H.; Kim, H.J.; Ju, H.G.; Kwon, S.J.; Suh, J.P.; Jeong, O.Y.; Ahn, S.N. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor. Appl. Genet. 2006, 112, 1052–1062. [Google Scholar] [CrossRef]
- Jeon, J.S.; Lee, S.; Jung, K.H.; Jun, S.H.; Jeong, D.H.; Lee, J.; Kim, C.; Jang, S.; Lee, S.; Yang, K.; et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 2000, 22, 561–570. [Google Scholar] [CrossRef]
- Jeong, D.H.; An, S.; Park, S.; Kang, H.G.; Park, G.G.; Kim, S.R.; Sim, J.; Kim, Y.O.; Kim, M.K.; Kim, S.R.; et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 2006, 45, 123–132. [Google Scholar] [CrossRef]
- Wu, G.; Lee, C.-H. Chlorophyll a/b Ratio as a Criterion for the Reliability of Absorbance Values Measured for the Determination of Chlorophyll Concentration. J. Life Sci. 2019, 29, 509–513. [Google Scholar]
- Oh, M.H.; Kim, Y.J.; Lee, C.W. Leaf senescence in a stay-green mutant of Arabidopsis thaliana: Disassembly process of photosystem I and II during dark-incubation. J. Biochem. Mol. Biol. 2000, 33, 256–262. [Google Scholar]
- Causse, M.A.; Fulton, T.M.; Cho, Y.G.; Ahn, S.N.; Chunwongse, J.; Wu, K.S.; Xiao, J.H.; Yu, Z.H.; Ronald, P.C.; Harrington, S.E.; et al. Saturated Molecular Map of the Rice Genome Based on an Interspecific Backcross Population. Genetics 1994, 138, 1251–1274. [Google Scholar]
- Shim, K.C.; Kim, S.; Le, A.Q.; Lee, H.S.; Adeva, C.; Jeon, Y.A.; Luong, N.H.; Kim, W.J.; Akhtamov, M.; Ahn, S.N. Fine Mapping of a Low-Temperature Germinability QTL qLTG1 Using Introgression Lines Derived from Oryza rufipogon. Plant Breed. Biotechnol. 2019, 7, 141–150. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417. [Google Scholar] [CrossRef] [Green Version]
- Law, C.W.; Chen, Y.S.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.F.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Yan, H.Y.; You, Q.; Yi, X.; Du, Z.; Xu, W.Y.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
Trait | Hwaseong | CR2002 | p-Value |
---|---|---|---|
Plant height (cm) | 97 ± 4.00 * | 101 ± 3.84 | 0.000 |
Stem diameter (mm) | 4.47 ± 0.24 | 5.26 ± 0.48 | 0.000 |
Panicle length (cm) | 21 ± 1.28 | 19 ± 1.04 | 0.000 |
First internode diameter (mm) | 1.72 ± 0.12 | 1.99 ± 0.14 | 0.000 |
Grain length (mm) | 7.14 ± 0.45 | 7.46 ± 0.17 | 0.002 |
Grain width (mm) | 3.29 ± 0.13 | 3.83 ± 0.10 | 0.000 |
Grain thickness (mm) | 2.20 ± 0.06 | 2.56 ± 0.10 | 0.000 |
1000-grain weight (g) | 25.8 ± 0.68 | 32.9 ± 1.04 | 0.000 |
Chlorophyll content I (mg/m2) | 440 ± 16.38 | 457 ± 37.57 | 0.048 |
Chlorophyll content II (mg/m2) | 181 ± 50.57 | 216 ± 50.86 | 0.038 |
Trait 1 | Gen. | QTL | Chr. | Marker | p-Value | R2 (%) | H/H 2 | G/G |
---|---|---|---|---|---|---|---|---|
Chlorophyll content I | F3 | qCC1 | 1 | RM11302-RM11315 | 0.002 | 3.48 | 442 | 452 |
F4 | qCC2 | 2 | RM7288-RM12983 | 0.029 | 10.76 | 546 | 570 | |
Chlorophyll content II | F3 | qCC2 | 2 | RM12813 | 0.018 | 10.68 | 173 | 189 |
F4 | qCC2 | 2 | RM12813-RM7288 | 0.001 | 24.63 | 497 | 545 | |
F3 | qCC6 | 6 | RM584 | 0.018 | 10.62 | 454 | 434 |
Gene | CR2002 | Symbol | Description | |
---|---|---|---|---|
log2FC | Adj. p-Value | |||
Os07g0410300 | −3.676 | 0.037 | OsERF5 | Conserved hypothetical protein. |
Os09g0532400 | −2.653 | 0.031 | OsABI1 | Signal transduction response regulator, receiver region domain containing protein. |
Os10g0392400 | −1.577 | 0.044 | OsJAZ1 | Tify domain containing protein. |
Os07g0658400 | −1.013 | 0.012 | OsGLU | Ferredoxin-dependent glutamate synthase, Leaf senescence, and nitrogen remobilization. |
Os02g0635200 | 1.081 | 0.000 | OsNIT1 | Similar to Nitrilase 2. |
Os10g0397400 | 1.360 | 0.003 | OsDWF1 | Dim/dwf1 protein, Cell elongation protein DIMINUTO/Dwarf1, Brassinosteroid (BR) biosynthesis. |
Os02g0830200 | 2.592 | 0.003 | OsRR3 | A-type response regulator, Cytokinin signaling. |
Gene | Hwaseong | Symbol | Description | |
log2FC | Adj. p-value | |||
Os11g0143300 | −2.966 | 0.011 | OsRR9 | A-type response regulator, Cytokinin signaling. |
Os12g0139400 | −2.671 | 0.006 | OsRR10 | A-type response regulator, Cytokinin signaling. |
Os11g0143200 | −2.423 | 0.047 | OsCPD1 | Similar to Cytochrome P450 90A1. |
Os03g0856700 | −2.126 | 0.027 | OsGA20ox1 | Gibberellin 20 oxidase 1. |
Os04g0673300 | −1.981 | 0.002 | OsRR6 | A-type response regulator, Cytokinin signaling. |
Os02g0164900 | −1.524 | 0.002 | OsARF6 | Similar to Auxin response factor 3. |
Os01g0208600 | −1.462 | 0.021 | OsSCAR1 | SCAR-like protein 2, Component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE) complex, Actin organization, Panicle development, Regulation of water loss. |
Os01g0718300 | −1.328 | 0.005 | OsBRI1 | Brassinosteroid LRR receptor kinase, Similar to Brassinosteroid-insensitive 1. |
Os01g0723100 | −1.323 | 0.001 | Senescence-associated family protein. | |
Os03g0265100 | −1.229 | 0 | PLS2 | Glycosyl transferase, group 1 domain containing protein. |
Os07g0209000 | 1.096 | 0 | OsDGL | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit precursor, N-glycosylation. |
Os02g0324700 | 1.184 | 0.001 | Similar to senescence-associated protein. | |
Os01g0927600 | 1.192 | 0 | OsARF2 | Similar to Auxin response factor 2 (ARF1-binding protein). |
Os01g0752500 | 1.321 | 0.006 | OsERF2 | APETELA2/ethylene response factor (AP2/ERF) type transcription factor, Negative regulation of disease resistance, Negative regulation of salt tolerance. |
Os03g0327800 | 1.872 | 0.013 | OsNAP | NAC Family transcriptional activator, Abiotic stress response, Positive regulator of leaf senescence. |
Os10g0477600 | 1.942 | 0.024 | ONAC120 | Similar to NAM / CUC2-like protein. |
Os11g0126900 | 4.026 | 0.048 | ONAC122 | NAC-domain protein, Drought tolerance. |
Os04g0578000 | 5.520 | 0.028 | OsACS2 | ACC synthase, Ethylene biosynthesis. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, K.-C.; Kim, S.H.; Jeon, Y.-A.; Lee, H.-S.; Adeva, C.; Kang, J.-W.; Kim, H.-J.; Tai, T.H.; Ahn, S.-N. A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. Int. J. Mol. Sci. 2020, 21, 1704. https://doi.org/10.3390/ijms21051704
Shim K-C, Kim SH, Jeon Y-A, Lee H-S, Adeva C, Kang J-W, Kim H-J, Tai TH, Ahn S-N. A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. International Journal of Molecular Sciences. 2020; 21(5):1704. https://doi.org/10.3390/ijms21051704
Chicago/Turabian StyleShim, Kyu-Chan, Sun Ha Kim, Yun-A Jeon, Hyun-Sook Lee, Cheryl Adeva, Ju-Won Kang, Hyun-Jung Kim, Thomas H Tai, and Sang-Nag Ahn. 2020. "A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice" International Journal of Molecular Sciences 21, no. 5: 1704. https://doi.org/10.3390/ijms21051704
APA StyleShim, K. -C., Kim, S. H., Jeon, Y. -A., Lee, H. -S., Adeva, C., Kang, J. -W., Kim, H. -J., Tai, T. H., & Ahn, S. -N. (2020). A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. International Journal of Molecular Sciences, 21(5), 1704. https://doi.org/10.3390/ijms21051704