Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease
Abstract
:1. Introduction
2. Inflammation and Diabetic Kidney Disease
3. Expression and Signaling Pathway of Tumor Necrosis Factor Alpha and Tumor Necrosis Factor Receptors
4. Circulating Tumor Necrosis Factor Receptors: Predictive Biomarker for Diabetic Kidney Disease Progression among Patients with Diabetes
5. Circulating Tumor Necrosis Factor Receptors: A Predictive Biomarker for All-Cause Mortality among Patients with Diabetes or Undergoing Hemodialysis
6. Circulating Tumor Necrosis Factor Receptor Levels among Patients with Diabetes from Different Races
7. Contributions of TNFR1 and TNFR2 to Diabetic Kidney Disease and Other Kidney Diseases in Animal Models
8. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
DKD | Diabetic kidney disease |
ESRD | End-stage renal disease |
TNFα | Tumor necrosis factor alpha |
TNFR | TNF receptor |
References
- Association, A.D. Improving Care and Promoting Health in Populations: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S7–S13. [Google Scholar] [CrossRef] [Green Version]
- Lambers Heerspink, H.J.; de Zeeuw, D. Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am. J. Nephrol. 2010, 31, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Macisaac, R.J.; Jerums, G. Diabetic kidney disease with and without albuminuria. Curr. Opin. Nephrol. Hypertens. 2011, 20, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Gohda, T.; Murakoshi, M.; Koshida, T.; Ichikawa, S.; Li, Z.; Adachi, E.; Sakuma, H.; Hagiwara, s.; Funabiki, K.; Suzuki, Y. Concept of Diabetic Kidney Disease - Paradigm Shift from Albuminuria - Based to GFR - Based Kidney Disease. Juntendo Med J. 2019, 65, 510–516. [Google Scholar] [CrossRef]
- Ramseyer, V.D.; Garvin, J.L. Tumor necrosis factor-alpha: Regulation of renal function and blood pressure. Am. J. Physiol. Renal. Physiol. 2013, 304, F1231–F1242. [Google Scholar] [CrossRef] [Green Version]
- Speeckaert, M.M.; Speeckaert, R.; Laute, M.; Vanholder, R.; Delanghe, J.R. Tumor necrosis factor receptors: Biology and therapeutic potential in kidney diseases. Am. J. Nephrol. 2012, 36, 261–270. [Google Scholar] [CrossRef]
- Gohda, T.; Kamei, N.; Koshida, T.; Kubota, M.; Tanaka, K.; Yamashita, Y.; Adachi, E.; Ichikawa, S.; Murakoshi, M.; Ueda, S.; et al. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic kidney disease. J. diabetes Investig. 2019. [Google Scholar] [CrossRef]
- Gohda, T.; Nishizaki, Y.; Murakoshi, M.; Nojiri, S.; Yanagisawa, N.; Shibata, T.; Yamashita, M.; Tanaka, K.; Yamashita, Y.; Suzuki, Y.; et al. Clinical predictive biomarkers for normoalbuminuric diabetic kidney disease. Diabetes Res. Clin. Pract. 2018, 141, 62–68. [Google Scholar] [CrossRef]
- Barutta, F.; Bruno, G.; Grimaldi, S.; Gruden, G. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment. Endocrine 2015, 48, 730–742. [Google Scholar] [CrossRef]
- Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.) 2013, 124, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Seok, S.J.; Lee, E.S.; Kim, G.T.; Hyun, M.; Lee, J.H.; Chen, S.; Choi, R.; Kim, H.M.; Lee, E.Y.; Chung, C.H. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol. Dial. Transplant. 2013, 28, 1700–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Zhong, Y.; Li, X.; Chen, H.; Jim, B.; Zhou, M.M.; Chuang, P.Y.; He, J.C. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 2014, 63, 2440–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, H.; Shikata, K.; Hirata, K.; Akiyama, K.; Matsuda, M.; Kushiro, M.; Shikata, Y.; Miyatake, N.; Miyasaka, M.; Makino, H. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: Glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997, 46, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Gohda, T.; Tomino, Y. Novel biomarkers for the progression of diabetic nephropathy: Soluble TNF receptors. Curr. Diab. Rep. 2013, 13, 560–566. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front. Immunol. 2018, 9, 784. [Google Scholar] [CrossRef] [Green Version]
- Schlondorff, J.; Blobel, C.P. Metalloprotease-disintegrins: Modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci. 1999, 112, 3603–3617. [Google Scholar]
- Luettig, B.; Decker, T.; Lohmann-Matthes, M.L. Evidence for the existence of two forms of membrane tumor necrosis factor: An integral protein and a molecule attached to its receptor. J. Immunol. 1989, 143, 4034–4038. [Google Scholar]
- Moss, M.L.; Jin, S.L.; Milla, M.E.; Bickett, D.M.; Burkhart, W.; Carter, H.L.; Chen, W.J.; Clay, W.C.; Didsbury, J.R.; Hassler, D.; et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997, 385, 733–736. [Google Scholar] [CrossRef]
- Puigserver, P. Signaling Transduction and Metabolomics. In Hematology, 7th ed.; Hoffman, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 663–672. [Google Scholar]
- Bodmer, J.L.; Schneider, P.; Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002, 27, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Ihnatko, R.; Kubes, M. TNF signaling: Early events and phosphorylation. Gen. Physiol. Biophys. 2007, 26, 159–167. [Google Scholar]
- Cabal-Hierro, L.; Lazo, P.S. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012, 24, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Woronicz, J.D.; Liu, W.; Goeddel, D.V. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999, 283, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Al-Lamki, R.S.; Mayadas, T.N. TNF receptors: Signaling pathways and contribution to renal dysfunction. Kidney Int. 2015, 87, 281–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.; Shu, H.B.; Pan, M.G.; Goeddel, D.V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996, 84, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.R. TNF-mediated inflammatory disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef]
- Sabio, G.; Davis, R.J. TNF and MAP kinase signalling pathways. Semin. Immunol. 2014, 26, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Guma, M.; Firestein, G.S. c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatol. J. 2012, 6, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Kim, S.C.; Yu, T.; Yi, Y.S.; Rhee, M.H.; Sung, G.H.; Yoo, B.C.; Cho, J.Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014, 2014, 352371. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.S.; Dixit, V.; Ashkenazi, A. Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nat. Immunol. 2009, 10, 348–355. [Google Scholar] [CrossRef]
- Blackwell, K.; Zhang, L.; Thomas, G.S.; Sun, S.; Nakano, H.; Habelhah, H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol. Cell. Biol. 2009, 29, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Faustman, D.; Davis, M. TNF receptor 2 pathway: Drug target for autoimmune diseases. Nat. Rev. Drug Discov. 2010, 9, 482–493. [Google Scholar] [CrossRef]
- Venkatesh, D.; Ernandez, T.; Rosetti, F.; Batal, I.; Cullere, X.; Luscinskas, F.W.; Zhang, Y.; Stavrakis, G.; García-Cardeña, G.; Horwitz, B.H.; et al. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-β autocrine signaling to promote monocyte recruitment. Immunity 2013, 38, 1025–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakimoto, T.; Ohnishi, T.; Ishimori, A. Significance of ectodomain shedding of TNF receptor 1 in ocular surface. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2419–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol. 2003, 3, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Naude, P.J.; den Boer, J.A.; Luiten, P.G.; Eisel, U.L. Tumor necrosis factor receptor cross-talk. Febs. J. 2011, 278, 888–898. [Google Scholar] [CrossRef]
- Sun, S.C.; Ley, S.C. New insights into NF-kappaB regulation and function. Trends Immunol. 2008, 29, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Aderka, D.; Engelmann, H.; Maor, Y.; Brakebusch, C.; Wallach, D. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J. Exp. Med. 1992, 175, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Gohda, T.; Niewczas, M.A.; Ficociello, L.H.; Walker, W.H.; Skupien, J.; Rosetti, F.; Cullere, X.; Johnson, A.C.; Crabtree, G.; Smiles, A.M.; et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 2012, 23, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Niewczas, M.A.; Gohda, T.; Skupien, J.; Smiles, A.M.; Walker, W.H.; Rosetti, F.; Cullere, X.; Eckfeldt, J.H.; Doria, A.; Mayadas, T.N.; et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 2012, 23, 507–515. [Google Scholar] [CrossRef]
- Skupien, J.; Warram, J.H.; Niewczas, M.A.; Gohda, T.; Malecki, M.; Mychaleckyj, J.C.; Galecki, A.T.; Krolewski, A.S. Synergism between circulating tumor necrosis factor receptor 2 and HbA(1c) in determining renal decline during 5-18 years of follow-up in patients with type 1 diabetes and proteinuria. Diabetes Care 2014, 37, 2601–2608. [Google Scholar] [CrossRef] [Green Version]
- Krolewski, A.S.; Niewczas, M.A.; Skupien, J.; Gohda, T.; Smiles, A.; Eckfeldt, J.H.; Doria, A.; Warram, J.H. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014, 37, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavkov, M.E.; Nelson, R.G.; Knowler, W.C.; Cheng, Y.; Krolewski, A.S.; Niewczas, M.A. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015, 87, 812–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavkov, M.E.; Weil, E.J.; Fufaa, G.D.; Nelson, R.G.; Lemley, K.V.; Knowler, W.C.; Niewczas, M.A.; Krolewski, A.S. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 2016, 89, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niewczas, M.A.; Pavkov, M.E.; Skupien, J.; Smiles, A.; Md Dom, Z.I.; Wilson, J.M.; Park, J.; Nair, V.; Schlafly, A.; Saulnier, P.J.; et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat. Med. 2019, 25, 805–813. [Google Scholar] [CrossRef]
- Ye, X.; Luo, T.; Wang, K.; Wang, Y.; Yang, S.; Li, Q.; Hu, J. Circulating TNF receptors 1 and 2 predict progression of diabetic kidney disease: A meta-analysis. Diabetes Metab. Res. Rev. 2019, 35, e3195. [Google Scholar] [CrossRef]
- Forsblom, C.; Moran, J.; Harjutsalo, V.; Loughman, T.; Waden, J.; Tolonen, N.; Thorn, L.; Saraheimo, M.; Gordin, D.; Groop, P.H.; et al. Added value of soluble tumor necrosis factor-alpha receptor 1 as a biomarker of ESRD risk in patients with type 1 diabetes. Diabetes Care 2014, 37, 2334–2342. [Google Scholar] [CrossRef] [Green Version]
- Saulnier, P.J.; Gand, E.; Velho, G.; Mohammedi, K.; Zaoui, P.; Fraty, M.; Halimi, J.M.; Roussel, R.; Ragot, S.; Hadjadj, S. Association of Circulating Biomarkers (Adrenomedullin, TNFR1, and NT-proBNP) With Renal Function Decline in Patients With Type 2 Diabetes: A French Prospective Cohort. Diabetes Care 2017, 40, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [Google Scholar] [CrossRef] [Green Version]
- Barr, E.L.M.; Barzi, F.; Hughes, J.T.; Jerums, G.; Hoy, W.E.; O’Dea, K.; Jones, G.R.D.; Lawton, P.D.; Brown, A.D.H.; Thomas, M.; et al. High Baseline Levels of Tumor Necrosis Factor Receptor 1 Are Associated With Progression of Kidney Disease in Indigenous Australians With Diabetes: The eGFR Follow-up Study. Diabetes Care 2018, 41, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Saulnier, P.J.; Gand, E.; Ragot, S.; Ducrocq, G.; Halimi, J.M.; Hulin-Delmotte, C.; Llaty, P.; Montaigne, D.; Rigalleau, V.; Roussel, R.; et al. Association of serum concentration of TNFR1 with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: Follow-up of the SURDIAGENE Cohort. Diabetes Care 2014, 37, 1425–1431. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, A.C.; Ostgren, C.J.; Nystrom, F.H.; Lanne, T.; Jennersjo, P.; Larsson, A.; Arnlov, J. Association of soluble tumor necrosis factor receptors 1 and 2 with nephropathy, cardiovascular events, and total mortality in type 2 diabetes. Cardiovasc. Diabetol. 2016, 15, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohda, T.; Maruyama, S.; Kamei, N.; Yamaguchi, S.; Shibata, T.; Murakoshi, M.; Horikoshi, S.; Tomino, Y.; Ohsawa, I.; Gotoh, H.; et al. Circulating TNF Receptors 1 and 2 Predict Mortality in Patients with End-stage Renal Disease Undergoing Dialysis. Sci. Rep. 2017, 7, 43520. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.C.; Carrero, J.J.; Stenvinkel, P.; Bottai, M.; Barany, P.; Larsson, A.; Arnlov, J. High levels of soluble tumor necrosis factor receptors 1 and 2 and their association with mortality in patients undergoing hemodialysis. Cardiorenal. Med. 2015, 5, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, Y.; Gohda, T.; Suzuki, Y.; Omote, K.; Ishizaka, M.; Matsuoka, J.; Tomino, Y. Circulating TNF receptors 1 and 2 are associated with the severity of renal interstitial fibrosis in IgA nephropathy. PLoS ONE 2015, 10, e0122212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakoshi, M.; Gohda, T.; Sonoda, Y.; Suzuki, H.; Tomino, Y.; Horikoshi, S.; Suzuki, Y. Effect of tonsillectomy with steroid pulse therapy on circulating tumor necrosis factor receptors 1 and 2 in IgA nephropathy. Clin. Exp. Nephrol. 2017, 21, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N.; Yamashita, M.; Nishizaki, Y.; Yanagisawa, N.; Nojiri, S.; Tanaka, K.; Yamashita, Y.; Shibata, T.; Murakoshi, M.; Suzuki, Y.; et al. Association between circulating tumor necrosis factor-related biomarkers and estimated glomerular filtration rate in type 2 diabetes. Sci. Rep. 2018, 8, 15302. [Google Scholar] [CrossRef]
- DiPetrillo, K.; Coutermarsh, B.; Gesek, F.A. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am. J. Physiol. Renal. Physiol. 2003, 284, F113–F121. [Google Scholar] [CrossRef] [Green Version]
- Moriwaki, Y.; Inokuchi, T.; Yamamoto, A.; Ka, T.; Tsutsumi, Z.; Takahashi, S.; Yamamoto, T. Effect of TNF-alpha inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol. 2007, 44, 215–218. [Google Scholar] [CrossRef]
- Omote, K.; Gohda, T.; Murakoshi, M.; Sasaki, Y.; Kazuno, S.; Fujimura, T.; Ishizaka, M.; Sonoda, Y.; Tomino, Y. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am. J. Physiol. Renal. Physiol. 2014, 306, F1335–F1347. [Google Scholar] [CrossRef] [Green Version]
- Karkar, A.M.; Smith, J.; Pusey, C.D. Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor-alpha. Nephrol. Dial. Transplant. 2001, 16, 518–524. [Google Scholar] [CrossRef]
- Vielhauer, V.; Stavrakis, G.; Mayadas, T.N. Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. J. Clin. Investig. 2005, 115, 1199–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, G.; Reeves, W.B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 2003, 285, F610–F618. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Morrissey, J.; McCracken, R.; Tolley, T.; Klahr, S. Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy. Am. J. Physiol. 1999, 277, F766–F772. [Google Scholar] [CrossRef]
- Khan, S.B.; Cook, H.T.; Bhangal, G.; Smith, J.; Tam, F.W.; Pusey, C.D. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 2005, 67, 1812–1820. [Google Scholar] [CrossRef] [Green Version]
- Jacob, N.; Yang, H.; Pricop, L.; Liu, Y.; Gao, X.; Zheng, S.G.; Wang, J.; Gao, H.X.; Putterman, C.; Koss, M.N.; et al. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J. Immunol. 2009, 182, 2532–2541. [Google Scholar] [CrossRef]
- Meldrum, K.K.; Misseri, R.; Metcalfe, P.; Dinarello, C.A.; Hile, K.L.; Meldrum, D.R. TNF-alpha neutralization ameliorates obstruction-induced renal fibrosis and dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1456–R1464. [Google Scholar] [CrossRef]
Outcome | References | Type | n | Included Study Patients | ACR or AER | GFR (mL/min/1.73 m2) | Follow Up (Year) | Findings (HR (95%CI), C Index, AUC) |
---|---|---|---|---|---|---|---|---|
ESRD | Niewczas et al. [40] | 2 | 410 | eGFR >30 mL/min/1.73 m2 Normo, Micro, Macro | NA | eGFR >30 | 8–12 | TNFR1: 9.4 (2.8–31.6) TNFR2: 7.6 (2.7–21.6) Per increase of interquartile range |
ESRD | Forsblom et al. [47] | 1 | 429 | eGFR <60 mL/min/1.73 m2: 54% Macro (100%) | NA | NA | 9.4 | GFR+HbA1c+DM duration (Model 1): 0.72, 0.63 Model 1+TNFR1: 0.86, 0.81 C index and AUC, respectively |
ESRD | Pavkov et al. [43] | 2 | 193 | eGFR >60 mL/min/1.73 m2: 89% Normo (32%), Micro (37%), Macro (31%) | 72 (19, 493) mg/g | 120 (88, 149) | 9.5 | TNFR1: 1.6 (1.1–2.2) TNFR2: 1.7 (1.2–2.3) Per increase of interquartile range |
Time to ESRD | Skupien et al. [41] | 1 | 349 | eGFR > 30 mL/min/1.73 m2 Macro (100%) | 771 (471, 1377) mg/g | 81 (55, 104) | 5–18 | TNFR2: −34.6% Per increase of interquartile range |
eGFR loss >3.3%/year | Krolewski et al. [42] | 1 | 534 | eGFR > 60 mL/min/1.73 m2 Normo (n = 286) Micro (n = 248) | Normo: 16 (12–22) mg/min Micro: 65 (44–116) mg/min | Normo: 113 (102, 123) Micro: 112 (96, 122) | 4–10 | TNFR1: 2.9 (1.9–4.5) Per 200 pg/mL increase in biomarker |
eGFR of >40% from baseline eGFR | Saulnier et al. [48] | 2 | 1135 | eGFR > 30 mL/min/1.73 m2 Normo (45%), Micro (36%), Macro (19%) | 3 (1–10) mg/mmol | 76 ± 21 | 4.3 | TNFR1: 1.69 (1.47–1.95) Per 1 SD increase in biomarker |
eGFR of >40% from baseline eGFR | Coca et al. [49] | 2 | 380 | eGFR > 60 mL/min/1.73 m2 Case (50%), Control (50%) | Case: 21 (8, 66) mg/g Control: 20 (8, 102) mg/g | Case: 87 (77, 94) Control: 90 (79, 95) | 5 | TNFR1: 2.4 (1.5–4.0) TNFR2: 3.2 (1.7–6.1) Per doubling in biomarker |
Composite renal outcome 1 | Coca et al. [49] | 2 | 1156 | eGFR 30–89.9 mL/min/1.73 m2 Macro (100%) | NA | NA | 2.2 | TNFR1: 2.4 (1.7–3.3) TNFR2: 2.0 (1.4–2.8) Per doubling in biomarker |
Composite renal outcome 2 | Barr et al. [50] | 2 | 194 | eGFR > 15 mL/min/1.73 m2 | NA | NA | 3 | TNFR1: 3.8 (1.1–12.8) Per doubling in biomarker |
Stage 3 CKD | Gohda et al. [39] | 1 | 628 | eGFR > 60 mL/min/1.73 m2 Micro (n = 275) Normo + Micro (n = 353) | Micro: 56 (37, 101) mg/mL Normo + Micro: 41 (24, 79) mg/mL | Micro: 133 ± 30 Normo + Micro: 129 ± 30 | Micro: 10–12 Normo + Micro: 5–7 | TNFR1: 2.5 (1.4–4.7) TNFR2: 3.0 (1.7–5.5) Quartile 4 versus Quartiles 1–3 |
Mortality | Niewczas et al. [40] | 2 | 410 | eGFR > 30 mL/min/1.73 m2 Normo, Micro, Macro | NA | eGFR >30 | 8–12 | TNFR1: 1.6 (1.2–2.1) TNFR2: 1.6 (1.3–2.0) Per increase of interquartile range |
Mortality | Saulnier et al. [51] | 2 | 522 | eGFR < 60 mL/min/1.73 m2, Micro, or Macro | 29 (111) mg/mmol* | 49 ± 23 | 4 | TNFR1: 3.0 (1.7–5.2) Quartile 4 versus Quartile 1 |
Mortality | Carlsson et al. [52] | 2 | 607 | eGFR < 60 mL/min/1.73 m2: 10% Micro (10%) | 0.6 (0.5–0.7) g/mol** | 77 (75–78)** | 7.6 | TNFR1: 1.8 (1.4–2.1) TNFR1: 1.5 (1.1–1.9) Per 1 SD increase in biomarker |
Joslin | SURDIAGENE | Joslin | SURDIAGENE | ||
---|---|---|---|---|---|
n = 410 | n = 500 | n = 410 | n = 522 | ||
Outcome | ESRD | Mortality | |||
TNFR1 | Q1 | 0 | 0 | 12 | 47 |
Q2 | 0 | 4 | 13 | 77 | |
Q3 | 6 | 10 | 26 | 93 | |
Q4 | 84 | 89 | 49 | 159 | |
15 (59) | 18 (39) | 24 (84) | 89 (196) |
References | n | Type | GFR (mL/min/1.73 m2) | GFR Estimated Method | ACR (AER) or PCR | ACR Level | TNFR1 (pg/mL) | TNFR2 (pg/mL) | Race, Patients, Cohort |
---|---|---|---|---|---|---|---|---|---|
Pavkov et al. [43] | 193 | 2 | 120 (88–149) | Urinary clearance of iothalamate | 72 (19–493) | Normo (32%) Micro (37%) Macro (31%) | 2833 (2081, 4092) | 4835 (3875, 6997) | Pima Indian |
Pavkov et al. [44] | 83 | 2 | 119 (94, 155) | Urinary clearance of iothalamate | 26 (12, 127) | Normo (52%) Micro (29%) Macro (19%) | 1500 (1205, 1960) | 3283 (2670, 4151) | Pima Indian |
Gohda et al. [39] | 353 | 1 | 129 ± 30 | Cyctatin C based GFR | 41* (24, 79) | High normo (>15) Micro | 1382 (1180, 1709) | 2230 (1869, 2695) | Caucasian (94%) Second Joslin Kidney Study |
Gohda et al. [39] | 275 | 1 | 133 ± 30 | Cyctatin C based GFR | 56* (37, 101) | Micro | 1345 (1156, 1598) | 2161 (1732, 2673) | Caucasian (94%) First Joslin Kidney Study |
Skupien et al. [41] | 349 | 1 | 81 (55, 104) | CKD-EPI | 771 (471, 1377) | Macro | NA | 4415 (3497, 5777) | Caucasian Joslin Proteinuria Cohort |
Kamei et al. [57] | 334 | 2 | 72 (61, 86) | IDMS-traceable MDRD | 10 (6, 17) | Normo | 1401 (1175, 1725) | 3036 (2558, 3828) | Asian (Japanese) |
Kamei et al. [57] | 171 | 2 | 69 (53, 85) | IDMS-traceable MDRD | 79 (40, 152) | Micro | 1630 (1418, 2092) | 3522 (2841, 4570) | Asian (Japanese) |
Kamei et al. [57] | 89 | 2 | 55 (44, 70) | IDMS-traceable MDRD | 690 (449, 1487) | Macro | 2229 (1751, 2811) | 4370 (3610, 5645) | Asian (Japanese) |
Sonoda et al. [55] | 106 | NA | 79 (60, 100) | IDMS-traceable MDRD | 0.4** (0.2, 1.0) | NA | 1412 (1264, 1807) | 2963 (2483, 3758) | Asian (Japanese) IgA nephropathy |
Murakoshi et al. [56] | 223 | NA | 83 ± 29 | IDMS-traceable MDRD | 0.4** (0.2, 1.0) | NA | 1491 (1248, 1915) | 3083 (2598, 3822) | Asian (Japanese) IgA nephropathy |
Model Used | Methods of TNFα Antagonism | Effect of TNFα Inhibition | References |
---|---|---|---|
Anti-GBM nephritis rat | Soluble TNFR1 | sTNFR1 prevented acute glomerular inflammation and crescent formation | [61] |
Anti-GBM nephritis rat | Rat TNFα monoclonal antibody | TNF antibody reduced glomerular inflammation, crescent formation, and tubulointerstitial scarring, with preservation of renal function | [65] |
Anti-GBM nephritis mice | TNFR1 or TNFR2 KO mice | TNFR1-deficient mice: less proteinuria and glomerular injury only at the early stages TNFR2-deficient mice: completely protected from glomerulonephritis at all stages | [62] |
TNF administration in SLE-prone mice | TNFR1 and/or TNFR2 KO mice | TNFR1/TNFR2-double deficient mice exhibited accelerated pathological and clinical nephritis | [66] |
STZ-induced diabetic rat | TNFR:Fc | TNFR:Fc reduced urinary TNF excretion, sodium retention, and attenuated renal hypertrophy | [58] |
STZ-induced diabetic rat | Infliximab | Infliximab ameliorated urinary albumin and TNFα excretion | [59] |
Spontaneous DKD mice | Etanercept | Etanercept improved albuminuria and decreased serum sTNFR2 levels | [60] |
UUO mice | TNFR1 or TNFR2 KO mice | TNFR1 or TNFR2 deficiency resulted in significantly less NF-κB activation compared with the wild type, with TNFR1 being less than TNFR2 knockout | [64] |
UUO rat | Soluble TNFR1 (PEG-sTNFR1) | PEG-sTNFR1 significantly reduced tubulointerstitial fibrosis and a progressive renal function decline | [67] |
Cisplatin-induced renal injury mice | TNFR1 or TNFR2 KO mice | TNFR1 or TNFR2 deficiency protects mice from cisplatin-induced AKI. TNFR2-deficient mice developed less severe renal dysfunction compared with either TNFR1-deficient or wild-type mice | [63] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakoshi, M.; Gohda, T.; Suzuki, Y. Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 1957. https://doi.org/10.3390/ijms21061957
Murakoshi M, Gohda T, Suzuki Y. Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease. International Journal of Molecular Sciences. 2020; 21(6):1957. https://doi.org/10.3390/ijms21061957
Chicago/Turabian StyleMurakoshi, Maki, Tomohito Gohda, and Yusuke Suzuki. 2020. "Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease" International Journal of Molecular Sciences 21, no. 6: 1957. https://doi.org/10.3390/ijms21061957
APA StyleMurakoshi, M., Gohda, T., & Suzuki, Y. (2020). Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease. International Journal of Molecular Sciences, 21(6), 1957. https://doi.org/10.3390/ijms21061957