Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers
Abstract
:1. Introduction
2. Methods
3. Overview of Systemic Therapies Used in Metastatic Colorectal Cancer
4. Predictive Factors for Chemotherapy Response in Metastatic Colorectal Cancer
5. Predictive Factors for Response to Targeted Treatments and Immunotherapy in Metastatic Colorectal Cancer
6. The Role of the miRNAs in Predicting the Treatment Response in Colorectal Cancer
6.1. A Short Overview about miRNAs
6.2. MiRNAs Predicting Treatment Response in CRC
7. Limitations for Implementing miRNAs as a Prediction Tool for Chemoresponse into Daily Practice
8. Challenges in the Therapeutic Use
9. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yoshino, T.; Arnold, D.; Taniguchi, H.; Pentheroudakis, G.; Yamazaki, K.; Xu, R.H.; Kim, T.W.; Ismail, F.; Tan, I.B.; Yeh, K.H.; et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: A JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann. Oncol. 2018, 29, 44–70. [Google Scholar] [CrossRef] [PubMed]
- El-Deiry, W.S.; Vijayvergia, N.; Xiu, J.; Scicchitano, A.; Lim, B.; Yee, N.S.; Harvey, H.A.; Gatalica, Z.; Reddy, S. Molecular profiling of 6892 colorectal cancer samples suggests different possible treatment options specific to metastatic sites. Cancer Biol. Ther. 2015, 16, 1726–1737. [Google Scholar] [CrossRef] [Green Version]
- Labianca, R.; Nordlinger, B.; Beretta, G.D.; Mosconi, S.; Mandala, M.; Cervantes, A.; Arnold, D. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24 (Suppl. S6), vi64–vi72. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapado-Gonzalez, O.; Alvarez-Castro, A.; Lopez-Lopez, R.; Iglesias-Canle, J.; Suarez-Cunqueiro, M.M.; Muinelo-Romay, L. Circulating microRNAs as Promising Biomarkers in Colorectal Cancer. Cancers 2019, 11, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taieb, J.; Jung, A.; Sartore-Bianchi, A.; Peeters, M.; Seligmann, J.; Zaanan, A.; Burdon, P.; Montagut, C.; Laurent-Puig, P. The Evolving Biomarker Landscape for Treatment Selection in Metastatic Colorectal Cancer. Drugs 2019, 79, 1375–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 2000, 18, 2938–2947. [Google Scholar] [CrossRef]
- Saltz, L.B.; Cox, J.V.; Blanke, C.; Rosen, L.S.; Fehrenbacher, L.; Moore, M.J.; Maroun, J.A.; Ackland, S.P.; Locker, P.K.; Pirotta, N.; et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 2000, 343, 905–914. [Google Scholar] [CrossRef]
- Wulaningsih, W.; Wardhana, A.; Watkins, J.; Yoshuantari, N.; Repana, D.; Van Hemelrijck, M. Irinotecan chemotherapy combined with fluoropyrimidines versus irinotecan alone for overall survival and progression-free survival in patients with advanced and/or metastatic colorectal cancer. Cochrane Database Syst. Rev. 2016, 2, CD008593. [Google Scholar] [CrossRef]
- Tournigand, C.; Andre, T.; Achille, E.; Lledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J. Clin. Oncol. 2004, 22, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Falcone, A.; Ricci, S.; Brunetti, I.; Pfanner, E.; Allegrini, G.; Barbara, C.; Crino, L.; Benedetti, G.; Evangelista, W.; Fanchini, L.; et al. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: The Gruppo Oncologico Nord Ovest. J. Clin. Oncol. 2007, 25, 1670–1676. [Google Scholar] [PubMed]
- Souglakos, J.; Androulakis, N.; Syrigos, K.; Polyzos, A.; Ziras, N.; Athanasiadis, A.; Kakolyris, S.; Tsousis, S.; Kouroussis, Ch.; Vamvakas, L.; et al. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): A multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br. J. Cancer 2006, 94, 798–805. [Google Scholar] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Chua, W.; Kho, P.S.; Moore, M.M.; Charles, K.A.; Clarke, S.J. Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit. Rev. Oncol. Hematol. 2011, 79, 224–250. [Google Scholar] [CrossRef] [PubMed]
- Sargent, D.J.; Kohne, C.H.; Sanoff, H.K.; Bot, B.M.; Seymour, M.T.; de Gramont, A.; Porschen, R.; Saltz, L.B.; Rougier, P.; Tournigand, C.; et al. Pooled safety and efficacy analysis examining the effect of performance status on outcomes in nine first-line treatment trials using individual data from patients with metastatic colorectal cancer. J. Clin. Oncol. 2009, 27, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann. Oncol. 2012, 23, 2479–2516. [Google Scholar] [CrossRef]
- Marsh, S.; McLeod, H.L. Thymidylate synthase pharmacogenetics in colorectal cancer. Clin. Colorectal Cancer 2001, 1, 175–178. [Google Scholar] [CrossRef]
- Aschele, C.; Debernardis, D.; Tunesi, G.; Maley, F.; Sobrero, A. Thymidylate synthase protein expression in primary colorectal cancer compared with the corresponding distant metastases and relationship with the clinical response to 5-fluorouracil. Clin. Cancer Res. 2000, 6, 4797–4802. [Google Scholar]
- Metzger, R.; Danenberg, K.; Leichman, C.G.; Salonga, D.; Schwartz, E.L.; Wadler, S.; Lenz, H.J.; Groshen, S.; Leichman, L.; Danenberg, P.V. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin. Cancer Res. 1998, 4, 2371–2376. [Google Scholar]
- Salonga, D.; Danenberg, K.D.; Johnson, M.; Metzger, R.; Groshen, S.; Tsao-Wei, D.D.; Lenz, H.J.; Leichman, C.G.; Leichman, L.; Diasio, R.B.; et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res. 2000, 6, 1322–1327. [Google Scholar]
- Kohne, C.H.; Cunningham, D.; Di Costanzo, F.; Glimelius, B.; Blijham, G.; Aranda, E.; Scheithauer, W.; Rougier, P.; Palmer, M.; Wils, J.; et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: Results of a multivariate analysis of 3825 patients. Ann. Oncol. 2002, 13, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Stoehlmacher, J.; Zhang, W.; Tsao-Wei, D.; Groshen, S.; Lenz, H.J. Thymidylate synthase gene polymorphism predicts response to capecitabine in advanced colorectal cancer. Int. J. Colorectal Dis. 2002, 17, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Vallbohmer, D.; Yang, D.Y.; Kuramochi, H.; Shimizu, D.; Danenberg, K.D.; Lindebjerg, J.; Nielsen, J.N.; Jakobsen, A.; Danenberg, P.V. DPD is a molecular determinant of capecitabine efficacy in colorectal cancer. Int. J. Oncol. 2007, 31, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.S.; Richman, S.D.; Quirke, P.; Daly, C.; Adlard, J.W.; Elliott, F.; Barret, J.H.; Selby, P.; Meade, A.M.; Stephens, R.J.; et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: Results from the UK MRC FOCUS trial. J. Clin. Oncol. 2008, 26, 2690–2698. [Google Scholar] [CrossRef] [PubMed]
- Freyer, G.; Rougier, P.; Bugat, R.; Droz, J.P.; Marty, M.; Bleiberg, H.; Mignard, D.; Awad, L.; Herait, P.; Culine, S.; et al. Prognostic factors for tumour response, progression-free survival and toxicity in metastatic colorectal cancer patients given irinotecan (CPT-11) as second-line chemotherapy after 5FU failure. CPT-11 F205, F220, F221 and V222 study groups. Br. J. Cancer 2000, 83, 431–437. [Google Scholar] [CrossRef]
- Shirota, Y.; Stoehlmacher, J.; Brabender, J.; Xiong, Y.P.; Uetake, H.; Danenberg, K.D.; Groshen, S.; Tsao-Wei, D.D.; Danenberg, P.V.; Lenz, H.J. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J. Clin. Oncol. 2001, 19, 4298–4304. [Google Scholar] [CrossRef]
- Bensmaine, M.A.; Marty, M.; de Gramont, A.; Brienza, S.; Levi, F.; Ducreux, M.; Francois, E.; Gamelin, E.; Bleiberg, H.; Cvitkovic, E. Factors predicting efficacy of oxaliplatin in combination with 5-fluorouracil (5-FU) +/− folinic acid in a compassionate-use cohort of 481 5-FU-resistant advanced colorectal cancer patients. Br. J. Cancer 2001, 85, 509–517. [Google Scholar] [CrossRef]
- Hamauchi, S.; Yamazaki, K.; Masuishi, T.; Kito, Y.; Komori, A.; Tsushima, T.; Narita, Y.; Todaka, A.; Ishihara, M.; Yokota, T.; et al. Neutropenia as a Predictive Factor in Metastatic Colorectal Cancer Treated With TAS-102. Clin. Colorectal Cancer 2017, 16, 51–57. [Google Scholar] [CrossRef]
- Cohen, R.B. Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin. Colorectal Cancer 2003, 2, 246–251. [Google Scholar] [CrossRef]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004, 351, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Lo Nigro, C.; Ricci, V.; Vivenza, D.; Granetto, C.; Fabozzi, T.; Miraglio, E.; Merlano, M.C. Prognostic and predictive biomarkers in metastatic colorectal cancer anti-EGFR therapy. World J. Gastroenterol. 2016, 22, 6944–6954. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, S.; Tejpar, S.; Gibbs, P.; Thiebach, L.; Lenz, H.J. Understanding the role of primary tumour localisation in colorectal cancer treatment and outcomes. Eur. J. Cancer 2017, 84, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejpar, S.; Stintzing, S.; Ciardiello, F.; Tabernero, J.; Van Cutsem, E.; Beier, F.; Esser, R.; Lenz, H.J.; Heinemann, V. Prognostic and Predictive Relevance of Primary Tumor Location in Patients With RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials. JAMA Oncol. 2017, 3, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef] [Green Version]
- Seppala, T.T.; Bohm, J.P.; Friman, M.; Lahtinen, L.; Vayrynen, V.M.; Liipo, T.K.; Ristimaki, A.P.; Kairaluoma, M.V.J.; Kellokumpu, I.H.; Kuopio, T.H.I.; et al. Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br. J. Cancer 2015, 112, 1966–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrantonio, F.; Petrelli, F.; Coinu, A.; Di Bartolomeo, M.; Borgonovo, K.; Maggi, C.; Cabiddu, M.; Iacovelli, R.; Bossi, I.; Lonati, V.; et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: A meta-analysis. Eur. J. Cancer 2015, 51, 587–594. [Google Scholar] [CrossRef]
- Price, T.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Guan, X.; Peeters, M. Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: Randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer. Eur. J. Cancer 2016, 68, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Troiani, T.; Martinelli, E.; Napolitano, S.; Vitagliano, D.; Ciuffreda, L.P.; Costantino, S.; Morgillo, F.; Capasso, A.; Sforza, V.; Nappi, A.; et al. Increased TGF-alpha as a mechanism of acquired resistance to the anti-EGFR inhibitor cetuximab through EGFR-MET interaction and activation of MET signaling in colon cancer cells. Clin. Cancer Res. 2013, 19, 6751–6765. [Google Scholar] [CrossRef] [Green Version]
- Oliveras-Ferraros, C.; Cufi, S.; Queralt, B.; Vazquez-Martin, A.; Martin-Castillo, B.; de Llorens, R.; Bosch-Barrera, J.; Brunet, J.; Menendez, J.A. Cross-suppression of EGFR ligands amphiregulin and epiregulin and de-repression of FGFR3 signalling contribute to cetuximab resistance in wild-type KRAS tumour cells. Br. J. Cancer 2012, 106, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Formica, V.; Palmirotta, R.; Del Monte, G.; Savonarola, A.; Ludovici, G.; De Marchis, M.L.; Grenga, I.; Schirru, M.; Guadagni, F.; Roselli, M. Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab. Int. J. Colorectal Dis. 2011, 26, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Ma, H.; Huang, F.; Zhu, D.; Bi, J.; Ke, Y.; Zhang, T. Correlation of bevacizumab-induced hypertension and outcomes of metastatic colorectal cancer patients treated with bevacizumab: A systematic review and meta-analysis. World J. Surg. Oncol. 2013, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passardi, A.; Scarpi, E.; Cavanna, L.; Dall’Agata, M.; Tassinari, D.; Leo, S.; Bernardini, I.; Gelsomino, F.; Tamberi, S.; Brandes, A.A.; et al. Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 2016, 7, 33210–33219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formica, V.; Massara, M.C.; Portarena, I.; Fiaschetti, V.; Grenga, I.; Del Vecchio Blanco, G.; Sileri, P.; Tosetto, L.; Skoulidis, F.; Pallone, F.; et al. Role of CA19.9 in predicting bevacizumab efficacy for metastatic colorectal cancer patients. Cancer Biomark. 2009, 5, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, D.; Thienpont, B.; Thuillier, V.; Sagaert, X.; Moisse, M.; Peuteman, G.; Pericay, C.; Folprecht, G.; Zalcberg, J.; Zilocchi, C.; et al. Evaluation of efficacy and safety markers in a phase II study of metastatic colorectal cancer treated with aflibercept in the first-line setting. Br. J. Cancer 2015, 113, 1027–1034. [Google Scholar] [CrossRef]
- Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausova, J.; et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol. 2018, 29, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Bekaii-Saab, T.; Kim, R.; Kim, T.W.; O’Connor, J.M.; Strickler, J.H.; Malka, D.; Sartore-Bianchi, A.; Bi, F.; Yamaguchi, K.; Yoshino, T.; et al. Third- or Later-line Therapy for Metastatic Colorectal Cancer: Reviewing Best Practice. Clin. Colorectal Cancer 2019, 18, e117–e129. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network Guidelines v 1.2020 Colon Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 2 February 2020).
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Van Roosbroeck, K.; Calin, G.A. Cancer Hallmarks and MicroRNAs: The Therapeutic Connection. Adv. Cancer Res. 2017, 135, 119–149. [Google Scholar]
- Balacescu, O.; Visan, S.; Baldasici, O.; Balacescu, L.; Vlad, C.; Patriciu, A.-C. MiRNA-Based Therapeutics in Oncology, Realities, and Challenges, Antisense Therapy, Antisene Therapy. IntechOpen. 2018. Available online: https://www.intechopen.com/books/antisense-therapy/mirna-based-therapeutics-in-oncology-realities-and-challenges (accessed on 11 November 2019).
- Dong, S.J.; Cai, X.J.; Li, S.J. The Clinical Significance of MiR-429 as a Predictive Biomarker in Colorectal Cancer Patients Receiving 5-Fluorouracil Treatment. Med. Sci. Monit. 2016, 22, 3352–3361. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Lin, B.; Zhang, X.; Peng, Y.; Ye, Z.; Ma, Y.; Liang, Y.; Cao, L.; Li, X.; Li, R.; et al. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017, 8, 49807–49823. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Li, L.; Wang, F.; Zhou, X.; Liu, Y.; Yin, Y.; Qi, X. Knockdown of Mir-135b Sensitizes Colorectal Cancer Cells to Oxaliplatin-Induced Apoptosis Through Increase of FOXO1. Cell. Physiol. Biochem. 2018, 48, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Yu, J.; Yin, Y.; He, J.; Wang, L.; Li, Q.; Zhang, L.Q.; Li, C.Y.; Shi, Z.M.; Xu, Q.; et al. MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle 2013, 12, 1385–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.Y.; Ma, J.; Zhang, F.X.; Yu, M.J.; Xue, J.S.; Zhao, J.S. MicroRNA-378 inhibits cell growth and enhances L-OHP-induced apoptosis in human colorectal cancer. IUBMB Life 2014, 66, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xia, H.W.; Ge, X.J.; Zhang, Y.C.; Tang, Q.L.; Bi, F. Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac. J. Cancer Prev. 2013, 14, 7421–7426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Eng, C.; Shen, J.; Lu, Y.; Takata, Y.; Mehdizadeh, A.; Chang, G.J.; Rodriguez-Bigas, M.A.; Li, Y.; Chang, P.; et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 2016, 7, 76250–76260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjersem, J.B.; Ikdahl, T.; Lingjaerde, O.C.; Guren, T.; Tveit, K.M.; Kure, E.H. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol. Oncol. 2014, 8, 59–67. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Bi, M.; Jiao, X.; Zhang, D.; Dong, Q. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs 2014, 25, 346–352. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Zhang, Y.; Chen, Y.; Hu, T. Predicting distant metastasis and chemoresistance using plasma miRNAs. Med. Oncol. 2014, 31, 799. [Google Scholar] [CrossRef]
- Shivapurkar, N.; Mikhail, S.; Navarro, R.; Bai, W.; Marshall, J.; Hwang, J.; Pishvaian, M.; Wellstein, A.; He, A.R. Decrease in blood miR-296 predicts chemotherapy resistance and poor clinical outcome in patients receiving systemic chemotherapy for metastatic colon cancer. Int. J. Colorectal Dis. 2013, 28, 887. [Google Scholar] [CrossRef] [Green Version]
- Schou, J.V.; Rossi, S.; Jensen, B.V.; Nielsen, D.L.; Pfeiffer, P.; Hogdall, E.; Yilmaz, M.; Tejpar, S.; Delorenzi, M.; Kruhoffer, M.; et al. miR-345 in metastatic colorectal cancer: A non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS ONE 2014, 9, e99886. [Google Scholar] [CrossRef]
- Hansen, T.F.; Sorensen, F.B.; Lindebjerg, J.; Jakobsen, A. The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC Cancer 2012, 12, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.F.; Christensen, R.; Andersen, R.F.; Sorensen, F.B.; Johnsson, A.; Jakobsen, A. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br. J. Cancer 2013, 109, 1243–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.; Sorensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer 2015, 112, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Ulivi, P.; Canale, M.; Passardi, A.; Marisi, G.; Valgiusti, M.; Frassineti, G.L.; Calistri, D.; Amadori, D.; Scarpi, E. Circulating Plasma Levels of miR-20b, miR-29b and miR-155 as Predictors of Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 307. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Wang, F.J.; Zhang, H.G.; Xu, X.Z.; Jia, R.C.; Yao, L.; Qiao, P.F. miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-beta/Smad4 pathway. World J. Gastroenterol. 2017, 23, 1816–1827. [Google Scholar] [CrossRef]
- Lin, M.; Gu, J.; Eng, C.; Ellis, L.M.; Hildebrandt, M.A.; Lin, J.; Huang, M.; Hamilton, S.r.; Calin, G.A.; Wang, D.; et al. Genetic polymorphisms in MicroRNA-related genes as predictors of clinical outcomes in colorectal adenocarcinoma patients. Clin. Cancer Res. 2012, 18, 3982–3991. [Google Scholar] [CrossRef] [Green Version]
- Pardini, B.; Rosa, F.; Naccarati, A.; Vymetalkova, V.; Ye, Y.; Wu, X.; di Gaetano, C.; Buchler, T.; Novotny, J.; Matullo, G.; et al. Polymorphisms in microRNA genes as predictors of clinical outcomes in colorectal cancer patients. Carcinogenesis 2015, 36, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Mao, Y.; Meng, F.; Wang, L.; Zhang, H.; Wang, W.; Hua, D. Rs7911488 modified the efficacy of capecitabine-based therapy in colon cancer through altering miR-1307-3p and TYMS expression. Oncotarget 2017, 8, 74312–74319. [Google Scholar] [CrossRef] [Green Version]
- Boni, V.; Zarate, R.; Villa, J.C.; Bandres, E.; Gomez, M.A.; Maiello, E.; Garcia-Foncillas, J.; Aranda, E. Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharm. J. 2011, 11, 429–436. [Google Scholar] [CrossRef]
- Fuji, T.; Umeda, Y.; Nyuya, A.; Taniguchi, F.; Kawai, T.; Yasui, K.; Toshima, T.; Yoshida, K.; Fujiwara, T.; Goel, A.; et al. Detection of circulating microRNAs with Ago2 complexes to monitor the tumor dynamics of colorectal cancer patients during chemotherapy. Int. J. Cancer 2019, 144, 2169–2180. [Google Scholar] [CrossRef]
- Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA Therapeutics in Cancer—An Emerging Concept. EBioMedicine 2016, 12, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abba, M.L.; Patil, N.; Leupold, J.H.; Allgayer, H. MicroRNA Regulation of Epithelial to Mesenchymal Transition. J. Clin. Med. 2016, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Qi, X.; Zhang, Y.; Long, H.; Yang, J. Decreased expression of microRNA-625 is associated with tumor metastasis and poor prognosis in patients with colorectal cancer. J. Surg. Oncol. 2013, 108, 230–235. [Google Scholar] [CrossRef] [PubMed]
Drug | Treatment Line in mCRC | Validated Predictive Factors | Proposed Predictive Factors | |||
---|---|---|---|---|---|---|
Tumor-Related | Clinical | Disease-Related | Laboratory | |||
5-FU | any | none | Response: combined low tumor levels of TS, TP, and DPD [19] Lack of response: high tumor TS levels/specific TS polymorphisms (TSER*3/TSER*3) [16] high tumor TP levels [18] | Lack of response: performance status ≥ 2 [20] | Response: rectal primary, lung only/nodal metastases [20] Lack of response: number of metastatic sites ≥ 2 [20] presence of peritoneal carcinomatosis or liver metastases [20] | Lack of response: WBC ≥ 10 × 109 /L [20] Hemoglobin < 11 × 109/L [20] Platelets ≥400 × 109 /L [20] Alkaline phosphatase ≥ 300 U/L [20] |
Capecitabine | any | none | Response: low TS levels/specific TS polymorphisms [21] low DPD levels [22] | Response: hand-foot syndrome [13] | ||
Irinotecan | any | none | Response: high TOPO1 gene expression [23] | Response: performance status 0–1 [25] diarrhea at 1st cycle [24] | Response: time from diagnosis < 9 months [24] number of organs involved = 1 [24] | Response: normal baseline hemoglobin [24] G3/G4 neutropenia at first cycle [24] |
Oxaliplatin | any | none | Response: low intratumoral ERCC-1 [8,12] low intratumoral TS [26] | Lack of response: ECOG ≥2 [26] | Lack of response: prior chemotherapy regimens ≥ 3 [26] | Lack of response: baseline Hb < 10 g/dL [26] |
Trifluridine-tipiracil | 3rd, 4th | none | Response: neutropenia after 1st cycle [27] | |||
Cetuximab, Panitumumab | any | Response: RAS wild-type [12] Left primary tumor [12] | Lack of response: BRAF mutations (especially in ≥2nd line) [36,37] Amplifications of KRAS, HER2, MET PIK3CA exon 20 mutations, loss of PTEN [11] Increased TGF alpha Amphiregulin, epiregulin suppression [37] | Response: skin toxicity during treatment [40,41] | Response: Hypomagnesemia [37] | |
Bevacizumab | 1st, 2nd | none | Response: VEGF gene polymorphism 1154 (G/G) VEGF gene polymorphism 634 was (G/G) [30] | Response: treatment-induced arterial hypertension [29] | Response: pre-therapy low SII indices pretherapy low NLR, PLR [30] abnormal baseline CA 19-9 | |
Aflibercept | 2nd line | none | Response: High baseline plasmatic IL8 [42] | |||
Ramucirumab | 2nd line | none | Response: High plasmaticVEGF-D expression [43] | |||
Regorafenib | 3rd line | none | Response: -hand-foot skin reaction; lung nodule cavitation [44] | |||
Larotrectinib/Entrectinib | refractory tumors | Response: NTRK gene fusion | ||||
Pembrolizumab, Nivolumab, Ipilimumab | refractory tumors | Response: MSI-H, Dmmr [46] |
Chemotherapy | CRC Stage | microRNA | Validation Study for the miRNAs Role in | Ref. | ||
---|---|---|---|---|---|---|
Diagnosis | Prognosis | Prediction | ||||
5-FU | I-IV | miR-196b-5p | tissue n = 20 CRC serum, exosomes n = 150 CRC n = 90 healthy | tissue n = 90 CRC serum, exosomes n = 150 CRC n = 90 healthy | in vitro, in vivo models | Ren et al. [52] |
IV | Ago2-miR-21, Ago2-miR-200c | plasma n = 40 + 20 CRC | plasma n = 40 + 20 CRC | Fuji T et al. [72] | ||
5-FU/Capecitabine | I-IV | miR-608 rs 4919510, miR-219 rs 213210 | peripheral blood n = 356 CRC | Lin et al. [68] | ||
5-FU-based | I-IV | miR-429 | tissue n = 78 CRC serum n = 45 CRC n = 45 healthy | tissue n = 78 CRC serum n = 45 CRC n = 45 healthy | tissue n = 116 CRC (stage IV) | Dong et al. [51] |
miR-608 rs 4919510, miR-219 rs 213210 | peripheral blood n = 1083 CRC | Pardini et al. [69] | ||||
5-FU + Irinotecan | IV | pri-miR 26a-1 rs 7372209, pri-miR-100 rs 1834306 | peripheral blood n = 61 CRC | Boni et al. [71] | ||
5-FU + Avastin | recurrence after stage III adjuvant treatment | miR-155 | serum n = 6 CRC | Chen et al. [60] | ||
Oxaliplatin | not specified | miR-135b | serum n = 25 CRC n = 25 healthy | in vitro, in vivo models | Qin et al. [53] | |
A-D (Duke) | miR-143 | tissue n = 62 CRC plasma n = 41 CRC n = 10 healthy | tissue n = 62 CRC plasma n = 41 CRC n = 10 healthy | in vitro | Qian et al. [54] | |
any | miR-378 | tissue n = 20 CRC serum n = 37 CRC n = 14 healthy | in vitro, in vivo models | in vitro, in vivo models | Wang et al. [55] | |
Oxaliplatin-based | not specified (adjuvant) | miR-34a | plasma n = 30 CRC CRC cell lines | Sun C et al. [67] | ||
FOLFOX | II-III | miR-4772-3p | serum n = 84 CRC | serum n = 84 CRC | Liu et al. [57] | |
III-IV | miR-20a, miR-130, miR-145, miR-216, miR-372 | serum n = 173 CRC | Zhang J et al. [59] | |||
IV | miR-19a | serum n = 72 CRC | Chen Q et al. [56] | |||
IV | miR-326, miR-27b, miR-148a, miR-106a, miR-484, miR-130b | miR-326, miR-27b, miR-148a plasma n = 150 CRC | miR-106a, miR-484, miR-130b plasma n = 150 CRC | Kjersem et al. [58] | ||
CapeOx | IV | miR-126 | tissue n = 89 CRC | Hansen et al. 2012 [63] | ||
Rs7911488 miR-1307-3p | blood n = 274 CRC | Chen Q et al. [70] | ||||
CapeOx + Bevacizumab | IV | miR-126 | plasma n = 68 CRC | Hansen et al. 2015 [65] | ||
Capecitabine + Sunitinib | IV | miR-296 | serum n = 7 CRC | Shivapurkar et al. [61] | ||
mFOLFOX6 + Cetuximab | III | miR-155, miR-210, miR-200c | serum n = 15 CRC n = 20 healthy tissue n = 15 CRC | serum n = 15 CRC | Chen et al. [60] | |
FOLFOX/XELOX/FOLFIRI/XELIRI + Bevacizumab | IV | miR-126 | tissue n = 169 CRC | Hansen et al. 2013 [64] | ||
FOLFOX/FOLFIRI + Bevacizumab | IV | hsa-miR-20b-5p, hsa-miR-29b-3p and hsa-miR-155-5p | plasma n = 52 CRC | Ulivi et al. [66] | ||
Irinotecan + Cetuximab | IV | miR-345 | whole blood n = 138 CRC | Schou et al. [62] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherman, A.; Balacescu, L.; Gheorghe-Cetean, S.; Vlad, C.; Balacescu, O.; Irimie, A.; Lisencu, C. Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers. Int. J. Mol. Sci. 2020, 21, 2089. https://doi.org/10.3390/ijms21062089
Gherman A, Balacescu L, Gheorghe-Cetean S, Vlad C, Balacescu O, Irimie A, Lisencu C. Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers. International Journal of Molecular Sciences. 2020; 21(6):2089. https://doi.org/10.3390/ijms21062089
Chicago/Turabian StyleGherman, Alexandra, Loredana Balacescu, Sinziana Gheorghe-Cetean, Catalin Vlad, Ovidiu Balacescu, Alexandru Irimie, and Cosmin Lisencu. 2020. "Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers" International Journal of Molecular Sciences 21, no. 6: 2089. https://doi.org/10.3390/ijms21062089
APA StyleGherman, A., Balacescu, L., Gheorghe-Cetean, S., Vlad, C., Balacescu, O., Irimie, A., & Lisencu, C. (2020). Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers. International Journal of Molecular Sciences, 21(6), 2089. https://doi.org/10.3390/ijms21062089