Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate
Abstract
:1. Introduction
2. Results
2.1. Differential Expressions of DUBs by DEHP in Ovarian Cells
2.2. DEHP Exposure Influenced the mRNA Levels of Several DUB Genes in Ovarian Cells
2.3. Up-Regulation of USP49 Protein by DEHP in Ovarian Cells
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. RNA Extraction and cDNA Synthesis
4.3. Multiplex RT-PCR and qRT-PCR
4.4. Western Blot Analysis
4.5. Antibodies
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon, S.K.; Saindane, M.; Baek, K.H. p53 stability is regulated by diverse deubiquitinating enzymes. Biochim. Biophys Acta Rev. Cancer 2017, 1868, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533. [Google Scholar] [CrossRef] [PubMed]
- Woelk, T.; Sigismund, S.; Penengo, L.; Polo, S. The ubiquitination code: A signalling problem. Cell Div. 2007, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Todi, S.V.; Paulson, H.L. Balancing act: Deubiquitinating enzymes in the nervous system. Trends Neurosci. 2011, 34, 370–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Rehman, S.A.; Kristariyanto, Y.A.; Choi, S.Y.; Nkosi, P.J.; Weidlich, S.; Labib, K.; Hofmann, K.; Kulathu, Y. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol. Cell 2016, 63, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Peccoz, P.; Persani, L. Premature ovarian failure. Orphanet J. Rare. Dis. 2006, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, K. Premature ovarian failure. Prz Menopauzalny 2017, 16, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Ayesha, V.J.; Goswami, D. Premature Ovarian Failure: An Association with Autoimmune Diseases. J. Clin. Diagn. Res. 2016, 10, QC10–QC12. [Google Scholar] [CrossRef]
- Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ. Health 2017, 16, 37. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.N.; Jung, E.M.; Yoo, Y.M.; Ahn, C.; Kang, H.Y.; Choi, K.C.; Hyun, S.H.; Dang, V.H.; Pham, T.N.; Jeung, E.B. Depletion of follicles accelerated by combined exposure to phthalates and 4-vinylcyclohexene diepoxide, leading to premature ovarian failure in rats. Reprod. Toxicol. 2018, 80, 60–67. [Google Scholar] [CrossRef]
- Yin, J.; Liu, R.; Jian, Z.; Yang, D.; Pu, Y.; Yin, L.; Wang, D. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 163, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Lai, F.N.; Li, L.; Sun, X.F.; Cheng, S.F.; Ge, W.; Wang, Y.F.; Li, L.; Zhang, X.F.; De Felici, M.; et al. Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death Dis. 2017, 8, e2966. [Google Scholar] [CrossRef] [Green Version]
- Absalan, F.; Saremy, S.; Mansori, E.; Taheri Moghadam, M.; Eftekhari Moghadam, A.R.; Ghanavati, R. Effects of Mono-(2-Ethylhexyl) Phthalate and Di-(2-Ethylhexyl) Phthalate Administrations on Oocyte Meiotic Maturation, Apoptosis and Gene Quantification in Mouse Model. Cell J. 2017, 18, 503–513. [Google Scholar] [PubMed]
- Hannon, P.R.; Peretz, J.; Flaws, J.A. Daily exposure to Di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Biol. Reprod. 2014, 90, 136. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kwon, S.K.; Lee, S.Y.; Baek, K.H. Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53-/- HCT116 cells. Int. J. Oncol. 2018. [Google Scholar] [CrossRef]
- Hannon, P.R.; Brannick, K.E.; Wang, W.; Gupta, R.K.; Flaws, J.A. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 2015, 284, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzvetkov, N.; Breuer, P. Josephin domain-containing proteins from a variety of species are active de-ubiquitination enzymes. Biol. Chem. 2007, 388, 973–978. [Google Scholar] [CrossRef]
- Weeks, S.D.; Grasty, K.C.; Hernandez-Cuebas, L.; Loll, P.J. Crystal structure of a Josephin-ubiquitin complex: Evolutionary restraints on ataxin-3 deubiquitinating activity. J. Biol. Chem. 2011, 286, 4555–4565. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Chen, W.; Qin, J.; Zhou, Z.; Liu, R.; Liu, L.; Tan, J.; Zou, T.; Li, H.; Ren, G.; et al. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Kruppel-like factor 5 (KLF5). Oncotarget 2015, 6, 21369–21378. [Google Scholar] [CrossRef]
- Cohn, M.A.; Kee, Y.; Haas, W.; Gygi, S.P.; D’Andrea, A.D. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 2009, 284, 5343–5351. [Google Scholar] [CrossRef] [Green Version]
- Kee, Y.; Yang, K.; Cohn, M.A.; Haas, W.; Gygi, S.P.; D’Andrea, A.D. WDR20 regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex. J. Biol. Chem. 2010, 285, 11252–11257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClurg, U.L.; Harle, V.J.; Nabbi, A.; Batalha-Pereira, A.; Walker, S.; Coffey, K.; Gaughan, L.; McCracken, S.R.; Robson, C.N. Ubiquitin-specific protease 12 interacting partners Uaf-1 and WDR20 are potential therapeutic targets in prostate cancer. Oncotarget 2015, 6, 37724–37736. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.Y.; Jones, A.; Yang, C.; Zhai, L.; Smith, A.D.t.; Zhang, Z.; Chandrasekharan, M.B.; Sun, Z.W.; Renfrow, M.B.; Wang, Y.; et al. Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J. Biol. Chem. 2011, 286, 7190–7201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burska, U.L.; Harle, V.J.; Coffey, K.; Darby, S.; Ramsey, H.; O’Neill, D.; Logan, I.R.; Gaughan, L.; Robson, C.N. Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor. J. Biol. Chem. 2013, 288, 32641–32650. [Google Scholar] [CrossRef] [Green Version]
- McClurg, U.L.; Chit, N.; Azizyan, M.; Edwards, J.; Nabbi, A.; Riabowol, K.T.; Nakjang, S.; McCracken, S.R.; Robson, C.N. Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 2018, 37, 4679–4691. [Google Scholar] [CrossRef] [Green Version]
- McClurg, U.L.; Azizyan, M.; Dransfield, D.T.; Namdev, N.; Chit, N.; Nakjang, S.; Robson, C.N. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018, 9, 24992–25007. [Google Scholar] [CrossRef]
- Tang, L.J.; Li, Y.; Liu, Y.L.; Wang, J.M.; Liu, D.W.; Tian, Q.B. USP12 regulates cell cycle progression by involving c-Myc, cyclin D2 and BMI-1. Gene 2016, 578, 92–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Jones, A.; Joo, H.Y.; Zhou, D.; Cao, Y.; Chen, S.; Erdjument-Bromage, H.; Renfrow, M.; He, H.; Tempst, P.; et al. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev. 2013, 27, 1581–1595. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Li, Y.; Yin, Y.; Li, L.; Wu, C.; Chen, Y.; Nowsheen, S.; Hu, Q.; Zhang, L.; Lou, Z.; et al. USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J. 2017, 36, 1434–1446. [Google Scholar] [CrossRef] [Green Version]
- Tu, R.; Kang, W.; Yang, X.; Zhang, Q.; Xie, X.; Liu, W.; Zhang, J.; Zhang, X.D.; Wang, H.; Du, R.L. USP49 participates in the DNA damage response by forming a positive feedback loop with p53. Cell Death Dis. 2018, 9, 553. [Google Scholar] [CrossRef]
- Kim, E.; Yoon, S.J.; Kim, E.Y.; Kim, Y.; Lee, H.S.; Kim, K.H.; Lee, K.A. Function of COP9 signalosome in regulation of mouse oocytes meiosis by regulating MPF activity and securing degradation. PLoS ONE 2011, 6, e25870. [Google Scholar] [CrossRef] [PubMed]
- Robker, R.L.; Akison, L.K.; Russell, D.L. Control of oocyte release by progesterone receptor-regulated gene expression. Nucl. Recept. Signal. 2009, 7, e012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, D.R.; Landry, D.A.; Fournier, E.; Vigneault, C.; Blondin, P.; Sirard, M.A. Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows. Physiol. Genomics 2016, 48, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhong, A.; Sun, J.; Chen, M.; Xie, S.; Zheng, H.; Wang, Y.; Yu, Y.; Guo, L.; Lu, R. COPS5 inhibition arrests the proliferation and growth of serous ovarian cancer cells via the elevation of p27 level. Biochem. Biophys Res. Commun. 2017, 493, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Lui, T.T.; Lacroix, C.; Ahmed, S.M.; Goldenberg, S.J.; Leach, C.A.; Daulat, A.M.; Angers, S. The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol. Cell Biol. 2011, 31, 2053–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sy, S.M.; Jiang, J.; O, W.S.; Deng, Y.; Huen, M.S. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res. 2013, 41, 8572–8580. [Google Scholar] [CrossRef] [PubMed]
- Poalas, K.; Hatchi, E.M.; Cordeiro, N.; Dubois, S.M.; Leclair, H.M.; Leveau, C.; Alexia, C.; Gavard, J.; Vazquez, A.; Bidere, N. Negative regulation of NF-kappaB signaling in T lymphocytes by the ubiquitin-specific protease USP34. Cell Commun. Signal. 2013, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Tian, Y.; Zhang, W.; Xing, X.; Li, T.; Liu, H.; Huang, T.; Ning, Y.; Zhao, H.; Chen, Z.J. An association study between USP34 and polycystic ovary syndrome. J. Ovarian. Res. 2015, 8, 30. [Google Scholar] [CrossRef] [Green Version]
Ovarian Cells | DEHP (di-2-ethylhexyl phthalate) |
---|---|
A | 0 μg/mL (0 mM) |
B | 1 μg/mL (2.77 mM) |
C | 10 μg/mL (27.7 mM) |
D | 100 μg/mL (277 mM) |
DUB Gene | Primer Sequence | Group | DUB Gene | Primer Sequence | Group |
---|---|---|---|---|---|
Ataxin3 | F: GTC CAA CAG ATG CAT CGA CCA A | G4 | USP12 | F: GAA CTC TGA GTC TGG TTA CAT CCT | G2 |
R: CGT CTA ACA TTC CTG AGC CAT C | R: GAG GAG CTG GTA TCT CTG ATT TCA | ||||
ATXN3L | F: TCA GAA GAA AGT GAT GAG TCT GG | G9 | USP13 | F: ACC CAG CTG GAC AAT GGA GTC A | G2 |
R: CTC TCA ATT GCT CTC GAA CTT G | R: CAG CTT GAT GTC ATT GTC CTG GA | ||||
BAP1 | F: TCC GTG ATC TGG GTC CTG TC | G11 | USP14 | F: TCA GTG TAT TCG TTC TGT GCC TGA | G2 |
R: TCC CCG TCT TCT CTC TGC TG | R: CTC GCA TCA TTT GTA TCC AAC ATT CA | ||||
BRCC3 | F: GAG TTC AGA GTA TGA GAG AAT CG | G4 | USP15 | F: AAA CCT CGC TCC GGA AAG GGG A | G2 |
R: CCT TTT CTT CTT GTT GTA ATT CCT G | R: CAG TTG GCA ACA GTA TGT AAT CCA A | ||||
COPS5 | F: GCA GTG GTG ATT GAT CCA ACA A | G5 | USP16 | F: AAA CTT TAG AAC CTG TGT GCA G | G3 |
R: AGA CCT GAC CAG TGG TAT AGT C | R: CCT GAG AAT TTC TGC CAC AGC C | ||||
COPS6 | F: AGG TGT TCA AGG AGC TGG AGT T | G5 | USP17 | F: GAG CAA CGC AAG GAG AGC TCA AG | G8 |
R: GGA AGA TCT GTG TGC TTG GTC A | R: AGG GTA CCT TCG ACT TTT CTG ACG | ||||
CYLD | F: GCC AAG AAA AAG TCA CTT CAC CC | G11 | USP18 | F: ATT GGA CAG ACC TGC CTT A | G3 |
R: TGC CTT TTT GCA GAA GGA ATC CT | R: AAG GAT TCC TTC ACC CGG ATC G | ||||
EIF3S3 | F: GTC CAA ACT CTT CAA ACC ACC A | G5 | USP19 | F: GTT CTT TCC TTC ATC GTC AGG GTC | G3 |
R: AGT GAA CTC CTT GAT GTT CTG G | R: AGT GGG AGT AGC CAA GAG ATC ATG | ||||
EIF3S5 | F: TCT GCC TGG TCC TGC TCT TCC A | G4 | USP20 | F: TGG GCT CCT CTT CCA AGT TCT | G11 |
R: TTG TCG ACA GTT CCC AAC AGG G | R: AGG TTT CAG GTC ATC GTC CTC T | ||||
JOSD1 | F: GTG AAT GTC ATT ATG GCA GCA C | G4 | USP21 | F: TGA CAA AGC CGG AAG TCC TGT A | G3 |
R: TCC TCC AAC TCT GAT GAG CCT C | R: AAA GGG CTT CAC AGG TGC CAG A | ||||
JOSD2 | F: GTG TCT ACT ACA ACC TGG ACT C | G4 | USP22 | F: ACC AAC CAA ACG GGA GCT TG | G11 |
R: ATG AAG TGC TGG CCT TTC CCA G | R: CCC AAG GTT GAT CAG CCC AC | ||||
MPND | F: CGG GCA GAC CTT CAA CTC AC | G12 | USP24 | F: CCG ACA GTT GTC CGT GTC TG | G12 |
R: CCC AGT GGT CTC CGA CTC TT | R: TCC GAA GCT GTA GGC ACG TA | ||||
OTUB1 | F: AGG AAC CTC AGC AGC AGA AGC A | G6 | USP26 | F: CAG CCA CCT GTG AGA CCT GGT AA | G8 |
R: GTC TTG CGG ATG TAC GAG TAC T | R: CTG ATA ACT CTC CGC AAG TAA G | ||||
OTUB2 | F: CAT TCT TCG GGA CCA TCC TGA A | G6 | USP27 | F: CTC CAG CTT TAC GAT CGG TTT AAG | G1 |
R: GTT CCC ATC CCC TTT GGT CTT | R: CCG AAA CAG CGA CGA CAT CTC AC | ||||
OTUD1 | F: ATG GGG CAG ATG CTG AAT GTG A | G6 | USP28 | F: GAG GCA GCC CCA ACT GAA TC | G11 |
R: TGC ACC AGT TGT CGT ACT CTG | R: TGC TCA GAT GAC AAG CAG CG | ||||
OTUD3 | F: GAA GAC GAC CTG AGA GAT GAA G | G7 | USP29 | F: GGG ATG ACT AAG CTG AAA GAA GCT | G10 |
R: CTG GGC TCA AGA TTC TCT TCT G | R: TTT CAA AGT TAA ACG CAG GTG ACT | ||||
OTUD4 | F: GCT CTG CTA TGT GTC AGT CTC T | G7 | USP31 | F: TGA GGA TTG GTG TGG CCG TA | G11 |
R: TTA CTT GCA ACT GTC ATC CTC TG | R: AAT CTT GTC GCT GCC TGC TC | ||||
OTUD5 | F: ATC GGA GGA GTC ATG GAT TGA A | G6 | USP33 | F: CCC TTG GTA CTT GTCA GGA TTG TA | G3 |
R: ACC TGG CGA GCC TGT TTC TCC T | R: AAG CAT AAC ACC ATA CTC GAA GAG | ||||
OTUD6A | F: TGG ATG ATC CGA AGA GTG AAC | G10 | USP34 | F: CAG CCA TAG TGC TGA AGT TCA AGT | G3 |
R: TCT TGG AAC TTC TCC AGC TCC T | R: GAC TGA CAT CAC CAG ATT GTG CT | ||||
OTUD6B | F: AAG AAT GCT GTT CCC AAG AAT G | G7 | USP35 | F: AAG TAC ATG CTC CTG ACC TTC CA | G8 |
R: CCA TAT GTC TGG CTC CTG TTA A | R: CCC AGG TTG ATG AGA CCA ATC TT | ||||
OTUD7A | F: GCA GCA CTT CTA CAT GAT CCT A | G8 | USP36 | F: TCC CAG ACA CCC ACA CAC AT | G12 |
R: TGT GTA GAT TGG CAT CTC CAG G | R: GTG GTG TTG TCC GTG TCT G | ||||
OTUD7B | F: ACT TCA CAG GGG TGC CTT GTT | G7 | USP37 | F: CAG AAG GAA ACC AGC AGG CA | G12 |
R: GTT CTT CCC TGT AAC AAC AGG A | R: CGT CCG AGC TAT TCC ACT TCC | ||||
PARP11 | F: CAG CTA CAA GAT AGA CTT TGC AG | G7 | USP38 | F: CGT GTT GGG CCT CCT TCA TC | G11 |
R: GAT GGC CTC GTT TTC ACA GAT G | R: TGC AGG GAA GGC AGT AGT GT | ||||
PRPF8 | F: TCT ATG ACG ACT GGC TCA AGA C | G5 | USP39 | F: GGA GTC TCG CGG TTC CAC T | G12 |
R: ATC GCC ATG CTT GTT GAC AGT G | R: CGC ACA AAC GGG ACA ACA GA | ||||
PSMD14 | F: GGT TTG ACA CTT CAG GAC TAC A | G5 | USP41 | F: GGT TCT GCT TCA ATG ACT CCA ATA | G10 |
R: GAG GTC ATA AGT ACA TCC ACAT G | R: AGC CAT CTC ACG ATT GAC CGG CT | ||||
PSMD7 | F: ACG TCT TCA ACC TGC TGC CAG A | G5 | USP42 | F: TTA CTC ATC CCA CCC ATA GCC | G1 |
R: TCC TGC CCT TCT TTC TTC TCT G | R: TCA TGT GAG AGG GAA GCT GTG GT | ||||
STAMBP | F: GAA GCC CTC CTT AGA TGT GTT | G4 | USP43 | F: GAC AGA GCT GTT TCC TGG GC | G11 |
R: TGT CCA CCA CAG GTG GCT TAG CT | R: ATA GCT GCA GGC CAC AGA GA | ||||
STAMBPL1 | F: TTC GAA GAT CAA CTC AAG AAG CA | G5 | USP45 | F: TGG GCT GTT CAG ATC CAG TAG T | G1 |
R: TCT GGT GTG TGG AAA AGC AGG A | R: ACT GTC AGT CTC CTT GGT GTA CAG | ||||
TNFAIP3 | F: CCG AGC TGT TCC ACT TGT TAA CA | G6 | USP46 | F: CCA ATC CTG CTG ATG TGG CAG TC | G2 |
R: CAA CTT TGC GGC ATT GAT GAG A | R: GCT GAT GGC TGG AAA GAT GTA GTA | ||||
USP1 | F: GAC CAA ATG TGT GAA ATA GGT AAG C | G2 | USP47 | F: CAA TGA TCA ACA TGT CAG CAG GA | G1 |
R: GCA AGT AAG GAG TAG AAG TAG GAG | R: TTT CTG GCT GGA TCC TTC AGT CT | ||||
USP2 | F: TAT GGT GCC TAC ACC CCG TCC T | G9 | USP48 | F: GCT GGT AGA TCG GGA TAA TTC CA | G2 |
R: TGA GGA AGC TGC TGG TGG GGA C | R: AAC TCA TAG GGC TCA GCT CCA G | ||||
USP3 | F: CCT TGG GTC TGT TTG ACT TGT TCA | G3 | USP49 | F: AGG ACT ACG TGC TCA ATG ATA ACC | G9 |
R: CCA GTC CCA GCT TGG TGT CAT TA | R: GCA GGA GCA GCC GTG CAC TCT | ||||
USP4 | F: GTA GAA GGC CAG CAA CCC ATC G | G1 | USP50 | F: CTA TGA TAC CCT TCC AGT TAA GG | G8 |
R: ACT AGC ACC TGA CCC TGG TAT AG | R: TGG CAT TCA CGC AGC ATG TGT TG | ||||
USP5 | F: GTC CAC AAA GAC GAG TGC GCC T | G1 | USP51 | F: GGA CCC CAG AGA CTA GGA AAC G | G1 |
R: AGG CTG AGT CGG CCG ACA GTA | R: CAT AAT CCT TAC ACA TGA AGC A | ||||
USP6 | F: CGT TGG AAT CAA CAG CAG CAT TGA | G10 | USP52 | F: TCT GGC AAG GTT TCC CTG AGA GA | G2 |
R: CCA TCC ACT TGC TCG TTC GTG TCA | R: GGT TGC CAT GCA CAT CAA AGT CT | ||||
USP7 | F: CTC TCA GAC CAT GGG ATT TCC AC | G9 | USP53 | F: GAC ATT TCC AGA GAA TGT GCT CTG | G3 |
R: ATT GGT GTG TAG ATA TGC CCA CAG | R: GAT CCA GAT TGG AAA TGT GAA AGG | ||||
USP8 | F: GAC GCC ACC TGC ATC TAT AGA AG | G1 | USP54 | F: CGT GGT AGT GTA CAA GGG ATG TTT | G2 |
R: GGA AAG TAA AAC TGT CCT GCG CAA | R: CTC CCA TGC ACT TGT GAG TTG TAA | ||||
USP9X | F: AGC TTC AAG GGT TCC AGG ACA AG | G1 | USPL1 | F: TCC CAA GTG ACA GAT AAA GAA GCT G | G12 |
R: GAA GAC TAT CTC GCA ACA CTA TGG | R: ACC CAC AGA ACA CGA TGT TAA AGA | ||||
USP9Y | F: GAG GCT GTG AGT GGC TGG AAG T | G9 | VCPIP1 | F: GCT CGC TAT GGA ATG GAC AAA C | G6 |
R: CGG ACG TGT ACC ATT GTAAGA TAT G | R: ACA TGC TCT GGT TCT ATG AGG | ||||
USP10 | F: CCT CCA CAG CCC GCA GTA TAT TT | G3 | YOD1 | F: ACT TGC CCA TCC AAT CTG GTG A | G7 |
R: GAG ATA GGA TCA TCG CCA CCA TCT | R: ACG TAA CTA GAA GCA CCA CGT T | ||||
USP11 | F: TGG TGG AAG GCG AGG ATT ATG TG | G2 | ZRANB1 | F: CTA GTG CAA GAC CAA GGG TG | G6 |
R: GCT GGG CCA AGT GCC ATC TTT C | R: ACA CAT CTT TTA GCC TTG GCC C |
DUB Gene | Primer Sequence |
---|---|
ATXN3L | F: 5′-TCA GAA GAA AGT GAT GAG TCT GG-3′ |
R: 5′-CTC TCA ATT GCT CTC GAA CTT G-3′ | |
USP12 | F: 5′-GAA CTC TGA GTC TGG TTA CAT CCT-3′ |
R: 5′-GAG GAG CTG GTA TCT CTG ATT TCA-3′ | |
USP49 | F: 5′-CCC TGA ACG CTA TCA CTG CA-3′ |
R: 5′-TTG GCC AGC ATC TCA GTG AG-3′ | |
COPS5 | F: 5′-GCA GTG GTG ATT GAT CCA ACA A-3′ |
R: 5′-AGA CCT GAC CAG TGG TAT AGT C-3′ | |
USP34 | F: 5′-CAG CCA TAG TGC TGA AGT TCA AGT-3′ |
R: 5′-GAC TGA CAT CAC CAG ATT GTG CT-3′ | |
GAPDH | F: 5′-CCC TGA ACG CTA TCA CTG CA-3′ |
R: 5′-CCA TCA CGC CAC AGT TTC-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Park, J.-H.; Choi, J.; Lee, K.-J.; Yun, B.-S.; Baek, K.-H. Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate. Int. J. Mol. Sci. 2020, 21, 1755. https://doi.org/10.3390/ijms21051755
Lee D-H, Park J-H, Choi J, Lee K-J, Yun B-S, Baek K-H. Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate. International Journal of Molecular Sciences. 2020; 21(5):1755. https://doi.org/10.3390/ijms21051755
Chicago/Turabian StyleLee, Da-Hye, Jun-Hyeok Park, Jihye Choi, Kyung-Ju Lee, Bo-Seong Yun, and Kwang-Hyun Baek. 2020. "Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate" International Journal of Molecular Sciences 21, no. 5: 1755. https://doi.org/10.3390/ijms21051755
APA StyleLee, D. -H., Park, J. -H., Choi, J., Lee, K. -J., Yun, B. -S., & Baek, K. -H. (2020). Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate. International Journal of Molecular Sciences, 21(5), 1755. https://doi.org/10.3390/ijms21051755